HW

1. (Due 10 April 2024)

Let p be prime and or every $n \in \mathbb{Z}_{\geq 0}$, let $\zeta_n = e^{\frac{2\pi i}{p^n}}$ and $L_n = \mathbb{Q}(\zeta_n)$. Let's write L for the smallest subfield of \mathbb{C} that contains all the L_n . From class, we know that L/\mathbb{Q} is Galois. Suppose that $(a_n)_{n=1}^{\infty}$ is a sequence of integers such that for all $n \in \mathbb{Z}_{\geq 1}$,

$$a_n + p^n \mathbb{Z} \in (\mathbb{Z}/p^n \mathbb{Z})^{\times}$$
 and $a_{n+1} \equiv a_n \pmod{p^n}$.

Prove that there is an automorphism $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ such that for every $n \in \mathbb{Z}_{\geq 0}$, we have that $\sigma(\zeta_n) = \zeta_n^{a_n}$.

Proof. From last year, we know that our first hypothesis on the a_n ensures there is a unique element of $Gal(L_n/\mathbb{Q})$ that maps ζ_n to $(\zeta_n)^{a_n}$; let's name this automorphism σ_n .

We know from class that $L = \bigcup_{n=0}^{\infty}$; let's define $\sigma: L \to L$ as follows: for any $\alpha \in L$, choose some n with $\alpha \in L_n$ and define $\sigma(\alpha) := \sigma_n(\alpha)$.

To see this σ is well-defined, suppose that $j, k \in \mathbb{Z}_{\geq 0}$ with j < k, and note that our second hypothesis on the a_n ensures that there is some $m \in \mathbb{Z}$ such that $a_k = a_j + mp^j$; thus,

$$\sigma_{k}\left(\zeta_{j}\right) = \sigma_{k}\left(\left(\zeta_{k}\right)^{p^{k-j}}\right) = \sigma_{k}\left(\zeta_{k}\right)^{p^{k-j}} = \left(\zeta_{k}\right)^{a_{k}p^{k-j}} = \left(\zeta_{k}\right)^{\left(a_{j}+mp^{j}\right)p^{k-j}} = \left(\zeta_{k}\right)^{a_{j}p^{k-j}} = \left(\zeta_{j}\right)^{a_{j}} = \sigma_{j}\left(\zeta_{j}\right),$$

so we know from last year that $\sigma_k|_{L_i} = \sigma_j$.

Finally, we prove that σ is a surjective field automorphism:

- To see that σ is surjective, choose any $\alpha \in L$, then find some n with $\alpha \in L_n$. Since $\sigma_n \in \operatorname{Gal}(L_n/\mathbb{Q})$, we know that σ_n is surjective, so there is some $\beta \in L_n$ with $\sigma_n(\beta) = \alpha$; hence, $\sigma(\beta) = \alpha$.
- To see that σ is a field homomorphism, choose any $\alpha, \beta \in L$, then find some n with $\alpha, \beta \in L_n$ and note that

$$\sigma(\alpha\beta) = \sigma_n(\alpha\beta) = \sigma_n(\alpha)\sigma_n(\beta) = \sigma(\alpha)\sigma(\beta)$$
 and $\sigma(\alpha+\beta) = \sigma_n(\alpha+\beta) = \sigma_n(\alpha) + \sigma_n(\beta) = \sigma(\alpha) + \sigma(\beta)$.

2. (Due 10 April 2024)

Suppose that $a \in \mathbb{Z}$ with $a \equiv 1 \pmod{4}$ and $a \not\equiv 1 \pmod{8}$.

(a) Prove that for all $k \in \mathbb{Z}_{>0}$:

$$a^{(2^k)} \equiv 1 \pmod{2^{k+2}}$$
 and $a^{(2^k)} \not\equiv 1 \pmod{2^{k+3}}$

(b) For all $n \in \mathbb{Z}_{\geq 2}$, write $\pi_n : (\mathbb{Z}/2^n\mathbb{Z})^{\times} \to (\mathbb{Z}/4\mathbb{Z})^{\times}$ for the natural projection. Prove

$$\langle a+2^n\mathbb{Z}\rangle = \{b+2^n\mathbb{Z} \mid b\in\mathbb{Z} \text{ and } b\equiv 1 \pmod{4}\} = \ker(\pi_n).$$

3. (Due 17 April 2024)

Prove that if L/K is a Galois extension an with intermediate field E, then L/E is also Galois.

4. (Due 17 April 2024)

Suppose X, Y are topological spaces and β is a base for the topology on Y. Let $f: X \to Y$ be any function. Prove:

f continuous if and only if for all $U \in \beta$, we have $f^{-1}(U)$ is open.

5. (Due 24 April 2024)

Suppose that X, Y are topological spaces, and $\pi_X: X \times Y \to X$ and $\pi_Y: X \times Y \to Y$ are the natural projection. Next, suppose that Z is a third topological space and $f: Z \to X$ and $g: Z \to Y$ are continuous maps. We know from class that there is a unique function $h: Z \to X \times Y$ such that $\pi_X \circ h = f$ and $\pi_Y \circ h = g$. Prove that h is continuous.

6. (Due 24 April 2024)

Suppose that G is a topological group and H is a closed normal subgroup of G. Prove that G/H, with the quotient topology, is a topological group.

7. (Due 1 May 2024)

Let X be the following subset of \mathbb{R}^2 , equipped with the subspace topology:

$$X = \{(0,0)\} \bigcup \{(t,\sin(t^{-1})) \mid t \in (0,1]\}.$$

Prove that X is connected.

8. (Due 1 May 2024)

Suppose that X, Y are topological spaces and $\phi: X \to Y$ a continuous function. Prove that if X is compact, then $\phi(X)$ is compact.

9. (Due 20 May 2024)

Suppose that Λ is a poset and

$$(\{X_{\lambda} \mid \lambda \in \Lambda\}, \{f_{\lambda,\mu} \mid \lambda, \mu \in \Lambda \text{ and } \lambda \leq \mu\})$$

is an inverse system of groups.

As in class, let's write

$$\lim_{\substack{\lambda \in \Lambda \\ \lambda \in \Lambda}} X_{\lambda} = \left\{ f \in \prod X_{\lambda} \mid \text{for all } \lambda, \mu \in \Lambda, \text{ if } \lambda \leq \mu, \text{ then } f(\lambda) = (f_{\lambda,\mu} \circ f)(\mu) \right\}.$$

For any $\mu \in \Lambda$, let p_{μ} be the projection from $\prod X_{\lambda}$ to X_{μ} . Let's restrict the domain of p_{μ} to $\varprojlim X_{\lambda}$; we'll call this new function π_{μ} .

- (a) Prove that $\lim X_{\lambda}$ is a subgroup of $\prod X_{\lambda}$.
- (b) Prove that for all $\lambda, \mu \in \Lambda$, if $\lambda \leq \mu$, then $\pi_{\lambda} = f_{\lambda,\mu} \circ \pi_{\mu}$.
- (c) Suppose that Y is a group and for every $\lambda \in \Lambda$, we have a group homomorphism $g_{\lambda}: Y \to X_{\lambda}$. Also suppose that for every $\lambda, \mu \in \Lambda$, if $\lambda \leq \mu$, then $g_{\lambda} = f_{\lambda,\mu} \circ g_{\mu}$. Suppose further that $(Y, \{g_{\lambda} \mid \lambda \in \Lambda\})$ has the following property: if

Z is a group and $\{h_{\lambda} \mid \lambda \in \Lambda\}$ is a family of group homomorphisms (where for each $\lambda \in \Lambda$, the domain of h_{λ} is Z and the codomain of h_{λ} is X_{λ}) that has the property that for every $\lambda, \mu \in \Lambda$, if $\lambda \leq \mu$, then $h_{\lambda} = f_{\lambda,\mu} \circ h_{\mu}$,

then

there is a group homomorphism $\phi: Z \to Y$ such that for every $\lambda \in \Lambda$, we have $h_{\lambda} = g_{\lambda} \circ \phi$.

Prove that if $(Y', \{g'_{\lambda} \mid \lambda \in \Lambda\})$ has the same properties as $(Y, \{g_{\lambda} \mid \lambda \in \Lambda\})$, then there is an isomorphism of groups $\psi: Y \to Y'$ such that for every $\lambda \in \Lambda$, we have $g_{\lambda} = g'_{\lambda} \circ \psi$.