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1. Introduction
As children, many of us spent countless hours playing with Rubik’s Cube.

At the time, it seemed like little more than a fascinating and slightly frustrating
puzzle. While taking courses in abstract algebra, I – as many others – started
thinking of how to organize the puzzle as an algebraic structure. I had little
success. Once an orientation for the cube is determined, the first thing one will
notice is that a right turn followed by a left turn is different than a left turn
followed by a right turn. Thus the group structure of the cube is nonabelian.
The next thing one might realize is that the whole group of the cube is very large.
When considering the order of the group of the cube, you must not only consider
the permutations of the pieces, but you must also account of the orientation of
the corners and edge pieces. Contained in the group of the Rubik’s cube is
a subgroup with two generators. For the miniature (2x2x2) Rubik’s cube, the
two-generator group (generated by rotations of adjacent faces) is of order 29,160
– which will be shown later – and has some very nice algebraic properties. In
this paper, I will explore Daniel Bump and Daniel Auerbach’s paper analyzing
the two-generator group of the miniature Rubik’s cube.

2. The two-generator group
We will let G denote the two-generator group of the miniature (2x2x2) Ru-

bik’s cube. The two generator group will consist of 90 degree clockwise rotations
of two adjacent faces. Let R denote a clockwise rotation of the right face of the
cube, and let U denote a clockwise rotation of the top face of the cube. Thus
G=〈R,U〉. Using standard notation, I will sometimes denote R−1 by R′ and
U−1 by U ′. We will let K denote the subgroup of G that only changes orien-
tations of any of the 6 corner cubes. This is to say, K fixes the position of the
cube pieces of G while only affecting orientation.

Proposition 2.0.1. K is an abelian, normal subgroup of G of order 35.

Proof. Let g ∈ G and k ∈ K be arbitrary elements of their respective groups.
By definition K only effects the orientations of the cube pieces without permut-
ing them. The element g will scramble the Rubik’s cube in some particular way,
and it is clear that g−1 will unscramble the cube in the same fashion. Thus the
element gkg−1 will, in effect, scramble the Rubik’s cube, change the orientation
of some of the scrambled pieces while leaving their position fixed, and then un-
scramble the cube yielding only a change in orientation. Thus the net effect of
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the element gkg−1 is nothing more than changing orientation of specific pieces.
Hence gkg−1 ∈ K and K is normal in G. Since the elements of K only change
orientation of cube pieces, and order of the orientation changes does not depend
upon the order they are preformed in, K is clearly abelian.

To get a bound on the order of K, it is necessary to observe that for each of
the 6 cube pieces that can be permuted, there are 3 possible orientations. This
forces the order of K to be ≤ 36. To get a good representation of the cube we
will label each possible twist by different numbers: 0 representing no change of
orientation, 1 for a clockwise twist, and 2 for a counterclockwise twist (or two
clockwise twists).

Since the sum of the orientation shifts is 0 for any one change of orientation,
it must be 0 for any changes of orientation, i.e. it will be 0 for any orientations
of the corner triples. Since the solved cube is a pattern in which the sum of the
orientation shifts was 0, any possible pattern must have a 0 sum of shifts. In
particular, if we reach a pattern i which each corner is in its correct place, we
can readily see the orientation shifts as the amounts the corners are twisted and
so the total twist of corners must add to 0. This is always taken modulo 3. Thus
the number of corner twists must be ≡ 0 modulo 3 (proof from Singmaster’s
book on the cube).

This tells us that we have free choice for any 5 of the 6 movable corners. The
remaining corner’s orientation is determined by the choice of the the previous
5 and the constraint that the total sum of orientation changes must be ≡ 0
modulo 3, hence |k|≤ 35.

It is left to show |k|≥ 35.
The diagram below, figure 1, shows that the operation RUR′URU2R′U2

∈ K twist the three corners labeled 2, infinity and 0 clockwise by one click.
For the following calculations we will use the labeling of the cube as it is

seen is figure 2. It follows from the following table and calculations that the
operation above, together with its conjugates in G, generate the group that
contains all of the operations that change the orientation of the corners such
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Figure 1: Orientation changes via RUR′URU2R′U2
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Figure 2: 3 dimensional cube labeling

that the total number of twists is ≡ 0 modulo 3.

Moves 0 1 2 3 4 ∞
K 1 0 1 0 0 1

UKU−1 0 1 1 0 0 1
RKU−1 1 0 1 0 1 0

(RU)K(RU)−1 1 1 1 0 0 0
(UR)K(UR)−1 0 1 0 0 1 1

U3kU−3 1 1 0 0 0 1
R2KR−2 0 0 1 1 1 0
R3KR−3 0 0 1 1 0 1

(U2R2)K(U2R2)−1 1 0 0 1 1 0
(R2U2)K(R2U2)−1 0 1 1 1 0 0
(R2U)K(R2U)−1 0 1 1 0 1 0

(R3U−1R2U2)K(R3U−1R2U2)−1 1 0 1 1 0 0
(R3U−1)K(R3U−1)−1 0 1 0 1 0 1

(R3U−1R)K(R3U−1R)−1 1 1 0 1 0 0
(U3R2)K(U3R2)−1 0 0 0 1 1 1

(U3R2U)K(U3R2U)−1 0 0 1 0 1 1
(RU3)K(RU3)−1 1 1 0 0 1 0

(R2U3)K(R2U3)−1 0 1 0 1 1 0
(U2R3U)K(U2R3U)−1 1 0 0 1 0 1
(U2R2U)K(U2R2U)−1 1 0 0 0 1 1

From the table above it is clear that we can twist any three corners of our
choosing by 120◦. I will now show that these elements of K are enough to
generate the twisting of any corners such that the total number of twists is ≡0
modulo 3. To do this I will show the element (RU)K(RU)−1, (1,1,1,0,0,0), along
with the other elements of K can generate the 6-tuple (0,1,2,0,0,0). Together
(1,1,1,0,0,0,) and (0,1,2,0,0,0,) generate any possible orientation combination of
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the corners labeled 0,1 and 2 which must be ≡0 modulo 3. Since I arbitrarily
labeled the columns, without loss of generality this can be done for any three
corners, thus the elements of K seen above generate all of K.

(1 1 1 0 0 0)
+ (1 0 1 1 0 0)

(2 1 2 1 0 0)
+ (1 0 0 0 1 1)

(0 1 2 1 1 1)
+ (0 0 0 1 1 1)

(0 1 2 2 2 2)
+ (0 0 0 1 1 1)

(0 1 2 0 0 0)

So |K|≥ 35 and hence |K|=35 . �

Two pieces of the cube are unaffected by any operation in G, thus the opera-
tions in G only affect the locations and orientation of 6 pieces. The corners that
move will be labeled with the elements of the projective line P1(F5) (see Figure
2). The quotient G/K acts faithfully as a group of permutations of P1(F5) ig-
noring orientation, therefor the quotient is a subgroup of S6 where the elements
are those of P1(F5).

One group of permutations of P1(F5) is PGL(2,F5) acting on P1(F5) by frac-
tional linear transformations. The group GL(2,F5) acts on elements of P1(F5)
by the fractional linear transformation(

a b
c d

)
: x 7→ ax + b

cx + d
, x ∈ F5 ∪ {∞},

where if x=∞ then ax+b
cx+d = a

c , and if cx+d = 0 then ax+b
cx+d =∞. The center Z of

GL(2,F5) is all scalar matrices of the identity matrix. A simple calculation shows
that the center acts trivially on P1(F5), thus the action on the projective line
is really an action of GL(2,F5)/Z which is defined to be the projective general
linear group PGL(2,F5).

Proposition 2.0.2. As a permutation group acting on P1(F5), we have
G/K=PGL(2,F5).

Proof. I will first show that generators of G/K are contained in PGL(2,F5).
The elements R and U generate G. UUUUR=R since U4 is the identity, thus
U and UR generate G. So I will show that U, UR are contained in PGL(2,F5).
Using the labeling in Figure 2 and the fractional linear transform described
above, the element U corresponds to the cycle (0,1,2,∞) and the element UR
corresponds to the cycle (0,1,2,3,4). I will now verify that U and UR do in fact
have the following fractional transformations I described above:

U =

(
0 1
2 1

)
∈ PGL(2,F5)
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Yields the following fractional linear transform(
0 1
2 1

)
: x 7→ 1

2x + 1

Thus working modulo F5,

0 7→ 1

2 · 0 + 1
=

1

1
= 1,

1 7→ 1

2 · 1 + 1
=

1

3
= 3−1 ≡ 2,

2 7→ 1

2 · 2 + 1
=

1

5
≡ 1

0
=∞ by definition

3 7→ 1

2 · 3 + 1
=

1

7
≡ 1

2
= 2−1 = 3,

4 7→ 1

2 · 4 + 1
=

1

9
≡ 1

4
≡ 4

inf 7→ 1

inf
= 0

To see that

UR =

(
1 1
0 1

)
∈ PGL(2,F5)

Yields the following fractional linear transform:(
1 1
0 1

)
: x 7→ x + 1

1

Still working modulo F5, it is easy to see that 0 7→ 1, 1 7→ 2, 2 7→ 3, 3 7→ 4, 4
7→ 5 ≡ 0, and ∞ 7→ ∞.

Thus G/K ⊂ PGL(2,F5). It is also easy to verify that these two elements
generate PGL(2,F5).

Claim. U and UR generate PGL(2,F5).

proof. To see that the two elements U and UR generate PGL(2,F5) I will
show that they generate subgroups of order 3, 5 and 8. The order of PGL(2,F5)
is 120, which will be shown in a corollary below. 120 = 23 · 3 · 5 so by showing
subgroups of each order we can be sure that U and UR will generate the specific
group of order 120. The subgroups of order 3 and 5 are cyclic while the subgroup
of order 8 is isomorphic to the dihedral group on 4 elements D4. Keep in mind
that the multiplication performed in the following computations is done modulo
5 and scalar matrices are in the same coset of G/K.

The order 3 subgroup can be seen by the element U · UR · U=(
0 1
2 1

)
·
(

1 1
0 1

)
·
(

0 1
2 1

)
=

(
2 1
1 0

)
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and 〈(
2 1
1 0

)〉
=

{(
2 1
1 0

)
,

(
0 2
2 1

)
,

(
1 0
0 1

)}
Thus U ·UR ·U is a subgroup of order 3. The order 5 subgroup is just the cyclic
subgroup generated by UR.〈(

1 1
0 1

)〉
=

{(
1 1
0 1

)
,

(
1 2
0 1

)
,

(
1 3
0 1

)
,

(
1 4
0 1

)
,

(
1 0
0 1

)}
Hence 〈UR〉 is an order 5 subgroup of PGL(2,F5). I found the order 8 subgroup
by conjugating order two subgroups. The order two subgroups I used were
U · (UR)2, UR ·U ·UR and U3 ·UR ·U3 ·UR. Notice that U3 ·UR ·U3 ·UR is
nothing more than R2 since U4 is congruent to the identity.

U · UR2 =

(
0 1
2 1

)
·
(

1 1
0 1

)
·
(

1 1
0 1

)
=

(
0 1
2 0

)

UR · U · UR =

(
1 1
0 1

)
·
(

0 1
2 1

)(
1 1
0 1

)
=

(
2 4
2 3

)
U3 ·UR ·U3 ·UR =

(
0 1
2 1

)3

·
(

1 1
0 1

)
·
(

0 1
2 1

)3

·
(

1 1
0 1

)
=

(
4 0
3 1

)
〈(

0 1
2 0

)
,

(
2 4
2 3

)
,

(
4 0
3 1

)〉
={(

0 1
2 0

)
,

(
2 4
2 3

)
,

(
4 0
3 1

)
,

(
3 1
3 0

)
,

(
2 3
4 3

)
,(

0 2
1 4

)
,

(
2 3
0 3

)
,

(
1 0
0 1

)}
Since we have shown subgroups of order 3, 5 and 8, by Lagrange the group
generated by U and UR is of size at least 3 · 5 · 8=120. Hence U and UR
generate PGL(2,F5). �

Corollary 2.0.3. | G/K |= 5! and G/K ∼= S5.

Proof. To see that | G/K |= 5! I will show the size of PGL(2,F5) is 5!. This
will first be done by counting GL(2,F5) then finding the size of the the group
quotiented by scalar matrices. GL(2,F5) consists of all two by two matrices
with nonzero determinant and entries from F5. M(2,F5) is the set of all matrice
with entries in F5 and has 5 choices for each of the 4 entries. Thus M(2,F5) has
5 · 5 · 5 · 5 = 54 = 625 elements. I will subtract off the zero determinant cases of
M(2,F5) to determine the size of GL(2,F5). Consider the matrix

M =

(
a b
c d

)
Thus the determinant of M is a·d−b·c and we are looking for where det(M)≡5 0.

7



Case 1: a6= 0 ; d 6= 0. Then there are 4 choices for a, 4 choices for d, 4 choices
for b, but that will fix c since there are nozerodivisors in a field. Thus this case
yields 4 · 4 · 4 · 1=64 possibilities.

Case 2: a6=0 ; d=0 ; b=0. There are 4 choices for a, both b and d are fixed as
0 and thus there are 5 choices for c. Case 2 yields 4 · 1 · 1 · 5=20 possibilities.

Case 3: a=0 ; d 6=0 ; b=0. This case is analogous to case 2 and thus yields 20
possibilities.

Case 4: a6=0 ; d=0 ; b 6=0. There are 4 choices for a, 1 choice for d, 4 choice for
b and 1 choice for c namely 0. Thus this case yields 4 · 1 · 4 · 1=16 possibilities.

Case 5: a=0 ; d6=0 ; b6=0. This case is analogous to case 4, thus there are 16
possibilities.

Case 6: a=d=0. Either b or c must be 0. If b is 0 there are 5 choices for c, and
if c is 0 there are 5 choices for b. This double counts when the are both b and
c are 0. Hence this case yields (1 · 1 · 1 · 5)+(1 · 1 · 5 · 1)-1=9 possibilities.

This covers all 0 determinant cases. Thus there are 64+20+20+16+16+9=145
total cases. This tells us that GL(2,F5) has 625-145=480 elements. Since
PGL(2,F5) is the quotient GL(2,F5)/Z, where

Z =

{(
1 0
0 1

)
,

(
2 0
0 2

)
,

(
3 0
0 3

)
,

(
4 0
0 4

)}
has order 4, PGL(2,F5) has order 480

4 =120=5!
The isomorphism between PGL(2,F5) and S5 will be checked by labeling

P1(F5) with the elements of the 5-Sylow subgroups of S5 in the following way:

∞ =< (12345) >= {(12345), (13524), (14253), (15432), (1)}

0 =< (12354) >= {12354), (13425), (15243), (14532), (1)}

1 =< (12453) >= {(12453), (14325), (15234), (13542), (1)}

2 =< (12543) >= {(12543), (15324), (14235), (13452), (1)}

3 =< (12534) >= {(12534), (15423), (13245), (14352), (1)}

4 =< (12435) >= {(12435), (14523), (13254), (15342), (1)}

S5 acts on P1(F5) by conjugating its 5-Sylow subgroups. Conjugation the
group of permutations of the projective line group is nothing more than the
action of PGL(2,F5) on the projective line group. To see that the permutation
group obtained contains PGL(2,F5) it is sufficient to check for generators of S5

where conjugation of the 5-Sylow subgroups by the generators induces a linear
fractional transformation. Consider conjugation by the cycle (12345):

(12345)(12345)(12345)−1 = (12345) :∞ 7→ ∞

(12345)(12354)(12345)−1 = (15234) : 0 7→ 1

(12345)(12453)(12345)−1 = (14235) : 1 7→ 2
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(12345)(12543)(14235)−1 = (12534) : 2 7→ 3

(12345)(12534)(12345)−1 = (14523) : 3 7→ 4

(12345)(14523)(12345)−1 = (13425) : 4 7→ 0

thus conjugation by (12345) correspond to the fractional linear transformation

x 7→ x+1, which in turn corresponds to the matrix

(
1 1
0 1

)
∈ GL(2,F5).

Now let us se how conjugation by the cycle (45) affects the 5-Sylow sub-
groups. Since (45) is a transposition (45)−1=(45), that is it is its own inverse.

(45)(12345)(45) = (12354) :∞ 7→ 0

(45)(12354)(45) = (12345) : 0 7→ ∞

(45)(12453)(45) = (12543) : 1 7→ 2

(45)(12543)(45) = (12453) : 2 7→ 1

(45)(12534)(45) = (12435) : 3 7→ 4

(45)(12435)(45) = (12534) : 4 7→ 3

so ∞ ↔0, , 1↔2 and 3↔4. This action has the fractional linear transform
x7→ 2

x . This can be seen by:

0 7→ 2

0
=∞,

1 7→ 2

1
= 2,

2 7→ 2

2
= 1,

3 7→ 2

3
= 2 · 3−1 = 2 · 2 = 4,

4 7→ 2

4
= 2 · 4−1 = 2 · 4 = 8 ≡5 3.

The fractional linear transform x 7→ 2
x corresponds to the matrix

(
0 2
1 0

)
∈ GL(2,F5). Since S5 is generated by (12345) and (45) (see lemma below),
conjugation by any element of S5 of the 5-Sylow subgroups labeled a s such is
contained in PGL(2,F5). The net effect is a homomorphism S5 7→PGL(2,F5).
Since the order of S5 is 5!, the two groups have the same order. The only
nontrivial normal subgroup of S5 is A5 and the element (12345)∈ A5 acts non-
trivially, hence the homomorphism is nontrivial and must be an isomorphism.
�

Lemma 2.0.4. The elements (45) and (12345) generate S5.

Proof. I will be performing various products in < (45), (12345) > to get all the
transpositions of S5. Since every element in Sn is a product of transpositions,

9



when we get all transpositions of S5 from < (45), (12345) > we will have shown
that < (45), (12345) >=S5.

Recall:

< (12345) >= {(12345), (13524), (14253), (15432), (1)}

(45)(12345) = (4)(5123) = (1235),

< (1235) >= {(1), (1235), (13)(25), (1532)}

(12345)(45) = (4123)(5) = (1234),

< (1234) >= {(1), (1234), (13)(24), (1432)}.

We have two products of disjoint transpositions (13)(25) and (13)(24) so we can
use their product and its cyclic subgroup to get transpositions.

(13)(25)(13)(24) = (25)(24) = (245), and < (245) >= {(1), (245), (254)}

(245)(45)=(24) and (45)(245)=(25) so we now have three of the ten trans-
positions needed.

Using (13524) from above, (13524)(45)=(42)(513)=(135)(24), and we have
(24) thus we have (135)(24)(24)=(135). < (135) >= {(1), (15)(13), (13)(15)}.
Similarly (45)(13524)=(134)(52)=(134)(25), and we have (25) thus we have
(134)(25)(25)=(134). < (134) >= {(1), (14)(13), (13)(14)}. So we have (15)(14)
and (14)(13) and their product (15)(13)(13)(14)=(15)(14)=(145). < (145) >=
{(1), (145), (154)}. So we have (145)(45)=(14) and (154)(45)=(15). Getting
either of these transpositions guarantees us (13) from the product of transposi-
tions above. Thus we have three more transpositions, yielding six of ten.

We can use the transpositions (14) and (24) to get (12). Notice (14)(24)=(241)=(142)
and < (142) >= {(1), (12)(14), (14)(12)}. We have (14), so we have (12)(14)(14)=(12).
Now we are up to seven of the ten transpositions.

Now I will use (12345) and the transposition (12) to get (35). (12345)(12)=(1345)
and < (1345) >= {(1), (1345), (14)(35), (1543)}. We already have (14) thus we
have (14)(14(35)=(35) collecting the eighth transposition.

I will use (25) and (35) to get (23). (25)(35)=(325)=(253) and < (253) >=
{(1), ((23)(25), (25)(23)}. We have (25) so we get (25)(25)(23)=(23), the ninth
transposition.

To get (34) I will use (35) and (45). (35)(45)=(435)=(354) and < (354) >=
{(1), (34)(35), (35)(34)}. We have (35) so (35)(35)(34)=(34) and we have the
final transposition.

Since we have all 10 transpositions, {(12),(13),(14),(15),(23),(24),(25),(34),(35),(45)},
of S5, and every element of S5 can be written a s a product of transpositions,
hence < (45), (12344) >= S5. �

Now We will show that G is a semidirect product of KnH for some subgroup
H. By definition of a semidirect product, we must verify three things. First that
H∩K={e} (where e is the identity of G), second that G=HK and finally that
KCG, which was already shown.
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To construct the subgroup H, first suppose the cube is in its solved config-
uration. Suppose that the front face F is red and the opposite face B is blue.
Consider an operation that leaves only red or blue sticker pieces on the faces F
and B. Let us say that this element of G is said to solve the cube modulo the
identification of F and B colors. Let H be the set of elements in G that solve
the cube modulo the identification of the F and B faces.

The binary operation of composing two elements of H is closed because it
moves stickers between opposite faces or permutes them on the same face while
not caring about the rest of the cube. That is, we can move stickers back and
forth, or permute within the face, and we will still have the cube solved modulo
the identification. The identity element e, which leaves the cube in the solved
configuration, has only red stickers on the F face and blue stickers on the B
face, thus e∈H. For each h∈H there is a series of moves that will get the cube
back to the solved configuration, namely repeating the inverse of the moves you
did in their opposite order. This operation is clearly associative because it can
be thought of as composition. This tells us H is a group and since its moves are
contained in G, it is a subgroup of G.

Proposition 2.0.5. Every element of g/k has a unique representative in H,
and so G is the semidirect product KnH.

Proof. Exactly six cubes move in the two generator group. If the location
of the six cubes are known, and the cube is in the solved configuration, then
there is only one element of K that will solve the F and B faces modulo the
identification of the F and B colors. Since K does not permute the cubes, but
change their orientation, this element must be the identity element of G. hence
H∩K={e}.

What must be shown now is that if a permutation of the six cubes is attain-
able in G, then this orientation that solves the cube modulo the identification
of F and B colors can be achieved in H. Let

h1 = RUR′URU ′R′URU2R′U ∈ H

h2 = URU ′RUR′U ′RUR2U ′R ∈ H

Figures 3 and 4 show that these are in fact elements of H. It is clear that
use figure to show that the elements are solved via the identification.

By figure 5 it is clear that h1 has the same image as U in G/K. By figure
6 h2 has the same image as R in G/K. Now consider the subgroup H1 of H
generated by h1 and h2. Any element of G can be written in the form hk where
h∈ H1 and k∈K. This is true because up to a twist, the generators of G are
contained in H1. Due to the stickers that h1 and h2 move it is clear that every
element of H is generated by h1 and h2, hence H1=H. Thus HK=G, and we
have the desired semidirect product. �
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Figure 3: The image of h1 in H
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Figure 4: The image of h2 in H
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