
PROBLEM 12.1

KNOWN:  Rate at which radiation is intercepted by each of three surfaces (see (Example 12.1).

FIND:  Irradiation, G[W/m
2
], at each of the three surfaces.

SCHEMATIC:

ANALYSIS:  The irradiation at a surface is the rate at which radiation is incident on a surface per unit
area of the surface.  The irradiation at surface j due to emission from surface 1 is

1 j
j

j

q
G .

A
−=

With A1 = A2 = A3 = A4 = 10
-3

 m
2
 and the incident radiation rates q1-j from the results of Example

12.1, find
3

2
2 3 2

12.1 10 W
G 12.1W/m

10 m

−

−
×= = <

3
2

3 3 2
28.0 10 W

G 28.0 W / m
10 m

−

−
×= = <

3
2

4 3 2
19.8 10 W

G 19.8 W / m .
10 m

−

−
×= = <

COMMENTS:  The irradiation could also be computed from Eq. 12.15, which, for the present
situation, takes the form

j 1 j 1 jG I cosθ ω −=

where I1 = I = 7000 W/m
2⋅sr and ω1-j is the solid angle subtended by surface 1 with respect to j.  For

example,

2 1 2 1 2G I cosθ ω −=

2
2G 7000 W / m sr= ⋅ ×

( )

3 2

2
10 m cos60

cos 30
0.5m

− × °°

2
2G 12.1W/m .=

Note that, since A1 is a diffuse radiator, the intensity I is independent of direction.



PROBLEM 12.2

KNOWN: A diffuse surface of area A1 = 10-4m2 emits diffusely with total emissive power E = 5 × 104

W/m2 .

FIND:  (a) Rate this emission is intercepted by small surface of  area A2 = 5 × 10-4 m2 at a prescribed
location and orientation, (b) Irradiation G2 on A2, and (c) Compute and plot G2 as a function of the
separation distance r2  for the range 0.25 ≤ r2 ≤ 1.0 m for zenith angles  θ2 = 0, 30 and 60°.

SCHEMATIC:  

ASSUMPTIONS: (1) Surface A1 emits diffusely, (2) A1  may be approximated as a differential surface

area and that 2
2 2A r  << 1.

ANALYSIS: (a) The rate at which emission from A1  is intercepted by A2  follows from Eq. 12.5 written
on a total rather than spectral basis.

( )1 2 e,1 1 1 2 1q I , A cos dθ φ θ ω→ −= . (1)

Since the surface A1 is diffuse, it follows from Eq. 12.13 that

( )e,1 e,1 1I , I Eθ φ π= =  . (2)

The solid angle subtended by A2 with respect to A1 is

2
2 1 2 2 2d A cos rω θ− ≈ ⋅  . (3)

Substituting Eqs. (2) and (3) into Eq. (1) with numerical values gives

    1 2 2
1 2 1 1 2

2

E A cos
q A cos

r

θ
θ

π→ = ⋅ ⋅ ( )
( )

4 2 4 2
4 2

2

5 10 W m 5 10 m cos30
10 m cos 60 sr

sr 0.5mπ

−
−× × ×

= × × ×
 
 
  

$

$ (4)

( )2 5 2 3 3
1 2q 15,915 W m sr 5 10 m 1.732 10 sr 1.378 10 W− − −
→ = × × × × = × . <

(b) From section 12, 2.3, the irradiation is the rate at which radiation is incident upon the surface per unit
surface area,

3
21 2

2 4 22

q 1.378 10 W
G 2.76 W m

A 5 10 m

−
→

−
×

= = =
×

(5) <
(c) Using the IHT workspace with the foregoing equations, the G2 was computed as a function of the
separation distance for selected zenith angles.  The results are plotted below.

Continued...



PROBLEM 12.2 (Cont.)
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For all zenith angles, G2 decreases with increasing separation distance r2 .  From Eq. (3), note that dω2-1

and, hence G2, vary inversely as the square of the separation distance.  For any fixed separation distance,
G2 is a maximum when θ2 = 0° and decreases with increasing θ2, proportional to cos θ2.

COMMENTS:  (1) For a diffuse surface, the intensity, Ie, is independent of direction and related to the

emissive power as Ie = E/ π. Note that π has the units of [ ]sr  in this relation.

(2) Note that Eq. 12.5 is an important relation for determining the radiant power leaving a surface in a
prescribed manner.  It has been used here on a total rather than spectral basis.

(3) Returning to part (b) and referring to Figure 12.10, the irradiation on A2 may be expressed as

1 1
2 i,2 2 2

2

A cos
G I cos

r

θθ=

Show that the result is G2 = 2.76 W/m
2
.  Explain how this expression follows from Eq. (12.15).



PROBLEM 12.13

KNOWN:  Hot part, ∆Ap, located a distance x1 from an origin directly beneath a motion sensor at a
distance Ld = 1 m.

FIND:  (a) Location x1 at which sensor signal S1 will be 75% that corresponding to x = 0, directly
beneath the sensor, So, and (b) Compute and plot the signal ratio, S/So, as a function of the part position
x1 for the range 0.2 ≤ S/So  ≤ 1 for Ld = 0.8, 1.0 and 1.2 m; compare the x-location for each value of Ld at
which S/So = 0.75.

SCHEMATIC:

ASSUMPTIONS:  (1)  Hot part is diffuse emitter,  (2) 2
dL >> ∆Ap, ∆Ao.

ANALYSIS:  (a) The sensor signal, S, is proportional to the radiant power leaving ∆Ap and intercepted
by ∆Ad,

p d p,e p p d pS ~ q I A cosθ ω→ −= ∆ ∆ (1)

when

2 2 1/ 2d
p d d d 1

L
cos cos L (L x )

R
θ θ= = = +  (2)

2 2 3/ 2d d
d p d d d 12

A cos
A L (L x )

R

θ
ω −

∆ ⋅
∆ = = ∆ ⋅ +                                            (3)

Hence,
2
d

p d p,e p d 2 2 2
d 1

L
q I A A

(L x )
→ = ∆ ∆

+
                                                                 (4)

It follows that, with So occurring when x= 0 and Ld = 1 m,

22 2 2 2 2
d d 1 d
2 2 2 2 2 2o d d d 1

L (L x ) LS

S L (L 0 ) L x

+
= =

+ +

 
 
  

                                                        (5)

so that when S/So = 0.75, find,

x1 = 0.393 m <
(b)  Using Eq. (5) in the IHT workspace, the signal ratio, S/So, has been computed and plotted as a
function of the part position x for selected Ld values.

Continued...



PROBLEM 12.13 (Cont.)
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When the part is directly under the sensor, x = 0, S/So = 1 for all values of Ld.  With increasing x, S/So

decreases most rapidly with the smallest Ld.  From the IHT model we found the part position x
corresponding to S/So = 0.75 as follows.

S/So Ld (m) x1 (m)
0.75 0.8 0.315
0.75 1.0 0.393
0.75 1.2 0.472

If the sensor system is set so that when S/So reaches 0.75 a process is initiated, the technician can use the
above plot and table to determine at what position the part will begin to experience the treatment process.



PROBLEM 13.1

KNOWN:  Various geometric shapes involving two areas A1 and A2.

FIND:  Shape factors, F12 and F21, for each configuration.
ASSUMPTIONS:  Surfaces are diffuse.
ANALYSIS:  The analysis is not to make use of tables or charts.  The approach involves use of the
reciprocity relation, Eq. 13.3, and summation rule, Eq. 13.4.  Recognize that reciprocity applies to two
surfaces; summation applies to an enclosure.  Certain shape factors will be identified by inspection.
Note L is the length normal to page.

(a) Long duct (L):
By inspection, 12F 1.0= <

By reciprocity,
( )

1
21 12

2

A 2 RL 4
F F 1.0 0.424

A 3 / 4 2 RL 3π π
= = × = =

⋅
<

(b) Small sphere, A1, under concentric hemisphere, A2, where A2 = 2A
Summation rule 11 12 13F F F 1+ + =

But F12 = F13 by symmetry, hence F12 = 0.50 <
By reciprocity, 1 1

21 12
2 1

A A
F F 0.5 0.25.

A 2A
= = × = <

(c) Long duct (L):

By inspection,

12F 1.0=

<
By reciprocity, 1

21 12
2

A 2RL 2
F F 1.0 0.637

A RLπ π
= = × = = <

Summation rule, 22 21F 1 F 1 0.64 0.363.= − = − = <

(d) Long inclined plates (L):
Summation rule, 11 12 13F F F 1+ + =

But F12 = F13 by symmetry, hence F12 = 0.50 <
By reciprocity,

( )
1

21 12 1/ 2
2

A 20L
F F 0.5 0.707.

A 10 2 L
= = × = <

(e) Sphere lying on infinite plane

Summation rule, F11 + F12 + F13 = 1

But F12 = F13 by symmetry, hence F12 = 0.5 <
By reciprocity, 1

21 12
2

A
F F 0

A
= →  since 2A .→ ∞ <

Continued …..



PROBLEM 13.1 (Cont.)

(f) Hemisphere over a disc of diameter D/2; find also F22 and F23.

By inspection, F12 = 1.0 <
Summation rule for surface A3 is written as

31 32 33F F F 1.+ + =   Hence, 32F 1.0.=

By reciprocity, 3
23 32

2

A
F F

A
=

( )22 2

23
D / 2D D

F / 1.0 0.375.
4 4 2

ππ π    = − =     

By reciprocity,
2 2

1
21 12

2

A D D
F F / 1.0 0.125.

A 4 2 2

π π   = = × =     
<

Summation rule for A2, 21 22 23F F F 1 or+ + =

22 21 23F 1 F F 1 0.125 0.375 0.5.= − − = − − = <
Note that by inspection you can deduce F22 = 0.5

(g) Long open channel (L):

Summation rule for A1

  11 12 13F F F 0+ + =

but F12 = F13 by symmetry, hence F12 = 0.50. <

By reciprocity,
( )

1
21 12

2

A 2 L 4
F F 0.50 0.637.

A 2 1 / 4 Lπ π
×

= = = × =
×

COMMENTS:  (1) Note that the summation rule is applied to an enclosure.  To complete the
enclosure, it was necessary in several cases to define a third surface which was shown by dashed
lines.

(2) Recognize that the solutions follow a systematic procedure; in many instances it is possible to
deduce a shape factor by inspection.



PROBLEM 13.2

KNOWN:  Geometry of semi-circular, rectangular and V grooves.

FIND:  (a) View factors of grooves with respect to surroundings, (b) View factor for sides of V
groove, (c) View factor for sides of rectangular groove.

SCHEMATIC:

ASSUMPTIONS:  (1) Diffuse surfaces, (2) Negligible end effects, “long grooves”.

ANALYSIS:  (a) Consider a unit length of each groove and represent the surroundings by a
hypothetical surface (dashed line).

Semi-Circular Groove:

( )
2

21 12 21
1

A W
F 1; F F 1

A W / 2π
= = = ×

12F 2 / .π= <
Rectangular Groove:

( ) ( ) ( )4
4 1,2,3 1,2,3 4 4 1,2,3

1 2 3

A W
F 1; F F 1

A A A H W H
= = = ×

+ + + +

( ) ( )1,2,3 4F W / W 2H .= + <
V Groove:

( ) ( ) ( )
3

3 1,2 1,2 3 3 1,2
1 2

A W
F 1; F F

W / 2 W / 2A A
sin sinθ θ

= = =
+ +

( )1,2 3F sin .θ=

(b) From Eqs. 13.3 and 13.4, 3
12 13 31

1

A
F 1 F 1 F .

A
= − = −

From Symmetry, 31F 1/ 2.=

Hence, 
( )12 12

W 1
F 1 or F 1 sin .

W / 2 / sin 2
θ

θ
= − × = − <

(c) From Fig. 13.4, with X/L = H/W =2 and Y/L → ∞,

12F 0.62.≈ <
COMMENTS:  (1) Note that for the V groove, F13 = F23 = F(1,2)3 = sinθ, (2) In part (c), Fig. 13.4

could also be used with Y/L = 2 and X/L = ∞.  However, obtaining the limit of Fij as X/L → ∞ from
the figure is somewhat uncertain.



PROBLEM 13.10

KNOWN:  Arrangement of perpendicular surfaces without a common edge.

FIND:  (a) A relation for the view factor F14 and (b) The value of F14 for prescribed dimensions.

SCHEMATIC:

ASSUMPTIONS:  (1) Diffuse surfaces.

ANALYSIS:  (a) To determine F14, it is convenient to define the hypothetical surfaces A2 and A3.
From Eq. 13.6,

( ) ( )( ) ( ) ( )1 2 1 21,2 3,4 1 3,4 2 3,4A A F A F A F+ = +

where F(1,2)(3,4) and F2(3,4) may be obtained from Fig. 13.6.  Substituting for A1 F1(3,4) from Eq. 13.5
and combining expressions, find

( )1 1 13 1 141 3,4A F A F A F= +

( ) ( )( ) ( )14 1 2 1 13 21,2 3,4 2 3,4
1

1
F A A F A F A F .

A
= + − − 

 

Substituting for A1 F13 from Eq. 13.6, which may be expressed as

( ) ( )1 2 1 13 2 231,2 3A A F A F A F .+ = +

The desired relation is then

( ) ( )( ) ( ) ( ) ( )14 1 2 2 23 1 2 21,2 3,4 1,2 3 2 3,4
1

1
F A A F A F A A F A F .

A
= + + − + − 

  <
(b) For the prescribed dimensions and using Fig. 13.6, find these view factors:

Surfaces (1,2)(3,4) ( ) ( ) ( )( )3 41 2
1,2 3,4

L LL L
Y / X 1, Z / X 1.45, F 0.22

W W

++
= = = = =

Surfaces 23 ( ) ( ) 32
23

LL
Y / X 0.5, Z / X 1, F 0.28

W W
= = = = =

Surfaces (1,2)3 ( ) ( ) ( )31 2
1,2 3

LL L
Y / X 1, Z / X 1, F 0.20

W W

+
= = = = =

Surfaces 2(3,4) ( ) ( ) ( )3 42
2 3,4

L LL
Y / X 0.5, Z / X 1.5, F 0.31

W W

+
= = = = =

Using the relation above, find

( ) ( ) ( ) ( ) ( )[ ]14 1 2 2 1 2 2
1

1
F WL WL 0.22 WL 0.28 WL WL 0.20 WL 0.31

WL
= + + − + −

( ) ( ) ( ) ( )[ ]14F 2 0.22 1 0.28 2 0.20 1 0.31 0.01.= + − − = <



PROBLEM 13.21

KNOWN:  Coaxial, parallel black plates with surroundings.  Lower plate (A2) maintained at

prescribed temperature T2 while electrical power is supplied to upper plate (A1).

FIND:  Temperature of the upper plate T1.

SCHEMATIC:

ASSUMPTIONS:  (1) Plates are black surfaces of uniform temperature, and (2) Backside of heater

on A1 insulated.

ANALYSIS:  The net radiation heat rate leaving Ai is

( ) ( )N
4 4 4 4

e ij 1 12 1 2 1 13 1 3
j 1

P q A F T T A F T Tσ σ
=

= = − + −∑

( ) ( )4 4 4 4
e 1 12 1 2 13 1 surP A F T T F T Tσ= − + − 

  
(1)

From Fig. 13.5 for coaxial disks (see Table 13.2),

1 1 2 2R r / L 0.10 m / 0.20 m 0.5 R r / L 0.20 m / 0.20 m 1.0= = = = = =

( )

2 2
2

2 2
1

1 R 1 1
S 1 1 9.0

R 0.5

+ +
= + = + =

( ) ( )
1/ 2 1/ 22 22 2

12 2 1
1 1

F S S 4 r / r 9 9 4 0.2 / 0.1 0.469.
2 2

= − − = − − =
                  

From the summation rule for the enclosure A1, A2 and A3 where the last area represents the

surroundings with T3 = Tsur,

12 13 13 12F F 1 F 1 F 1 0.469 0.531.+ = = − = − =

Substituting numerical values into Eq. (1), with 2 2 2
1 1A D / 4 3.142 10 m ,π −= = ×

( )2 2 8 2 4 4 4 4
117.5 W 3.142 10 m 5.67 10 W / m K 0.469 T 500 K− −= × × × ⋅ −



( )4 4 4
10.531 T 300 K+ − 



( ) ( )9 4 4 4 4
1 19.823 10 0.469 T 500 0.531 T 300× = − + −

find by trial-and-error that 1T 456 K.= <
COMMENTS:  Note that if the upper plate were adiabatic, T1 = 427 K.



PROBLEM 13.53

KNOWN:  Emissivities, diameters and temperatures of concentric spheres.

FIND:  (a) Radiation transfer rate for black surfaces.  (b) Radiation transfer rate for diffuse-gray
surfaces, (c) Effects of increasing the diameter and assuming blackbody behavior for the outer sphere.
(d) Effect of emissivities on net radiation exchange.

SCHEMATIC:

ASSUMPTIONS:  (1) Blackbody or diffuse-gray surface behavior.

ANALYSIS:  (a) Assuming blackbody behavior, it follows from Eq. 13.13

( ) ( ) ( ) ( ) ( )2 4 8 2 42 4 4
12 1 12 1 2q A F T T 0.8 m 1 5.67 10 W / m K 400 K 300 K 1995 W.σ π −= − = × ⋅ − = 

   <

(b) For diffuse-gray surface behavior, it follows from Eq. 13.26

( ) ( )24 4 8 2 4 4 4 4
1 1 2

12 2 2
2 1

1 2 2

A T T 5.67 10 W / m K 0.8 m 400 300 K
q 191 W.

1 1 0.05 0.41 1 r
0.5 0.05 0.6r

σ π

ε
ε ε

−− × ⋅ −
= = =

−− ++

 
 

   
     

<

(c) With D2 = 20 m, it follows from Eq. 13.26

( ) ( ) ( )2 4 48 2

12 2

5.67 10 W / m K 0.8m 400 K 300 K
q 983 W.

1 1 0.05 0.4

0.5 0.05 10

π−× ⋅ −
= =

−
+

 
  

 
  

<

With ε2 = 1, instead of 0.05, Eq. 13.26 reduces to Eq. 13.27 and

( ) ( ) ( ) ( )2 4 44 4 8 2 4
12 1 1 1 2q A T T 5.67 10 W / m K 0.8 m 0.5 400 K 300 K 998 W.σ ε π−= − = × ⋅ − = 

      <

Continued …..



PROBLEM 13.53 (Cont.)

(d) Using the  IHT Radiation Tool Pad, the following results were obtained

Net radiation exchange increases with ε1 and ε2, and the trends are due to increases in emission from and
absorption by surfaces 1 and 2, respectively.

COMMENTS:  From part (c) it is evident that the actual surface emissivity of a large enclosure has a

small effect on radiation exchange with small surfaces in the enclosure.  Working with ε2 = 1.0 instead of

ε2 = 0.05, the value of q12 is increased by only (998 – 983)/983 = 1.5%.  In contrast, from the results of

(d) it is evident that the surface emissivity ε2 of a small enclosure has a large effect on radiation

exchange with interior objects, which increases with increasing ε1.


