
PROBLEM 5.5

KNOWN:  Diameter and initial temperature of steel balls cooling in air.

FIND:  Time required to cool to a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) Negligible radiation effects, (2) Constant properties.

ANALYSIS:  Applying Eq. 5.10 to a sphere (Lc = ro/3),
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Hence, the temperature of the steel remains approximately uniform during the cooling process, and
the lumped capacitance method may be used.  From Eqs. 5.4 and 5.5,
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COMMENTS:  Due to the large value of Ti, radiation effects are likely to be significant during the
early portion of the transient.  The effect is to shorten the cooling time.



PROBLEM 5.9

KNOWN:  Diameter and radial temperature of AISI 1010 carbon steel shaft.  Convection
coefficient and temperature of furnace gases.

FIND:  Time required for shaft centerline to reach a prescribed temperature.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional, radial conduction, (2) Constant properties.

PROPERTIES:  AISI 1010 carbon steel, Table A.1 ( )T 550 K :=   ρ = 7832 kg / m3,  k = 51.2

W/m⋅K, c = 541 J/kg⋅K, α = 1.21×10
-5

 m
2
/s.

ANALYSIS:  The Biot number is
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Hence, the lumped capacitance method can be applied.  From Equation 5.6,
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COMMENTS:  To check the validity of the foregoing result, use the one-term approximation to the
series solution.  From Equation 5.49c,
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For Bi = hro/k = 0.0976, Table 5.1 yields ς1 = 0.436 and C1 = 1.024.  Hence
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The results agree to within 6%.  The lumped capacitance method underestimates the actual time,
since the response at the centerline lags that at any other location in the shaft.



PROBLEM 5.31

KNOWN:  One-dimensional wall, initially at a uniform temperature, Ti, is suddenly exposed to a

convection process (T∞, h).  For wall #1, the time (t1 = 100s) required to reach a specified

temperature at x = L is prescribed, T(L1, t1) = 315°C.

FIND:  For wall #2 of different thickness and thermal conditions, the time, t2, required for T(L2, t2)
= 28°C.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional conduction, (2) Constant properties.

ANALYSIS:  The properties, thickness and thermal conditions for the two walls are:

Wall   L(m)      α(m
2
/s) k(W/m⋅K) Ti(°C)      T∞(°C) h(W/m

2
⋅K)

    1   0.10      15×10
-6

      50    300         400      200

    2   0.40       25×10
-6

     100      30           20      100

The dimensionless functional dependence for the one-dimensional, transient temperature distribution,
Eq. 5.38, is
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If the parameters x*, Bi, and Fo are the same for both walls, then 1 2 .θ θ∗ ∗=   Evaluate these
parameters:

Wall x*   Bi    Fo   θ*
   1 1 0.40 0.150 0.85
   2 1 0.40      1.563×10

-4
 t2 0.85
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PROBLEM 5.49

KNOWN:  A long cylinder, initially at a uniform temperature, is suddenly quenched in a large oil bath.

FIND:  (a) Time required for the surface to reach 500 K, (b) Effect of convection coefficient on surface
temperature history.

SCHEMATIC:

ASSUMPTIONS:  (1) One-dimensional radial conduction, (2) Constant properties, (3) Fo > 0.2.

ANALYSIS:  (a) Check first whether lumped capacitance method is applicable.  For h = 50 W/m2⋅K,
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Since Bic > 0.1, method is not suited.  Using the approximate series solution for the infinite cylinder,
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Solving for Fo and setting r* = 1, find
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From Table 5.1, with Bi = 0.441, find ζ1 = 0.8882 rad and C1 = 1.1019.  From Table B.4, find J0(ζ1) =
0.8121.  Substituting numerical values into Eq. (2),
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From the definition of the Fourier number, Fo = 2
ot rα , and α = k/ρc,
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(b) Using the IHT Transient Conduction Model for a Cylinder, the following surface temperature
histories were obtained.

Continued...



PROBLEM 5.49 (Cont.)
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Increasing the convection coefficient by a factor of 5 has a significant effect on the surface temperature,
greatly accelerating its approach to the oil temperature.  However, even with h = 250 W/m2⋅K, Bi = 1.1
and the convection resistance remains significant.  Hence, in the interest of accelerated cooling,
additional benefit could be achieved by further increasing the value of h.

COMMENTS:  For Part (a), note that, since Fo = 1.72 > 0.2, the approximate series solution is
appropriate.


