Nonhomogeneous boundary conditions may be considered by formulating the minimization problem over a closed and convex set.

As a general theoretical framework use:

Theorem Let X Banach space, reflexive. Let $K \subseteq X$ convex and closed subset.

Let $F : K \rightarrow \mathbb{R}$ continuous, convex, and coercive

\[
\lim_{\|x\| \to \infty} F(x) = +\infty
\]

Then F reaches its minimum on K:

There is $x^* \in K : F(x^*) \leq F(x), \; \forall x \in K$

Remark: Coercivity is not needed if K is bounded

Proof: Let $\{x_k\} \subseteq K : F(x_k) \xrightarrow{k} \inf_{x \in K} F(x)$

Then coercivity implies $\{x_k\}$ is bounded, thus $x_k \xrightarrow{} x^*$ since X is reflexive.

K closed and convex \Rightarrow K is weakly closed, $x^* \in K$

F continuous and convex $\Rightarrow F$ w.l.s.c. $\Rightarrow \inf_{x \in K} F(x^*) \leq \inf_{x \in K} F(x)$
Model problem \(\begin{cases} -\Delta u + g(u) = f \text{ in } \Omega \\ u |_{\partial \Omega} = u_0 \end{cases} \)

Consider \(K = \{ v \in H^1(\Omega) : v |_{\partial \Omega} = u_0 \} \)

Then \(K \) is closed subset of \(H^1(\Omega) \) since trace operator \(\text{Tr}(v) = v |_{\partial \Omega} \) is continuous and \(K \) is convex set since \([tv, (1-t)v_2] = u_0 \) \((t, v_2) \in K \)

Variational formulation:

Find \(u \in K : \int_\Omega \nabla u \cdot \nabla v + \int_\Omega g(u)v = \int_\Omega f, \forall v \in K \)

Minimization problem:

\[
\min_{u \in K} J(u), \quad J(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 + \int_\Omega g(u) - \int_\Omega f u
\]

where \(g(z) = \int_0^z g(t) \, dt \)

\(\rightarrow \) assume that \(J \) is well-defined and \(J \in C^1(K) : J'(u)v = \int_\partial \nabla u \cdot \nabla v - \int_\Omega g(u)v \)
Sufficient conditions for the existence of the minimizer

\[J \text{ is coercive (} \lim_{\|u\| \to \infty} J(u) = +\infty \) \]

and one of the following:

(a) \(G: \mathbb{R} \to \mathbb{R} \) is convex

(b) \(J: \mathbb{R} \to \mathbb{R} \) is bounded

Sufficient conditions for the uniqueness of the minimizer. Each one of the following:

(c) \(G: \mathbb{R} \to \mathbb{R} \) is convex.

(d) \(J: \mathbb{R} \to \mathbb{R} \) is increasing (this is equivalent to (c)). More general, if \(g \) is increasing in the interval \((c_1, c_2)\) then there is at most one solution \(u(x) \) such that \(c_1 \leq u(x) \leq c_2, \ x \in \Omega \).

(E) \(g: \mathbb{R} \to \mathbb{R} \) is such that \(g'(t) > -\lambda \), where \(\lambda \) is the principal eigenvalue of \[
\begin{cases}
-\Delta e_i = \lambda e_i, & \text{in } \Omega \\
e_i |_{\partial \Omega} = 0
\end{cases}
\]
More general, if \(g'(t) > -2 \), for \(c < t < c_2 \) then there is at most one solution such that \(c_1 < u(x) < c_2 \), \(x \in \Omega \).

Proof of (E)

Let \(u_1, u_2 \) solutions, \(u_1 \neq u_2 \)

\[
-\Delta u_1 + g(u_1) = f \\
-\Delta u_2 + g(u_2) = f
\]

Then

\[
\begin{align*}
\int_{\Omega} \left[g(u_1) - g(u_2) \right] (u_1 - u_2) &= 0 \\
\int_{\Omega} g'(u) (u_1 - u_2)^2 &= 0 \\
\int_{\Omega} g'(u_2) (u_1 - u_2)^2 &= 0
\end{align*}
\]

\[
\int_{\Omega} g'(u) (u_1 - u_2)^2 < 0
\]

Contradiction with \(\lambda_1 = \min_{u \in H_0^1} \frac{\int_{\Omega} \Delta u^2}{\int_{\Omega} u^2} \).
Example \[\begin{aligned} -\Delta u + |u|^{p-1} u &= f & \text{in } \Omega, \quad p > 1 \\ u |_{\partial \Omega} &= u_0
 \end{aligned} \]

\((V)\) \[\begin{aligned} &\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} |u|^{p-1} u v - \int_{\Omega} fu = 0, \quad \forall v \in H_0^1(\Omega) \n \end{aligned} \]

\((M)\) \[\begin{aligned} &\min \left\{ u \in H_0^1(\Omega) \right\} J(u), \quad J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \frac{1}{p+1} \int_{\Omega} |u|^{p+1} - \int_{\Omega} fu
 \end{aligned} \]

Here \[g(u) = |u|^{p-1} u, \quad G(u) = \frac{1}{p+1} \int_{\Omega} |u|^{p+1} \]

Remark: If \(n \leq 2 \) then \((V)\) and \((M)\) are well-defined for any \(p > 1 \).

If \(n > 3 \) we require \(1 < p \leq \frac{n+2}{n-2} \)

Since \[H_0^1(\Omega) \xrightarrow{\text{compact}} L^2 \], \(1 \leq q \leq 2^* = \frac{2n}{n-2} \)

\[H_0^1(\Omega) \xrightarrow{\text{continuous}} L^{2^*} \]

Remark: \(G(z) = \frac{1}{p+1} |z|^{p+1} \) is convex for \(p > 1 \)

\(G'(z) = |z|^{p-1} z \), \(G''(z) = p|z|^{p-1} > 0 \).

Thus there is a unique minimizer. Why is \(J \) coercive on \(K \)? (Poincare with B.C.)
Lagrange multipliers theory

References: Evans §4, McOwen 7.2, 13.3

Background: Implicit Function Theorem

Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be continuously differentiable, \(f \in C^1(\mathbb{R}^2, \mathbb{R}) \) and \((\bar{x}, \bar{y})\) such that \(f(\bar{x}, \bar{y}) = 0 \). Assume that \(f_y(\bar{x}, \bar{y}) \neq 0 \).

Then there is a vicinity \(B_\varepsilon(\bar{x}, \bar{y}) \) of \((\bar{x}, \bar{y})\), a vicinity \(B_\varepsilon(\bar{x}) \) of \(\bar{x}\), a function \(\varphi : B_\varepsilon(\bar{x}) \to \mathbb{R} \) such that

\[
\begin{align*}
\varphi(\bar{x}) & = \bar{y} \\
f(x, \varphi(x)) & = 0, \quad \forall x \in B_\varepsilon(\bar{x})
\end{align*}
\]

in addition, \(\varphi \) is unique \(\{ (x, y) \in B_\varepsilon(\bar{x}, \bar{y}) \mid f(x, y) = 0, \ y = \varphi(x) \} \) and

\[
\varphi'(x) = -\frac{f_y(x, \varphi(x))}{f_x(x, \varphi(x))} f_y(x, \varphi(x))^{-1}, \quad \forall x \in B_\varepsilon(\bar{x}).
\]
Lagrange multipliers Theorem

Let X be a Banach space, $F: X \to \mathbb{R}$, $G: X \to \mathbb{R}$ be continuously differentiable functions, $F, G \in \mathcal{C}^1(X, \mathbb{R})$. Consider the problem of minimizing $F(x)$ subject to the constraint $G(x) = 0$.

$$\min_{x \in X} F(x) \quad \text{subject to} \quad G(x) = 0$$

Theorem 1: If x^* is a local minimum point to F subject to the constraint $G(x) = 0$, then either

i) $G'(x^*) = 0$ (that is, $G'(x^*) y = 0$, $\forall y \in X$)

or

ii) there is a constant $\lambda \in \mathbb{R}$ such that

$$F'(x^*) = \lambda G'(x^*) \quad \text{(that is, } F'(x^*) y = \lambda G'(x^*) y, \quad \forall y \in X)$$

λ is called the Lagrange multiplier.
Proof. Let \(x^* \) local min point and assume that \(G'(x^*) \neq 0 \). Then there is \(y \in X : G'(x^*)y \neq 0 \).

We show that in this case \(y \) is such that \(F'(x^*) w = G'(x^*) w, \forall w \in X \).

Thus (i) holds.

Let \(w \in X \) arbitrary fixed.

Define \(g : \mathbb{R}^2 \to \mathbb{R}, \ g(t, s) = G(x^* + tw + sy) \).

Then \(g(0, 0) = G(x^*) = 0 \)

\(g_t (t, s) = G'(x^* + tw + sy) w \)

\(g_s (t, s) = G'(x^* + tw + sy) y \)

such that \(g_t (0, 0) = G'(x^*) w \)

\(g_s (0, 0) = G'(x^*) y \neq 0 \).

Implicit Function Theorem: There is \(\varepsilon > 0 \) and \(\phi : (-\varepsilon, \varepsilon) \to \mathbb{R} \) such that

\(\phi(0) = 0 \)

\(g(t, \phi(t)) = 0, \quad \forall t \in (-\varepsilon, \varepsilon) \)

\(\phi'(t) = -\frac{g_t (t, \phi(t))}{g_s (t, \phi(t))}, \quad \forall t \in (-\varepsilon, \varepsilon) \).
Then \(\varphi'(0) = - \frac{g_t(0, \varphi(0))}{g_s(0, \varphi(0))} = - \frac{G'(x^*)w}{G'(x^*)y} \) \hspace{1cm} (**)

Remark \(g_t(t, \varphi(t)) = 0, \quad \forall \; t \in (-\varepsilon, \varepsilon) \) implies

\(G(x + tw + \varphi(t)y) = 0, \quad \forall \; t \in (-\varepsilon, \varepsilon) \)

and therefore

\(x + tw + \varphi(t)y \) is admissible (feasible) point for \(\forall \; t \in (-\varepsilon, \varepsilon) \).

Define \(\psi : (-\varepsilon, \varepsilon) \rightarrow \mathbb{R}, \quad \psi(t) = F(x^* + tw + \varphi(t)y) \)

Then \(\psi(t) = F(x^*) \) so \(t = 0 \) is local min point to \(\psi \), thus \(\psi'(0) = 0 \).

Notice \(\psi'(t) = F'(x^* + tw + \varphi(t)y)(w + \varphi'(t)y) \).

Thus \(\psi'(0) = F'(x^*)(w + \varphi'(0)y) = 0 \quad \Rightarrow \quad \psi'(0) = F'(x^*)(w + \varphi'(0)y) = 0 \quad \Rightarrow \quad F'(x^*)w = -\varphi'(0)F'(x^*)y \) \hspace{1cm} (***)

\(\Rightarrow \quad F'(x^*)w = \frac{F'(x^*)y}{G'(x^*)} G'(x^*)w \)

Define \(\gamma = \frac{F'(x^*)y}{G'(x^*)} \) \hspace{1cm} Then \(F'(x^*)w = \gamma G'(x^*)w \quad \forall \; w \in \mathbf{X} \)
Applications

Existence of the eigenvalues

Consider \(\min_{u \in H^1(\Omega)} \left(\int \nabla u \cdot \nabla (u^2) \right) \) with \(\|u\|_0^2 = 1 \).

Here the constraint function is \(G : H^1 \to \mathbb{R}, \ G(u) = \|u\|_0^2 - 1, \ G'(u)v = 2(u, v) \).

and the function to minimize is \(J : H^1 \to \mathbb{R} \)

\(J(u) = \int \nabla u \cdot \nabla (u^2), \ J'(u)v = 2 \int \nabla u \cdot \nabla v \)

if \(u^* \) is solution to (W2) then
\(G'(u^*) v = 2(u^*, v), \ G(u^*) = 0 \)

Thus \(\|u^*\|_0 = 1 \). Therefore \(u^* \neq 0 \) thus \(G'(u^*) \neq 0 \). There is \(\lambda \in \mathbb{R} \) such that
\(J'(u^*) v = 2 G'(u^*) v, \forall v \in H^1 \)

\(\Rightarrow \int \nabla u^* \cdot \nabla v = 2 \int uv, \forall v \in H^1 \)

Remark: The existence of the minimizer \(u^* \) follows from \(J \) coercive and
\(J(\varepsilon v) : \|v\|_0^2 - 1 = 0 \) is weakly closed.
Consider \(-
abla u - |u|^{p-1} u = 0, u \geq 0, u \partial_2 = 0\)

where \(1 < p < \frac{n+2}{n-2}\) if \(n > 3\).

Theorem There is a nontrivial weak solution \(u \in H_0^1(\Omega)\):

\[\int_\Omega \nabla u \nabla v - \int_\Omega |u|^{p-1} u v = 0, \forall v \in H_0^1(\Omega)\]

Proof Let

\[F(u) = \frac{1}{2} \int_\Omega |u|^2, \quad G(u) = \frac{1}{p+1} \int_\Omega |u|^{p+1} - 1\]

Consider

\[\min_{u \in H_0^1} \begin{cases} F(u) \\ G(u) = 0 \end{cases} \quad (\star)\]

Existence of the minimizer

Remark: \(V = \{ v \in H_0^1 : G(v) = 0 \} \) is weakly closed in \(H_0^1\) since \(H_0^1 \xrightarrow{\text{compact}} L^{p+1}\), thus

\[v_k \to v \Rightarrow G(v_k) \to G(v)\]

and \(F\) is coercive and convex, thus w.l.o.g.
Let \(u \in V \) denote the minimizer, solution to (4). Notice \(G'(u) v = \int u |u|^{p-1} v \).

Thus \(G'(u) u = \int u |u|^{p+1} = p+1 \neq 0 \), therefore \(G'(u) \neq 0 \). Then there is a Lagrange multiplier \(\lambda \) such that

\[
F'(u) v = G'(u) v, \forall v \in H^1_0.
\]

\[
\Rightarrow \int u v \lambda = \int |u|^{p-1} u v, \forall v \in H^1_0.
\]

Look for the solution \(u^* \) as \(u^* = \lambda u, \lambda > 0 \).

\[
\int u = \frac{1}{\lambda} \int u^*
\]

\[
|u|^{p-1} u = \frac{1}{\lambda} |u^*|^{p-1} u^*
\]

\[
\Rightarrow \frac{1}{\lambda} \int |u^*| \, \lambda v = \frac{2}{\lambda} \int |u^*|^{p-1} u^* v
\]

Let \(2^{p-1} = 2 \), or \(\lambda = 2^{\frac{1}{p-1}} \).

Remark: \(\lambda \neq 0 \) otherwise at \(u = v \) we have \(\int |u|^2 u^2 = 0 \) thus \(u \equiv 0 \) in contradiction with \(\|u\|_{L^{p+1}} = p+1 \).
Nonlinear eigenvalue problem.

Let \(g : \mathbb{R} \rightarrow \mathbb{R} \) smooth function. Consider the problem
\[
\begin{align*}
-\Delta u &= g(u) \quad \text{in } \mathbb{R}, \\
(\frac{\partial u}{\partial r})_r &= 0
\end{align*}
\]

A pair \((u, \lambda)\) that solves (*), and such that \(\lambda \neq 0\) is an eigenpair.

Variational formulation: Find \(u \in H^1(\mathbb{R}) \):
\[
\int_{\mathbb{R}} \frac{1}{2} |\nabla u|^2 = \int_{\mathbb{R}} g(u)u, \quad \forall u \in H^1(\mathbb{R}).
\]

Assume \(|g(t)| \leq C(1 + |t|^p + 1) \) with \(1 \leq p < \frac{n+2}{n-2} \) for \(n \geq 3 \).

Then \(G(t) = \int_0^t g(t) dt \) satisfies
\[
|G(t)| \leq \int_0^{|t|} |g(t)| dt \leq C(|t|^{p+1} + |t|)
\]

Thus, \(J : H^1(\mathbb{R}) \rightarrow \mathbb{R}, J(u) = \int_0^{|u|} G(t) dt \) is well-defined, continuously differentiable.

Let \(\lambda \) arbitrary, fixed. \(J'(u) \) is weakly closed since \(v_k \rightarrow u \) in \(L^p(\mathbb{R}) \) implies \(J'(v_k) \rightarrow J'(v) \).