
PROBLEM 3.101

KNOWN:  Dimensions of a plate insulated on its bottom and thermally joined to heat sinks at its
ends.  Net heat flux at top surface.

FIND:  (a) Differential equation which determines temperature distribution in plate, (b) Temperature
distribution and heat loss to heat sinks.

SCHEMATIC:

ASSUMPTIONS:  (1) Steady-state, (2) One-dimensional conduction in x (W,L>>t), (3) Constant
properties, (4) Uniform surface heat flux, (5) Adiabatic bottom, (6) Negligible contact resistance.

ANALYSIS:  (a) Applying conservation of energy to the differential control volume, qx + dq

= qx +dx, where qx+dx = qx + (dqx/dx) dx and ( )odq=q  W dx .′′ ⋅   Hence, ( )x odq / dx q  W=0.′′−

From Fourier’s law, ( )xq k t W  dT/dx.= − ⋅   Hence, the differential equation for the

temperature distribution is
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(b) Integrating twice, the general solution is,
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and appropriate boundary conditions are T(0) = To, and T(L) = To.  Hence, To = C2, and
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Hence, the temperature distribution is
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Applying Fourier’s law at x = 0, and at x = L,
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Hence the heat loss from the plates is ( )o oq=2 q WL/2 q WL.′′ ′′= <
COMMENTS:  (1) Note signs associated with q(0) and q(L).  (2) Note symmetry about x =

L/2.  Alternative boundary conditions are T(0) = To and dT/dx)x=L/2=0.


