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(*) A Neural Network (NN) consists of  a network of  McCulloch/Pitts computational neurons (a single 
layer was known historically as a “perceptron.”)

(*) NNs are universal function approximators – meaning that they can learn any arbitrarily complex mapping 
between inputs and outputs. While this fact speaks to the broad utility of  these models, NNs are 
nevertheless prone to overfitting. The core issue in most ML/AI models can be reduced to the question 
of generalizability. 

(*) A “deep” net has many hidden layers.

Neural Networks 



(*) Each neuron receives some inputs, performs a dot product and optionally follow it with a  non-
linearity (e.g. sigmoid/tanh). 

Training a NN entails tuning the weights of the network. The weights are commonly updated 
incrementally during training, so as to minimize a “loss function” (e.g. classification error). The goal of 
training is to produce a model with low generalization error. 

Put simply, denote the loss function for an algorithm by:

where f is the model output given input x, θ are the model parameters, and y is the true output 
associated with x. In general the loss function outputs 0 when the f(x)=y (i.e. the prediction was 
correct), and otherwise the loss is non-zero (a larger error yields a larger loss). 

In ML literature, the objective function is the function we which to optimize (either maximize or 
minimize) that defines a learning algorithm. 

Most commonly, the objective function is denoted J(θ), as the mean of the training errors: 

Neural Networks 
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(*) Each neuron receives some inputs, performs a dot product and optionally follow it with a  non-
linearity (e.g. sigmoid/tanh). 

Training a NN entails tuning the weights of the network. The weights are commonly updated 
incrementally during training, so as to minimize a “loss function” (e.g. classification error). The goal of 
training is to produce a model with low generalization error. 

(*) NNs are typically trained using backpropagation. This method calculates the gradient of  a loss 
function (e.g. squared-loss) with respect to all the weights (W) in the network. More specifically, we use 
the chain rule to compute the ‘delta’ for the weight updates (one can think of  this delta as assigning a 
degree of  ‘blame’ for misclassifications). 

Neural Networks 



(*) Backpropagation is one particular instance of  a larger paradigm of  optimization algorithms know as Gradient Descent 
(also called “hill climbing”). 

(*) There exists a large array of  nuanced methodologies for efficiently training NNs (particularly DNNs), including the use 
of  regularization, momentum, dropout, batch normalization, pre-training regimes, initialization processes, etc. 

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a NN; more recently the Adam 
stochastic optimization method (2014) has eclipsed backpropagation in practice: https://arxiv.org/abs/1412.6980

Gradient Descent 



A Neural Network “Zoo”



Overfitting, Underfitting and the Bias-Variance tradeoff

(*) Because it can accommodate very complex data representations, a deep neural network (DNN) is 
severely prone to overfitting (and thus poor generalization error); common remedies to overfitting include 
data augmentation and regularization, among other techniques. 



(*) Fundamental idea for Deep Learning: automate the process of  learning a hierarchy of  concepts  -
- this approach obviates the need for human operators to formally specify the knowledge/parameters 
that a computer needs. 

(*) A “deep” network enables learning a more complex/“expressive” model that can 
successfully discern useful patterns in data. In particular, deep learning enables the computer to 
build complex concepts from simpler concepts. 

Deep Learning



(*) Fundamental idea for Deep Learning: automate the process of  learning a hierarchy of  concepts  -
- this approach obviates the need for human operators to formally specify the knowledge/parameters 
that a computer needs. 

(*) A “deep” network enables learning a more complex/“expressive” model that can 
successfully discern useful patterns in data. In particular, deep learning enables the computer to 
build complex concepts from simpler concepts. 

(*) Deep learning resolves the difficulty of  learning
a complicated mapping into a series of  nested, simple 
mappings. 

Credo of  deep learning & data science: more data
/ quality data tends to trump specific design and
model choices. 

Deep Learning



(*)ML is perhaps the most viable approach known today for building AI systems that can solve complex 
problems for real-world environments; deep learning is a particular ML paradigm that assumes a 
representation of  the world as a nested hierarchy of  concepts.   

Deep Learning

Deep Learning Framework
Standard ML Framework



(1) First wave (1940s/50s):

(*) Simple neural-computational model, inspired by early research in neuroscience: hope is that a single 
algorithm / architecture can solve a great variety of  problems. 

McCulloch & Pitts Neuron Model

A Very Brief  History of  NNs



(2) Second wave (1980s-90s):

(*) Inspired, by cognitive science, connectionism / parallel distributed processing emerged as a 
dominant principle in NN research. 

Central idea: a large number of  simple computational units can achieve intelligent behavior when 
networked together. 

A Very Brief  History of  NNs

Hinton et al. “rediscover” backprop algorithm 
(1986)  

Universal Approximation Theorem (1989)  

LeCun et al., handwritten digit recognition with 
CNNs (1995)  



(3) Third wave (2000s-present):

Following the success of  backprop, NN research gained popularity and reached a peak in the early 
1990s.Afterwards, other ML techniques became more popular until the modern deep learning 
renaissance that began in 2006. 

A Very Brief  History of  NNs

Hinton et al. “deep belief networks” (2006)  
NN Parallelization with GPUs  

AlexNet (2012)
Big Data / Dataset size explosion 



A Very Brief  History of  NNs

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The same 

backprop algorithm and the same approaches to gradient descent are still in use. Most of  the improvement in 

NN performance from 1986-2018 can be attributed to two factors: 

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs. 

(2) NNs have come much larger because of  more powerful computer (including the use of  GPUs) and better 

software infrastructure (NNs are on pace to have the same number of  neurons as the human brain by 2050). 



A Two-Layer Neural Netowrk
(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training 

example)

inputs      

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside 

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of  hidden layer is to 

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to 

the every neuron in its previous layer(input) and to the next layer (output) layer.



DNNs: AlexNet (2012) 

AlexNet was developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever; it uses CNNs with GPU 

support. The network achieved a top-5 error of  15.3%, more than 10.8 percentage points ahead of  the 

runner up. 

Among other innovations: AlexNet used GPUs, utilized RELU (rectified linear units) for activations, and 

“dropout” for training. 

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



DNNs: AlexNet (2012) 



DNNs: VGG (2014) 

• Team at Oxford produced influential DNN architecture (VGG).Using very small 
convolutional filters (3x3), they achieved a significant improvement on the prior-art 
configurations by pushing the depth to 16–19 weight layers. 

• Team achieved first and second place on the ImageNet Challenge 2015 for both 
localization and classification tasks, respectively. 

• Using pre-trained VGG is very common practice in research. 

https://arxiv.org/pdf/1409.1556.pdf



DNNs: Inception (2015, Google) 

• Team at Google (Szegedy et al.) produced an even deeper DNN (22 layers). No need 
to pick filter sizes explicitly, as network learns combinations of  filter sizes/pooling 
steps; upside: newfound flexibility for architecture design (architecture parameters 
themselves can be learned); downside: ostensibly requires a large amount of  
computation – this can be reduced by using 1x1 convolutions for dimensionality 
reduction (prior to expensive convolutional operations).

• Team achieved new state of  the art for classification and detection in the ImageNet 
Large-Scale Visual Recognition Challenge 2014 (ILSVRC14; 6% top-5 error rate for 
classification. 

https://arxiv.org/pdf/1409.1556.pdf



Neural Network Notation

(activation represents
classification)

(internal representation)

(activations represent
feature vector for one training 
example)

xi : activation of input node i. 

hj : activation of hidden node j. 

ok : activation of output node k. 

wji : weight from node i to node j. 

σ : “sigmoid function”.  

For each node j in hidden layer,

For each node k in output layer, 
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Sigmoid function:



Common Activation Functions 



RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has 
been used for object recognition from images, where it makes sense to seek features 
that are invariant under poliarity reversal of  the input illumination. 

(2) Leaky RELU fixes αi to a small value like 0.01.
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RELU & Their Generalizations
(3) Generalizations of  RELUs are based on using a non-zero slope αi when zi < 0:

(3) Maxout units (Goodfellow, 2013); instead of  applying an element-wise function 
g(z), maxout units divide z into groups of  k values. Each maxout unit then outputs the 
maximum element of  one of  those groups. 

This provides a way of  learning a piecewise linear function that responds to multiple 
directions in the input x space.  Each maxout unit can learn a piecewise linear, convex 
function with up to k pieces; maxout units can thus be seen as learning the activation 
function itself  rather than just the relationship between units; with enough k, a maxout
unit can learn to approximate any convex function with arbitrary fidelity. 

( ) ( ) ( ), max 0, min 0,i i i ii
h g z z= = +z α



Regularization
• Regularization can be defined as “any modification we make to a learning algorithm that is 

intended to reduce its generalization error but not its training error”; as mentioned, 

regularization is frequently used to combat overfitting. 

Some form of  regularization should almost always been applied to a DNN model (with very 

few exceptions). 



Regularization
• There are many different regularization strategies; some put extra constraints on an ML 

model; some add extra terms to the objective function that can be though of  as soft 

constraints applied to the parameter values. If  chosen correctly, these extra constraints and 

penalties can lead to a significant performance improvement.

• Sometimes these constraints and penalties encode prior beliefs. Conversely, they are 

designed to express a generic preference for a simpler model class in order to promote 

generalization; sometimes these penalties are necessary to make an underdetermined 

problem determined or soluble; ensemble methods can also be considered a general form of  

regularization. 



Regularization
• Two common regularization approaches are L2 and L1-regularization, respectively. 

For L2-regularization, the loss function is appended with an L2 “penalty”: 

Where λ is a hyperparameter that determines the degree to which we “value” regularization; 

applying L2-regularization results in a model with small weight values, which safeguards 

against overfitting. 

L1-regularization applies an L1 penalty term: 
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Regularization
• In comparison to L2 regularization, L1 regularization results in a sparse model. Sparsity in this context refers to the fact that 

some parameters have an optimal value of  zero. The sparsity of  L1 regularization is a qualitatively different behavior than 

arises with L2 regularization. 

• The sparsity property induced by L1 regularization has been used extensively as  a feature selection mechanism; feature 

selection simplifies an ML problem by choosing which subset of  the available features should be used. The L1 penalty causes a 

subset of  the weights to become zero, suggesting that the corresponding features may safely be discarded. 



Data Augmentation

• The best way to make an ML model generalize better is to train it on more data. Of  course, data 

are limited/expensive. 

• One way to get around this problem is to generate synthetic data and add it to the training set. 

• This approach is easiest for classification. A classifier needs to take a complicated, high-

dimensional input x and summarize it with a single category identity y. This means that the main 

task facing a classifier is to be invariant to a wide variety of  transformations; we can generate new 

(x, y) pairs easily by transforming the x inputs in our training set. 



Data Augmentation

• Another form of  regularization, dataset augmentation, has been particularly effective for object 

recognition; operations like translating the training images a few pixels in each direction can often 

greatly improve generalization; many operations such as rotating the image or scaling the image are 

also quite effective (one needs to be careful that the transformation does not alter the correct image 

class). 

• Injecting noise in the input to a NN can also be seen as a form of  data augmentation; one way to 

improve the robustness of  a NN is to simply train them with random noise applied to their inputs. 



Early Stopping

• When training large models with sufficient representation capacity to overfit the task, 

we often observe that training error decreases steadily over time, but validation set error 

begins to rise again. 

• This means we can obtain a model with better validation set error (and hopefully 

better test error) by returning to the parameter setting at the point in time with the 

lowest validation set error. Every time the error on the validation set improves, we store 

a copy of  the model parameters; when the training terminates, we return these 

parameters, rather than the latest parameters. 



Early Stopping

• The only significant cost to choosing the training time “hyperparameter” is running the validation set evaluation periodically during 

training. 

• An additional cost to early stopping is the need to maintain a copy of  the best parameters; this cost is usually negligible, because it is 

acceptable to store these parameters in a slower and larger form of  memory. 

• Early stopping is an “unobtrusive” form of  regularization – it requires almost no change in the underlying training procedure, the 

objective function, or the set of  allowable parameter values (this is in contrast to weight decay). 

There are (2) conventional schema for early stopping: 

(1) Initialize the model again and retrain on all the data; however, there is not a good way of  knowing whether to retrain for the same 

number of  parameter updates or the same number of  passes through the dataset. 

(2) Another strategy is to keep the parameters obtained from the first round of  training and then continue training, but now using all 

the data; this strategy avoids the high cost of  training the model from scratch. 



Sparse Representations

• Weight decay acts by placing a penalty directly on the model parameters; another 

strategy is to place a penalty on the activations of  the units in a NN, encouraging their 

activations to be sparse. This indirectly imposes a complexity penalty on the model 

parameters. 

• Recall that L1 regularization induces a sparse parameterization – meaning that many of  

the parameters become zero (or close to zero). Representational sparsity on the 

other hand, describes a representation where many of  the elements of  the 

representation are zero (or close to zero).
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Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of  regularizing a broad 
family of  models (it is akin to bagging). 

• Dropout trains the ensemble consisting of  all subnetworks that can be formed by removing nonoutput units from an 
underlying base network. Recall that to learn with bagging, we define k different models, construct k different datasets by 
sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to approximate this 
process, but with an exponentially large number of  NNs. 

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary mask to 
apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8 probability for
including an input unit and 0.5 for hidden units). 

• In the case of  bagging, the models are all independent; for dropout, the models share parameters. 



Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent error rate on examples that are 
intentionally construction by using an optimization procedure to search for an input x’ near a data point x such that the model output is 
very different from x’ (oftentimes such adversarial examples are indiscernible to humans). 

• In the context of  regularization, one can reduce the error rate on the original i.i.d. test set via adversarial training – training on 
adversarially perturbed examples from the training set. 

• Goodfellow et al. (2014), showed that one of  the primary cause of  these adversarial examples is excessive linearity. NNs are primarily built 
out of  linear parts, and so the overall function that they implement proves to be highly linear as a result. 

• These linear functions are easily optimized; unfortunately, the value of  a linear function can change very rapidly if  it has numerous inputs. 
Adversarial training discourages this highly sensitive locally linear behavior by encouraging the network to be locally constant in the 
neighborhood of  the training data. 

• Adversarial training help to illustrate the power of  using a large function family in combination with aggressive regularization – a major 
theme in contemporary deep learning. 



Challenges for DNN Optimization

• Traditionally, ML implementations avoid the difficulty of  general optimization by carefully designing the 
objective function and constraints to ensure that the optimization problem is convex. 

• When training NNs, however, we must confront the general non-convex case. 

Convex Function Non-Convex Function



Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum. 

• With non-convex functions, such as NNs, it is possible to have many local minima. Moreover, nearly any DNN is 
essentially guaranteed to have a very large number of  local minimal (even uncountably many). 

• Local minima are problematic if  they correspond with high

cost (vis-à-vis the global minimum). 



Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in fact rare 

compared to saddle points. 

• Some points around a saddle point have greater cost than the saddle point, while others have lowers 

cost. At a saddle point, the Hessian matrix has both positive and negative eigenvalues. 

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms. 



Challenges for DNN Optimization: Cliffs, Exploding and Vanishing 
Gradients 

• NNs with many layers often have extremely steep regions resembling cliffs. This is due to the multiplication of  several large 
weights together. On the face of  an extremely steep cliff  structure, the gradient update step can alter the parameters drastically. 

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent algorithm proposes 
making a large step, the gradient clipping heuristic intervenes to reduce the step size, thereby making it less likely to go outside the 
region where the gradient indicates the direction of  approximately steepest descent. 

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of  exploding/vanishing gradients can arise.
Vanishing gradients make it difficult to known which direction the parameters should move to improve the cost function, while
exploding gradients can make learning unstable. 

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem. 



Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of  the most frequently used optimization algorithms in ML. Using a 

minibatch of  i.i.d. samples, one can obtain an unbiased estimate of  the gradient (where examples are drawn from the data-generating 

distribution). 

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually decrease the learning rate 

over time. This is because the SGD gradient estimator introduces a source of  noise (the random sampling of  m training examples) that 

does not vanish even when we arrive at a minimum. 

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of  training examples. This allows convergence

even when the number of  training examples becomes very large. 
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Basic Algorithms: SGD



Momentum
• The method of  momentum is designed to accelerate learning, especially in the face of  high 

curvature, small but consistent gradients, or noisy gradients. 

• The momentum algorithm accumulates an exponentially decaying moving average of  past 

gradients and continues to move in their direction. 

• Formally, the momentum algorithm introduces a variable v that plays the role of  velocity – it is 

the direction and speed at which the parameters move through parameter space. The velocity is 

set to an exponentially decaying average of  the negative gradient. 

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the 

more previous gradients affect the current direction. 



Momentum



Weight Initialization
• Training algorithms for DNN models are usually iterative and thus require the use to 

specify some initial point from which to begin the iterations. Moreover, training deep 

models is a sufficiently difficult task that most algorithms are strongly affected by the 

choice of  initialization.

• The initial point can determine whether the algorithm converges at all, with some initial 

points being so unstable that the algorithm encounters numerical difficultiess and fails 

altogether. When learning does converge, the initial point can determine how quickly 

learning converges and whether it converges to a point with high or low cost. 

• Modern initialization strategies are usually simple and heuristic; designing improves 

initialization strategies is a difficult task because NN optimization is not yet well 

understood. 



Weight Initialization
• The most general guideline agreed upon by most practitioners is known as 

“symmetry-breaking.” If  two hidden units with the same activation function are 

connected to the same inputs, then these units have different initial parameters. If  the 

training is deterministic, “symmetric” units will update identically (and hence be 

useless); even if  the training is stochastic, it is usually best to initialize each unit to 

compute a different function from all the other units. 

• The goal of  having each unit compute a different function motivates random 

initialization of  the parameters. Moreover, random initialization from a high-entropy 

distribution over a high-dimensional space is computationally cheaper than explicitly 

searching for, say a large set of  basis functions that are all mutually different from one 

another. 

• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid 

redundant units; in addition, they will also potentially help avoid the problem of  

vanishing gradients. Nevertheless, they may conversely exacerbate the exploding 

gradient problem; in RNNs, large initial weights can manifest chaotic behavior. 

* Sparse initialization (Martens, 2010) fixes the number of  non-zero weights for 



• It is well known that the learning rate is reliably one of  the most difficult to set 

hyperparameters because it significantly affects model performance. The cost function is often 

highly sensive to some directions in parameters space and insensitive to others. 

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of  

introducing another hyperparameters. 

• Recently, a number of  incremental methods have been introduced that adapt the learning rates 

of  model parameters. 

Algorithms with Adaptive Learning Rates



• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of  all model parameters by scaling them inversely proportional 
to the square root of  the sum of  all the historical squared values of  the gradient.

• The parameters with the largest partial derivative of  the loss have a correspondingly rapid decrease in their learning rate, while parameters with 
small partial derivates have a relatively small decrease in their learning rate. The net effect is greater progress in the more gently sloped directions 
of  parameter space. 

*Note: empirically, for training DNNs, the accumulation of  squared gradients from the beginning of  training can result in premature and excessive 
decrease in the effective learning rate. 

AdaGrad



• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive moments”). It can be seen as a variant on the 
combination of  RMSProp and momentum with several distinctions. 

• First, in Adam, momentum is incorporated directly as an estimate of  the first-order moment (with exponential weighting) of  the gradient. 
Second, Adam includes bias corrections to the estimates of  both the first-order moments (the momentum term) and the (uncentered) second-
order moments to account for their initialization at the origin. 

• RMSProp also incorporates an estimate of  the (uncentered) second-order moment; however, it lacks the correction factor. Thus, unlike in Adam, 
the RMSProp second-order moment estimate may have high bias early in training. *Adam is generally regarded as being fairly robust to the choice 
of  hyperparameters. 

Adam 



Second-Order Methods: Newton’s Method



Convolutional Neural Networks (CNNs) are a specialized kind of  NN for processing data that has a 
known grid-like topology (particularly: image data). 

CNNs are simple NNs with a specialized convolution operation in place of  general matrix 
multiplication. 

Convolution leverages (3) important ideas to help improve an ML system: 

(1) sparse interactions (i.e. the kernel is smaller than the input image)

(2) parameter sharing: instead of  learning a separate set of  parameters at each location for a given 
kernel, we learn only one set. 

(3) equivariant representations: parameter sharing causes the layer to be equivariant to translation.

Convolutional Neural Networks 



Convolutional Neural Networks 

CNNs typically consist of (3) stages:

(1) In the first stage, the layer performs several 
convolutions in parallel to produce a set of 
linear activations

(2) In the second stage, each linear activation is 
run through a non-linear activation function 
(e.g. RELU).

(3) In the third stage, pooling is used to modify 
the output further. 



CNNs are very similar to ordinary NNs: they are made up of  neurons that have learnable weights and 
biases. Each neuron receives some inputs, performs a dot product and optionally follows it with a non-
linearity. The whole network still expresses a single differentiable score function: from the raw image 
pixels on one end to class scores at the other. 

The key difference with CNNs is that neurons/activations are represented as 3D volumes. CNNs 
additionally employ weight-sharing for computational efficiency; they are most commonly applied to 
image data, in which case image feature activations are trained to be translation-invariant (convolution + 
max pooling achieves this). 

Convolutional Neural Networks 



Convolutional Neural Networks 
Intuitively, the network will learn filters that activate when they see some type of  visual feature such as an edge of  some 

orientation or a blotch of  some color. Now, we will have an entire set of  filters in each CONV layer, and each of  them 

will produce a separate 2-dimensional activations; these features are stacked along the depth dimension in the CNN and 

thus produce the output volume. 

A simple CNN is a sequence of  layers, and every layer of  a CNN transforms one volume of  activations to another 

through a differentiable function. The main types of  layers to build CNN architectures are: Convolutional 

Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). These layers are 

stacked to form a full CNN architecture.

The convolution layer determines the activations of  various filters over the original image; pooling is used for 

downsampling the images for computational savings; the fully-connected layers are used to compute class scores for 

classification tasks. 



Convolutional Neural Networks Pooling helps to make the representation approximately invariant to small translations of  the input. 

Because pooling summarizes the responses over a whole neighborhood, it is possible to use fewer pooling units than 

activation units, by reporting summary statistics for pooling regions spaced k pixels apart (k here is known as the stride). 

This improves the computational efficiency of  the network because the next layer has roughly k times fewer inputs to 

process.

Pooling can also be essential for hanging images of  variable size. 



Convolutional Neural Networks 
A nice way to interpret CNNs via a brain analogy is to consider each entry in the 3D output volume as an output of  a 

neuron that looks at only a small region in the input and shares parameters with all neurons to the left and right 

spatially (since the same filter is used). 

Each neuron is accordingly connected to only a local region of  the input volume; the spatial extent of  this connectivity 

is a hyperparameter called the receptive field (i.e. the filter size, such as: 5x5). 

(Image from the LeCun MNIST paper, 1998) 



Of  note, some researchers believe that the first stage of  visual processing in the brain (called V1) 

serve as edge detectors that fire when an edge is present at a certain location and orientation in 

the visual receptive field.

Hubel Wiesel (1959), study of 
mammalian primary visual 
cortex



DNNs Learn Hierarchical Feature Representations 



One-Shot Learning: Siamese Networks

• Typically, with deep learning, we require a large amount of  data, and the quality of  our results 
generally scales with the size (and quality) of  our dataset. 

• An alternative to this “big data” paradigm, however, is one-shot learning; in this paradigm we 
learn from only a few (even just one) example. One care plausibly argue that a great deal of  
veritable, biological learning also occurs in a “low data” regime. 

• Consider the problem of  facial recognition. We would like to determine whether an individual is 
a member of  a database, based on only a single instance/photo (e.g. security applications).

• One conventional approach to this problem is to train a CNN for the image processing task. 
However, CNNs cannot be trained effectively with very small datasets; in addition, it would be 
highly cumbersome to retrain the model every time we encounter a new individual. 

• A Siamese network will, by contrast, allow us to solve this problem. 



One-Shot Learning: Siamese Networks

• A Siamese neural network uses two identical sub-networks (e.g. pretrained CNNs) in tandem, with the 

overall objective to determine how similar two comparable things are (e.g. signature verification, face 

recognition.). The sub-networks have the same parameters and weights.

• Each sub-network is fed an input (e.g. an image of  a face), producing the respective outputs. If  the distance 

between the two encodings: 

is less than some threshold (i.e. a hyperparameter), we consider the images to be the same, otherwise they are 

different. 

( ) ( )1 2W WG X G X−

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf



One-Shot Learning: Siamese Networks

• To train a Siamese network we can apply gradient descent on a triplet loss function which is simply a loss function using three 

images: an anchor image A, a positive image P(same person as the anchor), as well as a negative image N (different person than the 

anchor). So, we want the distance d(A, P) between the encoding of  the anchor and the encoding of  the positive example to be less

than or equal to the distance d(A, N) between the encoding of  the anchor and the encoding of  the negative example. In other 

words, we want pictures of  the same person to be close to each other, and pictures of  different persons to be far from each other. 

• The problem here is that the model can learn to make the same encoding for different images, which means that distances will be 

zero, and unfortunately, it will satisfy the triplet loss function. For this reason, we add a margin α (a hyperparameter), to prevent this 

from happening, and to always have a gap between A and P versus A and N. 



One-Shot Learning: Siamese Networks
Define the triplet loss function:

The max means as long as d(A, P)—d(A, N)+ alpha is less than or equal to zero, the loss L(A, P, N) is zero, but if  it is greater than 

zero, the loss will be positive, and the function will try to minimize it to zero or less than zero.

The cost function is the sum of  all individual losses on different triplets from all the training set:

The training set should contain multiple pictures of  the same person to have the pairs A and P, then once the model is trained, we’ll 

be able to recognize a person with only one picture.

If  we choose the triplets for training at random, will be easy to satisfy the constraint of  the loss function because the distance is 

going to be generally large; in this case gradient descent will not learn much from the training set. For this reason, we need to find 

A, P, and N so that A and P are so close to N. Our objective is to make it harder to train the model to push the gradient descent to 

learn more.



Deep Learning: Practical Considerations

In general, need to know how to choose an appropriate algorithm and how to monitor and 
respond to feedback from experiments. 

Decide what to do next: gather more data, improve optimization model, add/remove 
regularization features, improve optimization of model, debug, etc. 
A practical design process:

(1) Determine goals (error metric to use, target value for error metric)
(2) Establish working end-to-end pipeline early, including estimation of performance metrics.
(3) Determine computational bottlenecks; diagnose which components are performing worse 

than expected and whether performance is due to overfitting, underfitting, etc.
(4) Repeatedly make incremental changes, e.g., gathering new data, adjusting hyperparameters, 

or changing algorithms. 

(Andrew Ng, 2015)



Deep Learning: Practical Considerations
Performance Metrics
(*) Determine goals in terms of which error metrics to use, and reasonable level of performance 
to expect. 

Default Baseline Models
(*) Establish a reasonable end-to-end system as soon as possible; consider beginning without 
using deep learning at all. If you know beforehand that your problem falls into an “AI-complete” 
domain (e.g. image classification), etc., you should incorporate some DL methods. 

Apply some for of regularization; optimize with a variable learning rate if possible; pre-process 
data appropriately. 

Gathering More Data
Many ML practitioners are tempted to improve model results by trying many different 
algorithms; in fact, if is often much better to gather more data to improve the learning algorithm 
(keep in mind that you will need a “large” batch of new data to see substantial improvements). 

If test data performance is significantly worse than the training data performance, gathering 
new data may present an effective solution. 

In order to know how much data one needs to add, it is possible to use error bounds or to 
carefully interpolate between training data size and generalization error. 



Deep Learning: Practical Considerations

Selecting Hyperparameters
(*) There are two basic approaches: manually choose the hyperparameters values or automate 
this process. 

(*) Can follow U-shaped curve of generalization error for tuning; automated hyperparameter 
tuning can be handled with hyperparameter optimization algorithms (e.g. Gaussian Processes); 
random search can also be effective for hyperparameter tuning. 

(*) The learning rate is perhaps the most important hyperparameter for a DL algorithm. 

Some Debugging Strategies: 
(*) Visualize the model in action 

Visualize the worst mistakes (e.g. using a confidence measure) 

(*) Fit a tiny dataset; if you can’t train a classifier to correctly label a single example, for instance, 
you have a bug. 

(*) Monitor histograms of activations and gradient: this can reveal problems with 
exploding/vanishing gradient, “dead” neurons, poor choice of learning rate, etc. 


