
An Introduction to Deep Learning

Anthony D. Rhodes

7/2018

Contents

• Overview: Neural Nets

• Activation functions, Regularization

• Deep Learning Challenges

• SGD, Momentum, Parameter Initialization, adaptive learning rate algorithms

• CNNs

• Siamese Networks and One-Short Learning, Similarity Learning

• Deep Learning: Practical Considerations

(*) A Neural Network (NN) consists of a network of McCulloch/Pitts computational neurons (a single
layer was known historically as a “perceptron.”)

(*) NNs are universal function approximators – meaning that they can learn any arbitrarily complex mapping
between inputs and outputs. While this fact speaks to the broad utility of these models, NNs are
nevertheless prone to overfitting. The core issue in most ML/AI models can be reduced to the question
of generalizability.

(*) A “deep” net has many hidden layers.

Neural Networks

(*) Each neuron receives some inputs, performs a dot product and optionally follow it with a non-
linearity (e.g. sigmoid/tanh).

Training a NN entails tuning the weights of the network. The weights are commonly updated
incrementally during training, so as to minimize a “loss function” (e.g. classification error). The goal of
training is to produce a model with low generalization error.

Put simply, denote the loss function for an algorithm by:

where f is the model output given input x, θ are the model parameters, and y is the true output
associated with x. In general the loss function outputs 0 when the f(x)=y (i.e. the prediction was
correct), and otherwise the loss is non-zero (a larger error yields a larger loss).

In ML literature, the objective function is the function we which to optimize (either maximize or
minimize) that defines a learning algorithm.

Most commonly, the objective function is denoted J(θ), as the mean of the training errors:

Neural Networks

()(;),L f x θ y

() () ()()
1

1
(;),

n
i i

i

J L f
n =

= θ x θ y

(*) Each neuron receives some inputs, performs a dot product and optionally follow it with a non-
linearity (e.g. sigmoid/tanh).

Training a NN entails tuning the weights of the network. The weights are commonly updated
incrementally during training, so as to minimize a “loss function” (e.g. classification error). The goal of
training is to produce a model with low generalization error.

(*) NNs are typically trained using backpropagation. This method calculates the gradient of a loss
function (e.g. squared-loss) with respect to all the weights (W) in the network. More specifically, we use
the chain rule to compute the ‘delta’ for the weight updates (one can think of this delta as assigning a
degree of ‘blame’ for misclassifications).

Neural Networks

(*) Backpropagation is one particular instance of a larger paradigm of optimization algorithms know as Gradient Descent
(also called “hill climbing”).

(*) There exists a large array of nuanced methodologies for efficiently training NNs (particularly DNNs), including the use
of regularization, momentum, dropout, batch normalization, pre-training regimes, initialization processes, etc.

(*) Traditionally, the backpropagation algorithm has been used to efficiently train a NN; more recently the Adam
stochastic optimization method (2014) has eclipsed backpropagation in practice: https://arxiv.org/abs/1412.6980

Gradient Descent

A Neural Network “Zoo”

Overfitting, Underfitting and the Bias-Variance tradeoff

(*) Because it can accommodate very complex data representations, a deep neural network (DNN) is
severely prone to overfitting (and thus poor generalization error); common remedies to overfitting include
data augmentation and regularization, among other techniques.

(*) Fundamental idea for Deep Learning: automate the process of learning a hierarchy of concepts -
- this approach obviates the need for human operators to formally specify the knowledge/parameters
that a computer needs.

(*) A “deep” network enables learning a more complex/“expressive” model that can
successfully discern useful patterns in data. In particular, deep learning enables the computer to
build complex concepts from simpler concepts.

Deep Learning

(*) Fundamental idea for Deep Learning: automate the process of learning a hierarchy of concepts -
- this approach obviates the need for human operators to formally specify the knowledge/parameters
that a computer needs.

(*) A “deep” network enables learning a more complex/“expressive” model that can
successfully discern useful patterns in data. In particular, deep learning enables the computer to
build complex concepts from simpler concepts.

(*) Deep learning resolves the difficulty of learning
a complicated mapping into a series of nested, simple
mappings.

Credo of deep learning & data science: more data
/ quality data tends to trump specific design and
model choices.

Deep Learning

(*)ML is perhaps the most viable approach known today for building AI systems that can solve complex
problems for real-world environments; deep learning is a particular ML paradigm that assumes a
representation of the world as a nested hierarchy of concepts.

Deep Learning

Deep Learning Framework
Standard ML Framework

(1) First wave (1940s/50s):

(*) Simple neural-computational model, inspired by early research in neuroscience: hope is that a single
algorithm / architecture can solve a great variety of problems.

McCulloch & Pitts Neuron Model

A Very Brief History of NNs

(2) Second wave (1980s-90s):

(*) Inspired, by cognitive science, connectionism / parallel distributed processing emerged as a
dominant principle in NN research.

Central idea: a large number of simple computational units can achieve intelligent behavior when
networked together.

A Very Brief History of NNs

Hinton et al. “rediscover” backprop algorithm
(1986)

Universal Approximation Theorem (1989)

LeCun et al., handwritten digit recognition with
CNNs (1995)

(3) Third wave (2000s-present):

Following the success of backprop, NN research gained popularity and reached a peak in the early
1990s.Afterwards, other ML techniques became more popular until the modern deep learning
renaissance that began in 2006.

A Very Brief History of NNs

Hinton et al. “deep belief networks” (2006)
NN Parallelization with GPUs

AlexNet (2012)
Big Data / Dataset size explosion

A Very Brief History of NNs

• The core ideas behind modern feedforward nets have not changed substantially since the 1980s. The same

backprop algorithm and the same approaches to gradient descent are still in use. Most of the improvement in

NN performance from 1986-2018 can be attributed to two factors:

(1) Larger datasets have reduced the degree to which statistical generalization is a challenge for NNs.

(2) NNs have come much larger because of more powerful computer (including the use of GPUs) and better

software infrastructure (NNs are on pace to have the same number of neurons as the human brain by 2050).

A Two-Layer Neural Netowrk
(activation represents

classification)

(internal representation)

(activations represent

feature vector for one training

example)

inputs

hidden layer

output layer

•Input layer—It contains those units (artificial neurons) which receive input from the outside

world on which network will learn, recognize about or otherwise process.

•Output layer—It contains units that respond to the information about how it’s learned any task.

•Hidden layer—These units are in between input and output layers. The job of hidden layer is to

transform the input into something that output unit can use in some way.

Most neural networks are fully connected that means to say each hidden neuron is fully connected to

the every neuron in its previous layer(input) and to the next layer (output) layer.

DNNs: AlexNet (2012)

AlexNet was developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever; it uses CNNs with GPU

support. The network achieved a top-5 error of 15.3%, more than 10.8 percentage points ahead of the

runner up.

Among other innovations: AlexNet used GPUs, utilized RELU (rectified linear units) for activations, and

“dropout” for training.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

DNNs: AlexNet (2012)

DNNs: VGG (2014)

• Team at Oxford produced influential DNN architecture (VGG).Using very small
convolutional filters (3x3), they achieved a significant improvement on the prior-art
configurations by pushing the depth to 16–19 weight layers.

• Team achieved first and second place on the ImageNet Challenge 2015 for both
localization and classification tasks, respectively.

• Using pre-trained VGG is very common practice in research.

https://arxiv.org/pdf/1409.1556.pdf

DNNs: Inception (2015, Google)

• Team at Google (Szegedy et al.) produced an even deeper DNN (22 layers). No need
to pick filter sizes explicitly, as network learns combinations of filter sizes/pooling
steps; upside: newfound flexibility for architecture design (architecture parameters
themselves can be learned); downside: ostensibly requires a large amount of
computation – this can be reduced by using 1x1 convolutions for dimensionality
reduction (prior to expensive convolutional operations).

• Team achieved new state of the art for classification and detection in the ImageNet
Large-Scale Visual Recognition Challenge 2014 (ILSVRC14; 6% top-5 error rate for
classification.

https://arxiv.org/pdf/1409.1556.pdf

Neural Network Notation

(activation represents
classification)

(internal representation)

(activations represent
feature vector for one training
example)

xi : activation of input node i.

hj : activation of hidden node j.

ok : activation of output node k.

wji : weight from node i to node j.

σ : “sigmoid function”.

For each node j in hidden layer,

For each node k in output layer,

hj =s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok =s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

Sigmoid function:

Common Activation Functions

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(1) Absolute value rectification fixes αi = -1, to obtain g(z)=|z|; this method has
been used for object recognition from images, where it makes sense to seek features
that are invariant under poliarity reversal of the input illumination.

(2) Leaky RELU fixes αi to a small value like 0.01.

() () (), max 0, min 0,i i i ii
h g z z= = +z α

RELU & Their Generalizations
(3) Generalizations of RELUs are based on using a non-zero slope αi when zi < 0:

(3) Maxout units (Goodfellow, 2013); instead of applying an element-wise function
g(z), maxout units divide z into groups of k values. Each maxout unit then outputs the
maximum element of one of those groups.

This provides a way of learning a piecewise linear function that responds to multiple
directions in the input x space. Each maxout unit can learn a piecewise linear, convex
function with up to k pieces; maxout units can thus be seen as learning the activation
function itself rather than just the relationship between units; with enough k, a maxout
unit can learn to approximate any convex function with arbitrary fidelity.

() () (), max 0, min 0,i i i ii
h g z z= = +z α

Regularization
• Regularization can be defined as “any modification we make to a learning algorithm that is

intended to reduce its generalization error but not its training error”; as mentioned,

regularization is frequently used to combat overfitting.

Some form of regularization should almost always been applied to a DNN model (with very

few exceptions).

Regularization
• There are many different regularization strategies; some put extra constraints on an ML

model; some add extra terms to the objective function that can be though of as soft

constraints applied to the parameter values. If chosen correctly, these extra constraints and

penalties can lead to a significant performance improvement.

• Sometimes these constraints and penalties encode prior beliefs. Conversely, they are

designed to express a generic preference for a simpler model class in order to promote

generalization; sometimes these penalties are necessary to make an underdetermined

problem determined or soluble; ensemble methods can also be considered a general form of

regularization.

Regularization
• Two common regularization approaches are L2 and L1-regularization, respectively.

For L2-regularization, the loss function is appended with an L2 “penalty”:

Where λ is a hyperparameter that determines the degree to which we “value” regularization;

applying L2-regularization results in a model with small weight values, which safeguards

against overfitting.

L1-regularization applies an L1 penalty term:

2

2
newL L W


= +

2
newL L W


= +

Regularization
• In comparison to L2 regularization, L1 regularization results in a sparse model. Sparsity in this context refers to the fact that

some parameters have an optimal value of zero. The sparsity of L1 regularization is a qualitatively different behavior than

arises with L2 regularization.

• The sparsity property induced by L1 regularization has been used extensively as a feature selection mechanism; feature

selection simplifies an ML problem by choosing which subset of the available features should be used. The L1 penalty causes a

subset of the weights to become zero, suggesting that the corresponding features may safely be discarded.

Data Augmentation

• The best way to make an ML model generalize better is to train it on more data. Of course, data

are limited/expensive.

• One way to get around this problem is to generate synthetic data and add it to the training set.

• This approach is easiest for classification. A classifier needs to take a complicated, high-

dimensional input x and summarize it with a single category identity y. This means that the main

task facing a classifier is to be invariant to a wide variety of transformations; we can generate new

(x, y) pairs easily by transforming the x inputs in our training set.

Data Augmentation

• Another form of regularization, dataset augmentation, has been particularly effective for object

recognition; operations like translating the training images a few pixels in each direction can often

greatly improve generalization; many operations such as rotating the image or scaling the image are

also quite effective (one needs to be careful that the transformation does not alter the correct image

class).

• Injecting noise in the input to a NN can also be seen as a form of data augmentation; one way to

improve the robustness of a NN is to simply train them with random noise applied to their inputs.

Early Stopping

• When training large models with sufficient representation capacity to overfit the task,

we often observe that training error decreases steadily over time, but validation set error

begins to rise again.

• This means we can obtain a model with better validation set error (and hopefully

better test error) by returning to the parameter setting at the point in time with the

lowest validation set error. Every time the error on the validation set improves, we store

a copy of the model parameters; when the training terminates, we return these

parameters, rather than the latest parameters.

Early Stopping

• The only significant cost to choosing the training time “hyperparameter” is running the validation set evaluation periodically during

training.

• An additional cost to early stopping is the need to maintain a copy of the best parameters; this cost is usually negligible, because it is

acceptable to store these parameters in a slower and larger form of memory.

• Early stopping is an “unobtrusive” form of regularization – it requires almost no change in the underlying training procedure, the

objective function, or the set of allowable parameter values (this is in contrast to weight decay).

There are (2) conventional schema for early stopping:

(1) Initialize the model again and retrain on all the data; however, there is not a good way of knowing whether to retrain for the same

number of parameter updates or the same number of passes through the dataset.

(2) Another strategy is to keep the parameters obtained from the first round of training and then continue training, but now using all

the data; this strategy avoids the high cost of training the model from scratch.

Sparse Representations

• Weight decay acts by placing a penalty directly on the model parameters; another

strategy is to place a penalty on the activations of the units in a NN, encouraging their

activations to be sparse. This indirectly imposes a complexity penalty on the model

parameters.

• Recall that L1 regularization induces a sparse parameterization – meaning that many of

the parameters become zero (or close to zero). Representational sparsity on the

other hand, describes a representation where many of the elements of the

representation are zero (or close to zero).

18 7 0 0 2 2

5 0 0 1 0 3

15 0 5 0 0 2

9 1 0 0 0 1

−     
     

−
     =
     −
     
     

18 3 1 2 5 0

5 4 2 3 1 2

15 3 1 2 3 0

9 5 4 2 2 0

− −     
     

−
     =
     −
     

− −     

Sparsely parameterized linear
regression model (y=Ax)

Linear regression with a sparse
representation h of the data x;
(y=Bh)

Dropout

• Dropout (Srivastava et al., 2014) provides a computationally inexpensive but powerful method of regularizing a broad
family of models (it is akin to bagging).

• Dropout trains the ensemble consisting of all subnetworks that can be formed by removing nonoutput units from an
underlying base network. Recall that to learn with bagging, we define k different models, construct k different datasets by
sampling from the training set with replacement, and then train model i on dataset i. Dropout aims to approximate this
process, but with an exponentially large number of NNs.

• In practice, each time we load an example into a minibatch for training, we randomly sample a different binary mask to
apply to all input and hidden units in the network; the mask is sampled independently for each unit (e.g. 0.8 probability for
including an input unit and 0.5 for hidden units).

• In the case of bagging, the models are all independent; for dropout, the models share parameters.

Adversarial Training

• Szegedy et al. (2014) found that even NNs that perform at human level accuracy have a nearly 100 percent error rate on examples that are
intentionally construction by using an optimization procedure to search for an input x’ near a data point x such that the model output is
very different from x’ (oftentimes such adversarial examples are indiscernible to humans).

• In the context of regularization, one can reduce the error rate on the original i.i.d. test set via adversarial training – training on
adversarially perturbed examples from the training set.

• Goodfellow et al. (2014), showed that one of the primary cause of these adversarial examples is excessive linearity. NNs are primarily built
out of linear parts, and so the overall function that they implement proves to be highly linear as a result.

• These linear functions are easily optimized; unfortunately, the value of a linear function can change very rapidly if it has numerous inputs.
Adversarial training discourages this highly sensitive locally linear behavior by encouraging the network to be locally constant in the
neighborhood of the training data.

• Adversarial training help to illustrate the power of using a large function family in combination with aggressive regularization – a major
theme in contemporary deep learning.

Challenges for DNN Optimization

• Traditionally, ML implementations avoid the difficulty of general optimization by carefully designing the
objective function and constraints to ensure that the optimization problem is convex.

• When training NNs, however, we must confront the general non-convex case.

Convex Function Non-Convex Function

Challenges for DNN Optimization: Local Minima

• For a convex function, any local minimum is guaranteed to be a global minimum.

• With non-convex functions, such as NNs, it is possible to have many local minima. Moreover, nearly any DNN is
essentially guaranteed to have a very large number of local minimal (even uncountably many).

• Local minima are problematic if they correspond with high

cost (vis-à-vis the global minimum).

Challenges for DNN Optimization: Plateaus, Saddle Points

• For many high-dimensional, non-convex functions, local minima (and maxima) are in fact rare

compared to saddle points.

• Some points around a saddle point have greater cost than the saddle point, while others have lowers

cost. At a saddle point, the Hessian matrix has both positive and negative eigenvalues.

• Degenerate locations such as plateaus can pose major problems for all

numerical algorithms.

Challenges for DNN Optimization: Cliffs, Exploding and Vanishing
Gradients

• NNs with many layers often have extremely steep regions resembling cliffs. This is due to the multiplication of several large
weights together. On the face of an extremely steep cliff structure, the gradient update step can alter the parameters drastically.

• Gradient clipping, a heuristic technique, can help avoid this issue. When the traditional gradient descent algorithm proposes
making a large step, the gradient clipping heuristic intervenes to reduce the step size, thereby making it less likely to go outside the
region where the gradient indicates the direction of approximately steepest descent.

• When the computational graph for a NN becomes very large (e.g. RNNs), the issue of exploding/vanishing gradients can arise.
Vanishing gradients make it difficult to known which direction the parameters should move to improve the cost function, while
exploding gradients can make learning unstable.

*LSTMs, RELU, and ResNet (Microsoft) have been applied to solve the vanishing gradient problem.

Basic Algorithms: SGD

• Stochastic Gradient Descent (SGD) and its variants are some of the most frequently used optimization algorithms in ML. Using a

minibatch of i.i.d. samples, one can obtain an unbiased estimate of the gradient (where examples are drawn from the data-generating

distribution).

•A crucial parameter for the SGD algorithm is the learning rate, ε. In practice, it is necessary to gradually decrease the learning rate

over time. This is because the SGD gradient estimator introduces a source of noise (the random sampling of m training examples) that

does not vanish even when we arrive at a minimum.

In practice, it is common to decay the learning rate linearly until iteration τ:

* Note that for SGD, the computation time per update does not grow with the number of training examples. This allows convergence

even when the number of training examples becomes very large.

() 01 with k

k
    


= − + =

Basic Algorithms: SGD

Momentum
• The method of momentum is designed to accelerate learning, especially in the face of high

curvature, small but consistent gradients, or noisy gradients.

• The momentum algorithm accumulates an exponentially decaying moving average of past

gradients and continues to move in their direction.

• Formally, the momentum algorithm introduces a variable v that plays the role of velocity – it is

the direction and speed at which the parameters move through parameter space. The velocity is

set to an exponentially decaying average of the negative gradient.

• The velocity v accumulates the gradient elements; the larger alpha is relative to epsilon, the

more previous gradients affect the current direction.

Momentum

Weight Initialization
• Training algorithms for DNN models are usually iterative and thus require the use to

specify some initial point from which to begin the iterations. Moreover, training deep

models is a sufficiently difficult task that most algorithms are strongly affected by the

choice of initialization.

• The initial point can determine whether the algorithm converges at all, with some initial

points being so unstable that the algorithm encounters numerical difficultiess and fails

altogether. When learning does converge, the initial point can determine how quickly

learning converges and whether it converges to a point with high or low cost.

• Modern initialization strategies are usually simple and heuristic; designing improves

initialization strategies is a difficult task because NN optimization is not yet well

understood.

Weight Initialization
• The most general guideline agreed upon by most practitioners is known as

“symmetry-breaking.” If two hidden units with the same activation function are

connected to the same inputs, then these units have different initial parameters. If the

training is deterministic, “symmetric” units will update identically (and hence be

useless); even if the training is stochastic, it is usually best to initialize each unit to

compute a different function from all the other units.

• The goal of having each unit compute a different function motivates random

initialization of the parameters. Moreover, random initialization from a high-entropy

distribution over a high-dimensional space is computationally cheaper than explicitly

searching for, say a large set of basis functions that are all mutually different from one

another.

• Larger initial weights will yield a strong symmetry-breaking effect, helping to avoid

redundant units; in addition, they will also potentially help avoid the problem of

vanishing gradients. Nevertheless, they may conversely exacerbate the exploding

gradient problem; in RNNs, large initial weights can manifest chaotic behavior.

* Sparse initialization (Martens, 2010) fixes the number of non-zero weights for

• It is well known that the learning rate is reliably one of the most difficult to set

hyperparameters because it significantly affects model performance. The cost function is often

highly sensive to some directions in parameters space and insensitive to others.

• While the momentum algorithm mitigates these issues somewhat, it does so at the expense of

introducing another hyperparameters.

• Recently, a number of incremental methods have been introduced that adapt the learning rates

of model parameters.

Algorithms with Adaptive Learning Rates

• The AdaGrad algorithm (Duchi et al, 2011) individually adapts the learning rates of all model parameters by scaling them inversely proportional
to the square root of the sum of all the historical squared values of the gradient.

• The parameters with the largest partial derivative of the loss have a correspondingly rapid decrease in their learning rate, while parameters with
small partial derivates have a relatively small decrease in their learning rate. The net effect is greater progress in the more gently sloped directions
of parameter space.

*Note: empirically, for training DNNs, the accumulation of squared gradients from the beginning of training can result in premature and excessive
decrease in the effective learning rate.

AdaGrad

• Adam (Kingman and Ba, 2014) is another adaptive learning rate optimization algorithm (“adaptive moments”). It can be seen as a variant on the
combination of RMSProp and momentum with several distinctions.

• First, in Adam, momentum is incorporated directly as an estimate of the first-order moment (with exponential weighting) of the gradient.
Second, Adam includes bias corrections to the estimates of both the first-order moments (the momentum term) and the (uncentered) second-
order moments to account for their initialization at the origin.

• RMSProp also incorporates an estimate of the (uncentered) second-order moment; however, it lacks the correction factor. Thus, unlike in Adam,
the RMSProp second-order moment estimate may have high bias early in training. *Adam is generally regarded as being fairly robust to the choice
of hyperparameters.

Adam

Second-Order Methods: Newton’s Method

Convolutional Neural Networks (CNNs) are a specialized kind of NN for processing data that has a
known grid-like topology (particularly: image data).

CNNs are simple NNs with a specialized convolution operation in place of general matrix
multiplication.

Convolution leverages (3) important ideas to help improve an ML system:

(1) sparse interactions (i.e. the kernel is smaller than the input image)

(2) parameter sharing: instead of learning a separate set of parameters at each location for a given
kernel, we learn only one set.

(3) equivariant representations: parameter sharing causes the layer to be equivariant to translation.

Convolutional Neural Networks

Convolutional Neural Networks

CNNs typically consist of (3) stages:

(1) In the first stage, the layer performs several
convolutions in parallel to produce a set of
linear activations

(2) In the second stage, each linear activation is
run through a non-linear activation function
(e.g. RELU).

(3) In the third stage, pooling is used to modify
the output further.

CNNs are very similar to ordinary NNs: they are made up of neurons that have learnable weights and
biases. Each neuron receives some inputs, performs a dot product and optionally follows it with a non-
linearity. The whole network still expresses a single differentiable score function: from the raw image
pixels on one end to class scores at the other.

The key difference with CNNs is that neurons/activations are represented as 3D volumes. CNNs
additionally employ weight-sharing for computational efficiency; they are most commonly applied to
image data, in which case image feature activations are trained to be translation-invariant (convolution +
max pooling achieves this).

Convolutional Neural Networks

Convolutional Neural Networks
Intuitively, the network will learn filters that activate when they see some type of visual feature such as an edge of some

orientation or a blotch of some color. Now, we will have an entire set of filters in each CONV layer, and each of them

will produce a separate 2-dimensional activations; these features are stacked along the depth dimension in the CNN and

thus produce the output volume.

A simple CNN is a sequence of layers, and every layer of a CNN transforms one volume of activations to another

through a differentiable function. The main types of layers to build CNN architectures are: Convolutional

Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). These layers are

stacked to form a full CNN architecture.

The convolution layer determines the activations of various filters over the original image; pooling is used for

downsampling the images for computational savings; the fully-connected layers are used to compute class scores for

classification tasks.

Convolutional Neural Networks Pooling helps to make the representation approximately invariant to small translations of the input.

Because pooling summarizes the responses over a whole neighborhood, it is possible to use fewer pooling units than

activation units, by reporting summary statistics for pooling regions spaced k pixels apart (k here is known as the stride).

This improves the computational efficiency of the network because the next layer has roughly k times fewer inputs to

process.

Pooling can also be essential for hanging images of variable size.

Convolutional Neural Networks
A nice way to interpret CNNs via a brain analogy is to consider each entry in the 3D output volume as an output of a

neuron that looks at only a small region in the input and shares parameters with all neurons to the left and right

spatially (since the same filter is used).

Each neuron is accordingly connected to only a local region of the input volume; the spatial extent of this connectivity

is a hyperparameter called the receptive field (i.e. the filter size, such as: 5x5).

(Image from the LeCun MNIST paper, 1998)

Of note, some researchers believe that the first stage of visual processing in the brain (called V1)

serve as edge detectors that fire when an edge is present at a certain location and orientation in

the visual receptive field.

Hubel Wiesel (1959), study of
mammalian primary visual
cortex

DNNs Learn Hierarchical Feature Representations

One-Shot Learning: Siamese Networks

• Typically, with deep learning, we require a large amount of data, and the quality of our results
generally scales with the size (and quality) of our dataset.

• An alternative to this “big data” paradigm, however, is one-shot learning; in this paradigm we
learn from only a few (even just one) example. One care plausibly argue that a great deal of
veritable, biological learning also occurs in a “low data” regime.

• Consider the problem of facial recognition. We would like to determine whether an individual is
a member of a database, based on only a single instance/photo (e.g. security applications).

• One conventional approach to this problem is to train a CNN for the image processing task.
However, CNNs cannot be trained effectively with very small datasets; in addition, it would be
highly cumbersome to retrain the model every time we encounter a new individual.

• A Siamese network will, by contrast, allow us to solve this problem.

One-Shot Learning: Siamese Networks

• A Siamese neural network uses two identical sub-networks (e.g. pretrained CNNs) in tandem, with the

overall objective to determine how similar two comparable things are (e.g. signature verification, face

recognition.). The sub-networks have the same parameters and weights.

• Each sub-network is fed an input (e.g. an image of a face), producing the respective outputs. If the distance

between the two encodings:

is less than some threshold (i.e. a hyperparameter), we consider the images to be the same, otherwise they are

different.

() ()1 2W WG X G X−

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

One-Shot Learning: Siamese Networks

• To train a Siamese network we can apply gradient descent on a triplet loss function which is simply a loss function using three

images: an anchor image A, a positive image P(same person as the anchor), as well as a negative image N (different person than the

anchor). So, we want the distance d(A, P) between the encoding of the anchor and the encoding of the positive example to be less

than or equal to the distance d(A, N) between the encoding of the anchor and the encoding of the negative example. In other

words, we want pictures of the same person to be close to each other, and pictures of different persons to be far from each other.

• The problem here is that the model can learn to make the same encoding for different images, which means that distances will be

zero, and unfortunately, it will satisfy the triplet loss function. For this reason, we add a margin α (a hyperparameter), to prevent this

from happening, and to always have a gap between A and P versus A and N.

One-Shot Learning: Siamese Networks
Define the triplet loss function:

The max means as long as d(A, P)—d(A, N)+ alpha is less than or equal to zero, the loss L(A, P, N) is zero, but if it is greater than

zero, the loss will be positive, and the function will try to minimize it to zero or less than zero.

The cost function is the sum of all individual losses on different triplets from all the training set:

The training set should contain multiple pictures of the same person to have the pairs A and P, then once the model is trained, we’ll

be able to recognize a person with only one picture.

If we choose the triplets for training at random, will be easy to satisfy the constraint of the loss function because the distance is

going to be generally large; in this case gradient descent will not learn much from the training set. For this reason, we need to find

A, P, and N so that A and P are so close to N. Our objective is to make it harder to train the model to push the gradient descent to

learn more.

Deep Learning: Practical Considerations

In general, need to know how to choose an appropriate algorithm and how to monitor and
respond to feedback from experiments.

Decide what to do next: gather more data, improve optimization model, add/remove
regularization features, improve optimization of model, debug, etc.
A practical design process:

(1) Determine goals (error metric to use, target value for error metric)
(2) Establish working end-to-end pipeline early, including estimation of performance metrics.
(3) Determine computational bottlenecks; diagnose which components are performing worse

than expected and whether performance is due to overfitting, underfitting, etc.
(4) Repeatedly make incremental changes, e.g., gathering new data, adjusting hyperparameters,

or changing algorithms.

(Andrew Ng, 2015)

Deep Learning: Practical Considerations
Performance Metrics
(*) Determine goals in terms of which error metrics to use, and reasonable level of performance
to expect.

Default Baseline Models
(*) Establish a reasonable end-to-end system as soon as possible; consider beginning without
using deep learning at all. If you know beforehand that your problem falls into an “AI-complete”
domain (e.g. image classification), etc., you should incorporate some DL methods.

Apply some for of regularization; optimize with a variable learning rate if possible; pre-process
data appropriately.

Gathering More Data
Many ML practitioners are tempted to improve model results by trying many different
algorithms; in fact, if is often much better to gather more data to improve the learning algorithm
(keep in mind that you will need a “large” batch of new data to see substantial improvements).

If test data performance is significantly worse than the training data performance, gathering
new data may present an effective solution.

In order to know how much data one needs to add, it is possible to use error bounds or to
carefully interpolate between training data size and generalization error.

Deep Learning: Practical Considerations

Selecting Hyperparameters
(*) There are two basic approaches: manually choose the hyperparameters values or automate
this process.

(*) Can follow U-shaped curve of generalization error for tuning; automated hyperparameter
tuning can be handled with hyperparameter optimization algorithms (e.g. Gaussian Processes);
random search can also be effective for hyperparameter tuning.

(*) The learning rate is perhaps the most important hyperparameter for a DL algorithm.

Some Debugging Strategies:
(*) Visualize the model in action

Visualize the worst mistakes (e.g. using a confidence measure)

(*) Fit a tiny dataset; if you can’t train a classifier to correctly label a single example, for instance,
you have a bug.

(*) Monitor histograms of activations and gradient: this can reveal problems with
exploding/vanishing gradient, “dead” neurons, poor choice of learning rate, etc.

