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Abstract

We will review the interplay between weak topologies, convexity of sets and func-
tions, and lower semicontinuity and will apply the results to optimization and the exis-
tence of minimizers in an infinite-dimensional setting.



1 Topologies and Continuous Functions [3]

Definition 1. A topological space is a pair (X, τ) where X is a non-empty set and τ
is a collection of subsets of X referred to as a topology on X which satisfies:

(i) ∅, X ∈ τ ;

(ii) if {Uα}α∈I ⊆ τ , then ∪αUα ∈ τ ; and

(iii) if {U1, . . . , Un} ⊆ τ for some n ∈ N, then ∩iUi ∈ τ .

A subset U of X is an open set if U ∈ τ , and a subset K of X is a closed set if Kc ∈ τ .
If the topology is understood or does not need to be specified, we will refer to X as a
topological space.

Definition 2. Given a topological space (X, τ), a subset B ⊆ τ is a basis for τ if for
every U ∈ τ there is a subset B′ ⊆ B such that U = ∪V ∈B′V .

The following lemma provides an alternate characterization of a basis for a topology

Lemma 3. Let X be a set, and let B ⊆ P(X) satisfy:

(a) for any U, V ∈ B and x ∈ U ∩ V there is a W ∈ B such that x ∈ W ⊆ U ∩ V ; and

(b) X = ∪U∈BU .

Then there is a topology τ on X such that B is a basis for (X, τ).

Proof. See [3, Theorem 1.18].

The main example of a topological space for this presentation will be a Banach space
(Definition 8). The norm-induced metric provides the norm topology where open balls
comprise a basis for the topology.

Definition 4. Let X,Y be topological spaces. A function f : X → Y is continuous at
x ∈ X if for every open V ⊆ Y containing f(x) there is an open U ⊆ X containing x such
that f(U) ⊆ V . A function f : X → Y is continuous if it is continuous at every x ∈ X.

Proposition 5. A function f : X → Y is continuous if and only if f−1(V ) is an open
subset of X for every open subset V of Y .

Proof. Let V be open in Y and choose x ∈ f−1(V ). Since V is open, f(x) ∈ V , and f is
continuous, there is an open set U containing x such that f(U) ⊆ V . We now have an open
set U such that x ∈ U ⊆ f−1(V ) and since x was arbitrarily chosen in f−1(V ), we conclude
f−1(V ) is open.

Conversely, let x ∈ X and suppose V is open in Y and f(x) ∈ V . In that case, x ∈ f−1(V )
which is open in X, so there is an open U ⊆ X such that x ∈ U ⊆ f−1(V ). It follows that
f(U) ⊆ V , thus f is continuous.
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The following result applies to a more general setting where the domain space X is only a
set without a topology and the functions are therefore only functions and not continuous
(since continuity has no meaning without a topology on X). However, restricting to a subset
of a given topology on X is of interest for this presentation.

Proposition 6. Let F be a family of continuous functions between topological spaces (X, τX)
and (Y, τY ). The collection B defined by

B = {∩n
i=1f

−1
i (Vi) : fi ∈ F , Vi ∈ τY , n ∈ N }

forms a basis for a topology τF on X which is a subset of τX and is the weakest topology on
X such that all of the functions in F are continuous.

Proof. We will first apply Lemma 3 to show that B is a basis for a topology on X. Let
U1, U2 ∈ B have non-empty intersection and let x ∈ U1 ∩ U2. Then

U1 = ∩m
i=1f

−1
i (Vi) for some m ∈ N, f1, . . . , fm ∈ F , V1, . . . , Vm ∈ τY

and
U2 = ∩n

i=1g
−1
i (Wi) for some n ∈ N, g1, . . . , gn ∈ F , W1, . . . ,Wn ∈ τY

and U = U1 ∩ U2 ∈ B satisfies x ∈ U ⊆ U1 ∩ U2.

Next, for any x ∈ X pick a function f ∈ F and then Y ∈ τY and x ∈ U := f−1(Y ) ∈ B,
thus X = ∪U∈BU . Lemma 3 gives that B is the basis for a topology on X.

Next, every element of B belongs to τX since every function in F is continuous relative to
τX , so B ⊆ τF ⊆ τX . And for any f ∈ F and any open U ∈ τY , f

−1(U) ∈ B ⊆ τF thus
every function in F is continuous relative to τF .

Lastly, if τ ′X is another topology for X such that every function in F is continuous, then
B ⊆ τ ′X thus τF ⊆ τ ′X .

In the above case, τF ⊆ τX so any open set in τF is open in τX , and equivalently any closed
set in τF is closed in τX . We refer to τF as the weak topology generated by F .

Proposition 7. Let F be a family of continuous functions between topological spaces X
and Y , and equip X with the weak topology generated by F . A net {xα}α∈A ⊆ X converges
weakly (i.e., in τF) to a point x̄ ∈ X if and only if f(xα) → f(x̄) in Y for every f ∈ F .

Proof. Let f ∈ F , and let V be an open set in Y such that f(x̄) ∈ V . Now f−1(V ) is a
weakly open set containing x̄ and since {xα} converges weakly to x̄, there is an ᾱ ∈ A such
that xα ∈ f−1(V ) and therefore f(xα) ∈ V whenever ᾱ ≤ α. That is, {f(xα)} is eventually
in V so we conclude f(xα) → f(x̄) since V was an arbitrary open set containing f(x̄).

Conversely, let U be a weakly open set containing x̄. In that case, by Proposition 6 there
are functions f1, . . . , fn ∈ F and open sets V1, . . . , Vn ⊆ Y such that x̄ ∈ ∩n

i=1f
−1
i (Vi) ⊆ U ,

and thus fi(x̄) ∈ Vi for every i. Since each fi(xα) → fi(x̄), there is an αi ∈ A such that
fi(xα) ∈ Vi whenever αi ≤ α. Since A is a directed set, it follows that there is an ᾱ ∈ A
such that αi ≤ ᾱ for i = 1, . . . , n, and then xα ∈ ∩n

i=1f
−1
i (Vi) ⊆ U whenever ᾱ ≤ α so {xα}

is eventually in U . Since U was an arbitrary weakly open set containing x̄, we conclude
xα → x̄ weakly.
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2 Reflexive Banach Spaces [1], [2]

Definition 8. A real Banach space is a normed vector space with scalar field R which is
also a complete metric space with regard to the metric induced by the norm.

That is, if X is a Banach space, all Cauchy sequences in X converge to a limit in X. Namely,
for all ϵ > 0, if {xn}n∈N ⊆ X satisfies d(xn, xm) = ∥xn − xm∥ < ϵ whenever m,n > N for
some N ∈ N, there is a point x̄ ∈ X such that xn → x̄.

Definition 9. Given a normed vector space X, the dual of X (or X∗) is the set of
continuous linear functionals from X to R. For x ∈ X and x∗ ∈ X∗, we use the usual
notation ⟨x∗, x⟩ = x∗(x).

Note that X∗ equipped with the operator norm is a normed vector space, and it is always
a Banach space whether or not X is.

Proposition 10. Let X and Y be normed vector spaces where Y is a Banach space. The
set B(X,Y ) of all continuous linear functions from X to Y is a Banach space.

Proof. Let {Tn}n∈N be a Cauchy sequence in B(X,Y ), let x ∈ X \ {0}, and let ϵ > 0. Since
{Tn} is a Cauchy sequence, there is a number N such that

∥Tn − Tm∥ ≤ ϵ

∥x∥
whenever m,n > N.

Now {Tnx} is a sequence in Y , and

∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ ≤ ∥Tn − Tm∥∥x∥ < ϵ whenever n,m > N,

so {Tnx} is a Cauchy sequence in Y . Since Y is a Banach space, there is a vector Tx ∈ Y
such that Tnx → Tx. We must show that the resulting operator T belongs to B(X,Y ) and
that Tn → T in B(X,Y ).

To see that T is linear, let x, y ∈ X, and then

T (x+ y) = limTn(x+ y) (definition of T )

= lim(Tnx+ Tny) (each Tn is linear)

= limTnx+ limTny (continuity of addition)

= Tx+ Ty. (definition of T )

And for α ∈ R and x ∈ X we have

T (αx) = limTn(αx) (definition of T )

= limαTnx (each Tn is linear)

= α limTnx (continuity of scalar multiplication)

= αTx, (definition of T )
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thus T is linear.

To see that T is bounded, let x ∈ X, and note that

∥Tx∥ ≤ sup{∥Tnx∥} ≤ sup{∥Tn∥∥x∥} = sup{∥Tn∥}∥x∥.

Since {Tn} is a Cauchy sequence it is necessarily bounded (by the triangle inequality), thus
∥T∥ is bounded by sup{∥Tn∥} and T ∈ B(X,Y ).

Lastly, to see that Tn → T , let ϵ > 0 and N ∈ N such that ∥Tn − Tm∥ < ϵ whenever
m,n > N . Then for x ∈ X and n > N ,

∥(Tn − T )x∥ = ∥Tnx− Tx∥ = lim ∥Tnx− Tmx∥ ≤ lim ∥Tn − Tm∥∥x∥ ≤ ϵ∥x∥

so ∥Tn − T∥ ≤ ϵ. Since ϵ was arbitrary, we conclude Tn → T .

Proposition 11. Let X be a normed vector space. For x ∈ X, the function x̂ : X∗ → R
defined by ⟨x̂, x∗⟩ = ⟨x∗, x⟩ is continuous and linear and ∥x̂∥ = ∥x∥.

Proof. The linearity of x̂ follows from the definition since X∗ is a vector space. As for x̂
being bounded, for x∗ ∈ X∗ and x ∈ X, the calculation

|⟨x̂, x∗⟩| = |⟨x∗, x⟩| ≤ ∥x∗∥∥x∥ = ∥x∥∥x∗∥ shows that ∥x̂∥ ≤ ∥x∥.

Clearly ∥x̂∥ = ∥x∥ when x = 0, so let x ∈ X \ {0}. We will find a linear functional x̄∗ ∈ S∗
such that ⟨x̂, x̄∗⟩ = ∥x∥ which will mean ∥x̂∥ ≥ ∥x∥.
First, define a linear functional x∗ onW = span{x} by ⟨x∗, αx⟩ = α∥x∥. Now x∗ is bounded,
for |⟨x∗, αx⟩| = |α|∥x∥ = ∥αx∥ so ∥x∗∥ = 1, and note as well that |⟨x∗, x⟩| = ∥x∥. The
Hahn-Banach theorem provides the existence of a bounded linear functional x̄∗ ∈ X∗ such
that ∥x̄∗∥ = ∥x∗∥ = 1 and x̄∗|W = x∗. This gives

⟨x̂, x̄∗⟩ = ⟨x̄∗, x⟩ = ∥x∥,

as desired.

The next definition provides examples of topologies generated by families of functions per
Proposition 6.

Definition 12. Let X be a normed vector space. The weak topology σ(X,X∗) on X
is the weak topology generated X∗. The weak-star topology σ(X∗, X) on X∗ is the
weak topology generated by the family of functions {x̂ : x ∈ X} from Proposition 11.

Proposition 13. A sequence {xn} in a normed vector space X converges weakly to x̄ ∈ X
if and only if ⟨x∗, xn⟩ → ⟨x∗, x̄⟩ for all x∗ ∈ X∗. Similarly, a sequence {x∗n} in the dual
of a normed vector space X converges in the weak-star topology to x̄∗ ∈ X∗ if and only if
⟨x̂, x∗n⟩ → ⟨x̂, x̄∗⟩.
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Proof. This follows from Proposition 7.

If we identify X with it’s natural embedding in X∗∗, Proposition 11 shows that X = {x̂ :
x ∈ X} ⊆ X∗∗. It is not always the case that these are equivalent; when they are:

Definition 14. A Banach space X is reflexive if {x̂ : x ∈ X} = X∗∗.

As X∗ is a Banach space, it too can be reflexive or not as a subset of X∗∗∗ via the isometries
x∗ 7→ x̂∗ where for x∗∗ ∈ X∗∗, ⟨x̂∗, x∗∗⟩ = ⟨x∗∗, x∗⟩.
Conway points to a reference in [2, p.89] showing that there are Banach spaces that are
isometric to their second dual that are not reflexive. Reflexivity requires them to be iso-
metrically isomorphic via the natural embedding x 7→ x̂.

Example 15. For 1 < p < ∞ and a σ-finite measure space X, the Banach spaces Lp(X)
are reflexive.

Also, via the Riesz representation theorem, a Hilbert space H can be identified with its dual
H∗ thus Hilbert spaces are reflexive.

Example 16. A often cited example of a non-reflexive Banach space is c0 (sequences that
vanish at infinity), for c∗0 = ℓ1 (absolutely summable sequences) and (ℓ1)∗ = ℓ∞ (bounded
sequences), thus c0 ⊊ (c0)

∗∗ = ℓ∞ via the natural embedding.

Proposition 17. For a Banach space X, the following are equivalent:

(a) X is reflexive.

(b) X∗ is reflexive.

(c) σ(X∗, X) = σ(X∗, X∗∗) (the weak-star topology on X∗ is the same as the weak topology
on X∗ generated by X∗∗).

(d) The closed unit ball in X is weakly compact.

Proof. See [2, Theorem 4.2].

3 Convex Sets and Functions [3]

Definition 18. A non-empty subset Ω of a vector space X is convex if whenever x, y ∈ Ω
and λ ∈ (0, 1), we have λx+ (1− λ)y ∈ Ω.

Given a vector space X we regard X×R as a real vector space with pointwise addition and
scalar multiplication. We now provide a geometrical definition of a convex function via its
epigraph.

Definition 19. Let X be a non-empty set and f : X → R. The epigraph of f is the set

epi f = {(x, λ) ∈ X × R : f(x) ≤ λ}.
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Definition 20. Let X be a real vector space. A function f : X → R is convex if epi f is
a convex subset of X × R.

The geometrical definition of a convex function via the epigraph is equivalent to a charac-
terization of function convexity using Jensen’s inequality.

Proposition 21. A function f : X → R on a real vector space X is convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ (0, 1). (1)

Proof. This is a direct application of the definitions. Suppose f : X → R is convex so epi f
is convex, let x, y ∈ X, and let λ ∈ (0, 1). Then (x, f(x)), (y, f(y)) ∈ epi f so

λ(x, f(x)) + (1− λ)(y, f(y)) = (λx, λf(x)) + ((1− λ)y, (1− λ)f(y))

= (λx+ (1− λ)y, λf(x) + (1− λ)f(y))

also belongs to epi f , or f(λx+ (1− λ)y ≤ λf(x) + (1− λ)f(y).

Conversely, suppose (1) holds, let (x, α), (y, β) ∈ epi f , and let λ ∈ (0, 1). We first write the
resulting convex combination of the two arbitrary points from epi f :

λ(x, α) + (1− λ)(y, β) = (λx, λα) + ((1− λ)y, (1− λ)β)

= (λx+ (1− λ)y, λα+ (1− λ)β). (2)

We now apply (1) and the facts that f(x) ≤ α and f(y) ≤ β obtaining

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα+ (1− λ)β

which shows that the expression in (2) belongs to epi f , or epi f is convex.

We will use the notion of sublevel sets later in the presentation when discussing lower
semicontinuous functions.

Definition 22. Given a non-empty set X, a function f : X → R, and a number α ∈ R, the
sublevel set Lα is the set

Lα = {x ∈ X : f(x) ≤ α}.

Proposition 23. Given a real vector space X, a convex function f : X → R, and a number
α ∈ R, the sublevel set Lα is always convex.

Proof. Let α ∈ R, x, y ∈ Lα, and λ ∈ (0, 1). Then

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (f is convex)

≤ λα+ (1− λ)α (x, y ∈ Lα)

= α,

so λx+ (1− λ)y ∈ Lα. Therefore Lα is convex.

We will need the notion of convex separation for a subsequent result.
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Definition 24. Let X be a real normed vector space and Ω1,Ω2 ⊆ X. The sets Ω1 and
Ω2 can be separated by a closed hyperplane if there is a non-zero continuous linear
functional x∗ ∈ X∗ such that

sup{⟨x∗, x⟩ : x ∈ Ω1} ≤ inf{⟨x∗, x⟩ : x ∈ Ω2}.

The sets Ω1 and Ω2 can be properly separated by a closed hyperplane if they can
be separated by a continuous linear functional x∗ ∈ X∗ and

inf{⟨x∗, x⟩ : x ∈ Ω1} < sup{⟨x∗, x⟩ : x ∈ Ω2}.

And lastly, the sets Ω1 and Ω2 can be strictly separated by a closed hyperplane if
there is a continuous linear functional x∗ ∈ X∗ such that

sup{⟨x∗, x⟩ : x ∈ Ω1} < inf{⟨x∗, x⟩ : x ∈ Ω2}.

The notion of convex separation is closely related to the Hahn-Banach theorem, which is
typically invoked for proving convex separation results. Also, it is possible to use convex
separation to prove the Hahn-Banach theorem [3, Theorem 2.54]. We will use the following
convex separation result to show that norm-closed convex sets are weakly closed.

Proposition 25. Let X be a normed vector space and let Ω1,Ω2 ⊆ X be non-empty,
disjoint, convex sets such that Ω1 is closed and Ω2 is compact. Then Ω1 and Ω2 can be
strictly separated by a closed hyperplane.

Proof. See [3, Theorem 2.61].

4 The Weak Topology and its Interplay with Convexity [3]

We collect a few interesting results here demonstrating some differences between the weak
and norm topologies in infinite dimensional normed vector spaces as well as similarities in
the presence of convexity. We will use the notation B for the closed unit ball, B for the
open unit ball, B∗ for the closed unit ball in the dual space, S for the unit sphere, and Sw

for the weak-closure of S.
We first apply Proposition 7 to show how weak and norm topologies can differ in infinite-
dimensional settings.

Proposition 26. Any infinite orthonormal sequence in an infinite-dimensional Hilbert
space converges weakly to 0.

Proof. Let {en}n∈N be an orthonormal sequence in an infinite-dimensional Hilbert space H.
We will show that ⟨h∗, en⟩ → 0 for any bounded linear functional h∗ on H. To that end,

∥h∗∥2 ≥
∑
n

∥⟨h∗, en⟩en∥2 (Bessel’s inequality)

=
∑
n

|⟨h∗, en⟩|2

which means ⟨h∗, en⟩ → 0. Since h∗ was arbitrary, we conclude en → 0 weakly.
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Proposition 27. In an infinite-dimensional normed vector space we have Sw = B, thus the
unit sphere is never weakly closed.

Proof. Let X be in infinite-dimensional normed vector space. Note first that x ∈ B if and
only if |⟨x∗, x⟩| ≤ 1 whenever x∗ ∈ B∗, or

B =
⋂

x∗∈B∗

{x ∈ X : |⟨x∗, x⟩| ≤ 1}.

Namely, B is an intersection of weakly closed sets thus is itself weakly closed. Since S ⊆ B,
we have Sw ⊆ B.
For the reverse inclusion, we will show B ⊆ Sw. Since B = B ∪ S and S ⊆ Sw, we will have
B ⊆ Sw as desired. To that end, let x̄ ∈ B and let U be a weakly open set containing x̄. In
that case, there is a basic open set G of the form

G = {x ∈ X : |⟨x∗i , x− x̄⟩| < ϵ, i = 1, . . . , n}

for some x∗1, . . . , x
∗
n ∈ X∗ and ϵ > 0 which satisfies x̄ ∈ G ⊆ U . Note that there must

be a non-zero ȳ ∈ X such that ⟨x∗i , ȳ⟩ = 0 for i = 1, . . . , n, otherwise the linear mapping
X → Rn defined by x 7→ (⟨x∗1, x⟩, . . . , ⟨x∗n, x⟩) would be injective which it can not be since
dimX = ∞.

Now, note that
⟨x∗i , (x̄+ tȳ)− x̄)⟩ = t⟨x∗i , ȳ⟩ = 0

for all t ∈ R, thus x̄ + tȳ ∈ G for all t ∈ R. Also, for t ∈ R the range of the continuous
function t 7→ ∥x̄ + tȳ∥ contains [∥x̄∥,∞), thus there is a number t̄ such that ∥x̄ + t̄ȳ∥ = 1,
or

x̄+ t̄ȳ ∈ S ∩G ⊆ S ∩ U.

We have shown that every weakly open set U containing x̄ ∈ B has a nonempty intersection
with S, or B ⊆ Sw as desired.

Similarly, the open unit ball is never weakly open in an infinite-dimensional normed space.

Proposition 28. In an infinite-dimensional normed space, the open unit ball B is never
weakly open.

Proof. Suppose B is weakly open in an infinite-dimensional normed space X. In that case
Bc is weakly closed. Also B is weakly closed, which would mean S = B ∩ Bc, being the
intersection of of two weakly closed sets, is also weakly closed which it is not per the previous
proposition. We thus conclude that B can not be weakly open.

Proposition 27 shows that the closed unit ball is weakly closed. More can be said, and the
following result will be important for this presentation.

Proposition 29. A closed convex subset of a normed vector space is weakly closed.
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Proof. Let X be a normed vector space, let Ω ⊆ X be closed and convex, and let x̄ ∈ Ωc.
By Proposition 25, Ω and {x̄} can be strictly separated by a closed hyperplane. That is,
there is an x̄∗ ∈ X∗ and a number λ ∈ R such that

⟨x̄∗, x⟩ < λ < ⟨x̄∗, x̄⟩ for all x ∈ Ω.

Then U := {x ∈ X : ⟨x̄∗, x⟩ > λ} is a weakly open set satisfying x̄ ∈ U ⊆ Ωc, therefore Ωc

is weakly open so Ω is weakly closed.

Theorem 30 (Alaoglu’s theorem). The closed unit ball in the dual of a normed vector space
is compact in the weak-star topology.

Proof. See [3, Corollary 1.113].

Note that for a reflexive Banach space X, Theorem 30 means the closed unit ball in X∗

is weakly compact, and X∗ is also reflexive so the closed until ball in X∗∗ = X is weakly
compact (as indicated in Proposition 17).

5 Lower Semicontinuous Functions and Minimizers [3]

We now arrive at the final section where we will apply the above material to arrive at
assertions concerning the existence of minimizers for lower semicontinuous functions.

Definition 31. Let X be a topological space. A function f : X → R is lower semicon-
tinuous (or lsc) at x̄ ∈ X if for every α < f(x̄) there is an open set U containing x̄ such
that α < f(x) for all x ∈ U .

Lower semicontinuity of a function can be equivalently characterized via its epigraph and
also its sublevel sets.

Proposition 32. Let X be a topological space. For a function f : X → R, the following
are equivalent

(a) f is lower semicontinuous.

(b) epi f is closed (as a subset of the product topological space X × R).

(c) The sublevel set Lα is closed for all α ∈ R.

Proof. (a) =⇒ (b) Suppose f : X → R is lsc and let (x̄, α) ∈ (epi f)c. This gives α < f(x̄),
in which case there is a number ϵ > 0 such that α + ϵ < f(x̄). Since f is lsc, there is an
open set U such that x̄ ∈ U and f(x) > α+ ϵ for all x ∈ U . This means

(x̄, α) ∈ U × (α− ϵ, α+ ϵ) ⊆ (epi f)c

so (epi f)c is open, thus epi f is closed.
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(b) =⇒ (c) Suppose epi f is closed, let α ∈ R, and let x̄ ∈ (Lα)
c. Since x̄ /∈ Lα, we have

α < f(x̄) or (x̄, α) ∈ (epi f)c. Since (epi f)c is open, there is an open set U ⊆ X containing
x̄ and an ϵ > 0 such that

U × (α− ϵ, α+ ϵ) ⊆ (epi f)c, or f(x) > α+ ϵ > α for all x ∈ U.

Thus x̄ ∈ U ⊆ (Lα)
c so (Lα)

c is open, or Lα is closed.

(c) =⇒ (a) Suppose Lα is closed for all α ∈ R, let x̄ ∈ X, and let α < f(x̄). In that case
(x̄, α) ∈ (Lα)

c which is open, so there is an open set U such that x̄ ∈ U ⊆ (Lα)
c. This

means f(x) > α for all x ∈ U , or f is lsc.

Lower semicontinuity and weak lower semicontinuity are equivalent for convex functions.
This holds in the more general topological space setting but we will prove it here for normed
vector spaces applying previous results from this presentation.

Proposition 33. Let X be a real normed vector space. A convex function f : X → R is
lower semicontinuous if and only if it is weakly lower semicontinuous.

Proof. Let f : X → R be a convex function on a normed vector space X. If f is lsc, then
epi f is closed by Proposition 32. Thus epi f is closed and convex, therefore it is weakly
closed by Proposition 29. Another application of Proposition 32 shows that f is weakly lsc.

Conversely, if f is convex and weakly lsc, then epiF convex and weakly closed thus is closed,
so f is lsc by Proposition 32.

We now arrive at our first result for minimizers in the context of lower semicontinuous
functions on topological spaces.

Proposition 34. Let X be a topological space and f : X → R a lower semicontinuous
function. If there is a number α > inf{f(x) : x ∈ X} such that Lα is compact, then f has
an absolute minimizer in X. That is, there is a point x̄ ∈ X such that f(x̄) = inf{f(x) :
x ∈ X}.

Proof. Let f : X → R be lsc, and suppose α > inf{f(x) : x ∈ X} with Lα compact. Let
{αn}n∈N be a decreasing sequence of numbers such that inf{f(x) : x ∈ X} ≤ αn ≤ α for all
n and αn → inf{f(x) : x ∈ X}. Since αn+1 ≤ αn ≤ α for all n, we have Lαn+1 ⊆ Lαn ⊆ Lα

for all n. Since f is lsc, each Lαn is a closed subset of the compact set Lα, thus each Lαn

is compact. By [3, Lemma 2.162], ∩nLαn is non-empty, so choose x̄ ∈ ∩nLαn . Then

inf{f(x) : x ∈ X} ≤ f(x̄) ≤ αn for all n and αn → inf{f(x) : x ∈ X},

so f(x̄) = inf{f(x) : x ∈ X} as desired.

And for the final result, the above applies in the context of reflexive Banach spaces if a
similar sublevel set is merely bounded rather tha compact. This result is an analogue to the
extreme value theorem, which provides that a continuous function on a closed and bounded
interval (or more generally, on a compact subset of a topological space) attains a max and
a min.
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Theorem 35. Let X be a reflexive Banach space and f : X → R a convex lower semi-
continuous function. If there is a number α > inf{f(x) : x ∈ X} such that Lα is bounded,
then f has an absolute minimizer in X. That is, there is a point x̄ ∈ X such that
f(x̄) = inf{f(x) : x ∈ X}.

Proof. Let X be a reflexive Banach space, f : X → R convex and lsc, and α > inf{f(x) : x ∈
X} such that Lα is bounded. Since f is lsc and convex, f is weakly lsc by Proposition 33,
and Lα is weakly closed by Proposition 32. Since X is reflexive and Lα is weakly closed
and bounded, it is compact, and the conclusion follows from Proposition 34.
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