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ABSTRACT  

A survey-based, empirical study that benchmarks the productivity of photomask manufacturers 

has led to some significant conclusions. Firstly, the wide variation in the productivity indicators 

from company to company suggests that all participants may have significant cost-reduction 

opportunities within their operations -- even among the best performers capital is underutilized.  

Secondly, the high downtime of pattern generation tools is limiting productivity.  Thirdly, 

producing smaller feature sizes is correlated to an investment in engineering and 

experimentation capacity. It could not be confirmed that photomask manufacturers are 

successfully taking advantage of economies of scale, suggesting that the outlook for profitability 

of many photomask manufacturers is precarious.    

Keywords:  Benchmarking, Photomask, Manufacturing, Productivity 

1. INTRODUCTION 

For the past four decades, Moore’s Law [1], which states that the number of transistors that can 

be built into a given amount of chip space will double every 12 to 18 months, has been driving 

the dimensions of merit for semiconductor manufacturing and its enabling technologies.  

Foremost among these enabling technologies is optical projection microlithography, which faces 

the particularly daunting challenge of resolving integrated circuit features whose dimensions 

shrink by 30% every two to three years [2, 3].  Historically, this feat was achieved by embodying 

light sources with progressively shorter wavelengths and lenses with higher numerical apertures 
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in lithographic projection tools.   However, these efforts have not kept pace with the 

requirements of Moore’s Law since in the mid-1990s, when the minimum feature sizes of 

integrated circuits first shrank below 0.5 µm.  At that point in time, optical projection 

micrllithography was pushed into the “sub-wavelength” domain, where lithographic projection 

tools print features that are significantly smaller than the wavelength of the light source [3-5].   

“Sub-wavelength lithography” could only be achieved by introducing technologies such as 

optical proximity effect correction (OPC) and phase shift masks (PSMs), which have driven up 

the cost and complexity of photomask manufacturing beyond what could be expected from 

Moore’s law.  OPC in particular introduces ultra-small sub-resolution features into a mask, 

which compensate for how light modifies a mask pattern when it reaches the wafer.  These extra 

features dramatically increase the data size associated with a mask, driving up the time required 

to write and inspect the mask [5].  Phase shift masks (PSMs) enhance contrast to expose the 

photoresist and print features at resolutions that cannot be achieved with conventional binary 

masks (for any particular commercially available combination of source wavelength and 

numerical aperture).  However, when compared to binary masks, PSMs require more 

sophisticated and expensive starting material (mask blanks) [6, 7], and the process for producing 

PSMs is more complex and more costly [8].  

Photomask manufacturers are struggling with the cost of producing photomasks, which has 

increased from ~US$ 500k for the 130 nm technology node to ~US$ 1 million for the 90 nm 

node and to ~US$ 2 million for the 65 nm node [8–19].  Cost escalation is likely to continue 

beyond the 65-nm technology node, even though semiconductor manufacturers, the buyers of 

photomasks, have indicated that the price of photomasks is stretching the limits of what they are 
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willing to pay.  Suppliers of photomasks are thus actively looking for ways to reduce the cost of 

producing photomasks, which can be achieved by increasing the productivity of photomask 

manufacturing [20].  

This paper describes an empirical study that investigates the productivity of photomask 

manufacturing.  We (the authors of this paper) identify key productivity indicators that drive 

photomask manufacturing, and we propose a set of candidate factors, whose characteristics 

potentially influence the behavior of these productivity indicators (§2). In §3, we explain the 

research methods we use to explore the relationships between productivity indicators and 

candidate factors. We have deployed a survey instrument and use analytical methods that protect 

the anonymity of photomask manufacturers that have participated in the study. To provide 

insight beyond what can be revealed by quantitative methods, we have conducted interviews 

with experts employed by photomask manufacturers, by their customers and by their suppliers. 

The results of the study and its implications for the stated productivity indicators are presented in 

§4. In §5, we summarize our results, explain some of the limitations of the study in this paper 

and make recommendations for further research.   

2. PRODUCTIVITY INDICATORS  

Productivity tends to be given in terms of indicators that reflect returns on particular sets of 

investments, which do not necessarily have to be expressed in financial terms.  For example, in a 

mask shop the number of mask writing, etching, inspection and other tools, as well as the area of 

clean room space, can act as proxies for a photomask manufacturer’s investment in physical 

capital; the number of engineers involved in the manufacturing process can act as an indicator of 

investment in intellectual capital; the number of engineering (non-production) plates processed 
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may reflect an investment in experimentation that leads to improved quality; and the number 

hours of scheduled downtime may act as an indicator of an investment that leads to improved 

capital productivity by reducing the amount of unscheduled downtime.  Yields, the fraction of 

time equipment is producing sellable photomasks, and the number of sellable photomasks 

produced per unit time all constitute indicators for return on investment. Productivity can be 

inferred from dividing indicators of return on investment by indicators of investment.  For 

example, in the absence of cost data, the product output rate (the number of plates shipped per 

unit time) per employee is an indicator of the productivity of human capital. The product output 

rate per pattern-generating (PG) tool constitutes a measure of the productivity of physical assets.    

Of particular interest to photomask manufacturers are economies of scale, which have been 

shown to be key to achieving profitability in this industry [20].  Economies of scale are observed 

when a product’s unit cost declines or when productivity metrics increase as the absolute volume 

produced per period increases [21]. (A firm enjoys economies of scale when it is able to double 

its output at less than twice the cost [22].)  For example, observing that the product output rate 

per PG tool is proportional to the number of PG tools in a mask shop or observing that the 

product output rate per full time equivalent (FTE) employee is proportional to the number of 

FTE employees in the mask shop both constitute evidence of economies of scale. 

Productivity in photomask manufacturing is also a function of the type of products a photomask 

manufacturer produces. A mask maker that generates plates for the 250-nm node and above will 

have to master fewer resolution enhancement techniques (RETs) and make fewer investments 

than one who primarily generates plates for the 130-nm node and below.  The technologically 

less advanced photomask manufacturer will also be able to produce and inspect more plates per 
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unit time than the technologically more sophisticated one. Productivity metrics for the less 

sophisticated manufacturer should thus exhibit higher values than those for the more 

sophisticated one.  

τ = [500 x>350 + 350 x350 + 250 x250 + 180 x180 + 130 x130 + 90 x90 + 65 x≤65]-1    (1)    

Equation (1) provides a technology index (τ) that estimates the technological sophistication of a 

mask shop from its product mix and expresses it in terms of nm-1.  The variables x>350, x350, x250, 

x180, x130, x90 and x≤65 respectively represent the fraction of the mask shop’s business that is 

associated with the corresponding technology nodes.  Mask shops that produce a greater 

proportion of plates with small geometries rate commensurately higher on the technology index.  

The numerical values of the variables in equation (1) can be obtained from Sematech’s annual 

mask industry assessment survey [12-15].  

3. CONFIDENTIALITY-DRIVEN RESEARCH METHODS 

Data for the empirical study in this paper come from a set of 79 productivity-oriented questions 

that were attached as a supplement to Sematech’s 2005 survey of photomask manufacturers [14]. 

These questions fell into two broad categories: operating cost factors (section 6 of the survey) 

and equipment utilization (section 7 of the survey). Questions regarding operating factors 

solicited quantitative information about clean room space, operating personnel and engineering 

support.  Questions regarding equipment utilization solicited quantitative information about the 

output of product plates, the output of engineering plates, scheduled equipment downtime and 

unscheduled equipment downtime.  Questions in all categories were highly differentiated to 

enable a detailed breakdown of the results with respect to factors such as clean room class, direct 
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labor, various engineering efforts (process control, yield, maintenance/installation, R&D/new 

product development, data processing and sustaining) and 15 equipment categories.  

Participation in the study was very encouraging, indicating that the interest in this subject among 

photomask manufacturers is very strong.  Seven major global merchant and captive mask 

manufacturers, whose combined revenue represented more than 75% of the global mask market 

in 2005, participated in the survey and answered the majority of questions.  While there was 

some misinterpretation of some of the questions, and most participants did not answer all 

questions, the response was generally quite good. The survey provided very useful information 

relating to the cost structure and productivity of mask shop operations.  

Analysis of data from the 79 productivity-oriented questions and data from the technically 

oriented companion survey [14] have yielded 79 cost-related or productivity-oriented indicators, 

which are displayed in tables A1 through A5 of the appendix to this paper.  The label ‘n’ in these 

tables identifies a column that denotes the number of observations (non-zero responses) that 

pertain to each indicator. The label ‘Avg.’ identifies a column that denotes the average value 

(arithmetic mean) obtained from these responses.  All indicators in tables A1 through A5 are 

normalized to assure the anonymity of the participants.   

The need for confidentiality prevents us from displaying normalized, anonymous data 

graphically, because it is feared that sophisticated industry analysts could determine the identity 

of a survey participant from such data. For all indicators, variability is given in terms of range 

ratios, in which the largest data point in a sample is assigned a value of 1 and the other data 

points in the sample are scaled proportionally.  For example, a normalized version of equation 

(1) assesses the technological sophistication of the participants from their respective product 
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mixes. The participating mask shop, which on average produces photomasks with the smallest 

feature sizes, is assigned a technology index of 1. The technology index for all other participants 

is normalized proportionally.  The smallest normalized value in the sample denotes the range 

ratio.  

In our analysis, the relationship between two normalized indicators is determined by least 

squares regression in which both the dependent variable ‘y’ and the independent variable ‘x’ are 

normalized such that the largest value in the data range and data domain is set to 1 and all other 

values are scaled accordingly. The relationship between x and y is expressed in terms of a linear 

equation of the form y=ax+b, where the coefficient ‘a’ represents the expected value of the slope 

of the line and ‘b’ denotes the expected value of the line’s intercept.  Key regression parameters 

and important results of analysis of variance (ANOVA) are presented in tabular form. Acronyms 

represent key statistical terms in these tables:  R2  R square; AR2  Adjusted R square; SE  

Standard Error; n  number of observations; coef.  coefficient (expected value of a or b); and 

t-stat  t statistic. The quantity ‘1-p’ stands for the probability that the actual value of a (or b) is 

greater than 0, given that the expected value of a (or b) is greater than 0. (Alternatively, 1-p 

stands for the probability that the actual value of a (or b) is less than 0, given that the expected 

value of a (or b) is less than 0.)  A result is considered significant, if the chances are at least 80% 

that the absolute value of the slope the regression line |a| does not equal 0, i.e. 1-p ≥ 0.80.   

The need for confidentiality in this study has limited the statistical significance of its results.  Not 

all participants have answered all questions, which has forced the authors to work with samples 

sizes ranging from 3 to 7.  Only a small fraction of many possible conclusions could be made 

with a confidence of 0.80 or greater.  Consequently, the findings of this study have been 
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validated in interviews with 25 experts in photomask manufacturing, photolithography, VLSI 

circuit manufacturing, VLSI circuit process development, tool development, materials 

development and related technical fields. These experts have been recruited by recommendations 

from within their respective peer groups.   

4. RESULTS AND IMPLICATIONS  

Upon data analysis, a number of results, which are itemized below, are potentially important to 

photomask manufacturers and their customers, the semiconductor manufacturers.  The 

implications of each result are discussed as the result is presented.   

4.1 General Observations  

Table 1 illustrates that a high degree of variability was observed in many indicators. Variations 

exceeding an order magnitude between the mask shop with the highest value and the one with 

the lowest value were quite common.  This suggests that all participants may have significant 

cost-reduction opportunities within their operations.    

Table 1.  Range Ratios for Selected Variables 

Variable        Range Ratio (S/L)
Plates Shipped per FTE Employee   0.087 : 1 
Plates Shipped per FTE Engineer   0.010 : 1 
Engineering Plates/Plates Shipped   0.053 : 1 
Scheduled Downtime: Laser PG   0.083 : 1 
Unscheduled Downtime: Laser PG   0.017 : 1 
 

Table 1 shows that the number of masks shipped per FTE employee vary by more than an order 

of magnitude, and masks shipped per FTE engineering employee vary by nearly two orders of 

magnitude.  It is expected that some variation would be observed as a consequence of the 

differences in the business structure of the responding mask shops.  However, a variation this 
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large indicates that staffing strategies and average labor content per mask among mask vary 

widely from mask shop to mask shop.  In addition, table A1 in the appendix indicates that the 

engineering effort in mask making is asymmetric.  The investment in maintenance and 

installation, R&D, new process development and sustaining is significantly higher than the 

investment in process control, yield and data processing.  A senior mask-making engineer with 

semiconductor manufacturing experience provides an explanation for this finding.   

“Systematic defects tend to dominate mask making more than chip making.  …  

Many systematic problems come from the equipment, and most process control 

problems occur during the early part of the lifecycle.  So it makes sense for a 

mask shop to invest heavily in equipment engineering and process development.  

…  Semiconductor processes consist of up to an order of magnitude more steps 

than photomask processes.  So it makes sense for chipmakers to invest more in 

trying to localize the problem to a particular process step or piece of equipment.  

This means that the chipmakers will have more people working in yield and 

process integration groups than the mask makers.  They can also afford more 

because they are in an industry with a larger market.”   

Table 2 indicates that investments in engineering can pay off.  The yield of attenuated phase shift 

masks (PSM) correlates to the number of FTE engineering employees (1-p=0.80). No other 

correlation between yield and the various investments in engineering could be established, in part 

because of the small sample of survey participants and in part because the yield of binary masks 

was homogeneously high. We also observed no significant correlation between yield and the 

fraction of the mask shop containing a Class 1 clean room.   
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Table 2.  Yield (Attenuated PSM) vs. Number of FTE Engineering Employees 
Regression Statistics R2  AR2  SE  n

0.904 0.807 0.123 3 
ANOVA   Coef. SE  t-stat 1-p
Intercept ‘b’   0.409 0.138 2.97  0.79 
Slope ‘a’   0.528 0.172 3.06  0.80 
 

A variation of approximately one order of magnitude has been observed in the number of plates 

shipped per tool.  Unfortunately, there is insufficient data from the questionnaire to ascertain 

what portion of this variation is due to market-related limitations in mask production and what 

portion is due to differences in mask shop management procedures.  Some mask shops ran a very 

large fraction of engineering plates (more than 25%), whereas others ran only a few percent.  In 

either case, most such plates were run on vector-shaped e-beam pattern generation (PG) tools 

operating at or above 50KV; the critical dimensions of most of these plates were measured using 

MUV tools; and most were inspected using die-to-die inspection tools.   

The responses to the survey indicate strikingly high values for both scheduled (table A4) and 

unscheduled (table A5) downtime of pattern generation (PG) tools. This impacts mask-making 

productivity very highly, because PG-tools have a very high cost of ownership, and they tend to 

limit the mask shop’s throughput.  While some portion of this downtime can probably be 

addressed by the mask shops through improved procedures, it is likely that much of the 

downtime is characteristic of the tool employed and therefore must be addressed by the PG tool 

supplier. A significant reduction of costs resulting from unscheduled downtime could be 

achieved if the PG tool manufacturers were able to improve their reliability.  However, a 

manager employed by a supplier of PG tools explains why improving the reliability of these 

tools could become a major challenge.  
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“Our customers consistently push the performance of PG tools beyond their 

specified limits, especially in the early stages of process development.  Under 

these circumstances, it is difficult for a PG-tool to be very reliable.”   

4.2 Capital Utilization 

A significant number of mask shops in our sample estimate the mask shop’s utilization of capital 

in terms of the yield rate   

U(t) = Yup(t) Yru(t) Ypp(t) Yln(t) Ynr(t),         (2)  

where Yup(t) is the fraction of time that capital equipment is not undergoing scheduled or 

unscheduled maintenance; Yru(t) is the fraction of time available equipment is actually running; 

Ypp(t) represents the proportion of plates running are production plates; Yln(t) is the fraction of 

production plates that are not scrapped during the manufacturing process; and Ynr(t) denotes the 

fraction of non-scrapped production plates that are not reworked [20].  (This definition is 

consistent with operations research approaches to waste reduction that are described in [23-26].)  

The results of the survey show that PG tools are the primary limiters from the point of view of 

equipment downtime. Thus, for the purposes this paper, Yup(t) = 1 – (Wsched-PG+Wunsch-PG), where 

Wsched-PG and Wunsch-PG respectively denote the fraction of time (waste rate) that PG tools are 

down for scheduled and unscheduled maintenance.  

Judging from the results of the 2005 Mask Industry Assessment survey [14], Tables A2 through 

A5, and comments given by the respondents in this study, the values for the constituent factors to 

capital utilization during volume production at the most productive photomask manufacturers 

can be estimated somewhat optimistically as Yup(t) = 0.9; Yru(t) = 0.95; Ypp(t) = 0.9; Yln(t) = 0.9; 

and Ynr(t) = 0.95.  Substituting these values into equation (1) gives U(t) = 0.66, which indicates 
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at least one-third of all resources in photomask manufacturing is wasted.  The causes of this 

waste have been analyzed successfully over the years [12-16, 20].       

4.3 Economies of Scale  

The output in plates per year of the largest participating photomask manufacturer has exceeded 

the output of the smallest one by more than an order of magnitude. This finding motivated us to 

investigate whether photomask manufacturing is subject to economies of scale with respect to 

human capital and physical capital.  In response, we ran the following regressions: 1) product 

output rate per FTE employee versus number of FTE employees;  2) product output rate per non-

exempt FTE employee versus number of non-exempt FTE employees; and 3) product output rate 

per “big ticket item” (BTI) versus number of BTIs in the mask shop. (PG tools and an inspection 

tools were considered big ticket items. They tend to be the most expensive tools in the mask 

shop, and they have been known to limit throughput in the mask shop.) These regressions have 

yielded no significant correlation between the dependent and the independent variables, 

suggesting either that economies of scale do not apply to photomask manufacturing (in contrast 

to semiconductor manufacturing) or that some mask shops are not able to take advantage of 

economies of scale.   

We speculate that decentralized photomask manufacturing, which is driven by the needs of 

chipmakers, constitutes the primary factor that limits economies of scale.  According to [27], 

“many high tech industries are characterized by shrinking product lifecycles, [as well as] 

increasingly expensive production equipment and up-front cost.  …  These forces pressure 

organizations to cut not only their development times (time-to-market), but also the time it takes 

to reach full production volume (time-to-volume), in order to meet their financial goals for the 
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product (time-to-payback).” Recent studies suggest that this observation characterizes 

semiconductor manufacturing: it is in the interest of chipmakers to begin the yield learning 

process as early as possible and to ramp to volume production as rapidly as possible [16, 28, 29].  

Chipmakers consequently demand that photomasks are produced on short notice and arrive in a 

very timely manner.  A manager in charge of mask procurement for an ASIC-supplier articulates 

this need.     

“Masks need to be ready and available when a prototype lot comes to the 

lithography station. If we discover a mask defect in the last moment, then the 

mask has to be repaired within a few hours.  If we find a design error, then a new 

mask has to be made rapidly.  In such situations a 15-hour trip across the Pacific 

is unacceptable.  …  We insist that our mask suppliers have local capabilities.”   

Many photomask manufacturers consequently practice decentralized photomask manufacturing 

to provide rapid turn around for their customers at the expense of underutilizing big ticket items 

such as PG-tools [17] and of being unable to achieve economies of scale [19].  Yet a recent study 

concludes that economies of scale are essential to profitable mask making [20], suggesting that 

decentralized photomask manufacturing is an unsustainable practice unless photomask 

manufacturers “operate on a scale large enough to make rapid technology turnover and 

manufacturing redundancy affordable. [30]” Our experts suggest that the price of a mask will 

influence the debate concerning turnover and scale.  A senior manager at a merchant mask shop 

comments.   

“When a customer is given a choice between an additional $50k on the price of a 

mask and a 24-hour trip across the Pacific [for the mask], the customer will 
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choose the trip across the Pacific. … Time for delivery can be planned in 

advance.  If the customer tells us that the mask is needed at a certain time, then 

we can plan to deliver on time. … It is much more difficult to respond to a request 

for a repair that needs to be done immediately.”  

A senior lithographer who is familiar with the practices of many mask shops has suggested a 

possible way out of this dilemma. 

“The need for repairing masks on demand is more pressing than the need to write 

new reticles on demand.  …  We should look into a business model which allows 

for local mask repair on short notice but tolerates centralized mask making.  This 

should be feasible if circuit designers improve the reliability of their design 

processes.”   

4.4 Advancing Technology  

The technology index for the most advanced participant was more than 3.5 times as high as that 

of the least advanced participant, suggesting that some mask makers push the technological edge 

significantly more than others.  Table 3 displays a correlation between the technology index and 

the number of engineers per plates shipped, a proxy for the level of investment in engineering.  

Table 4 exhibits a correlation between the technology index and the number of (non-sellable) 

engineering plates per plate shipped, a proxy for investment in experimentation capacity. These 

results suggest making masks that print small geometries requires a disproportionate engineering 

effort, which manifests itself in a high level of experimentation activity that consumes 

engineering plates.  By contrast, we observed no significant correlation between the technology 

index and the fraction of the mask shop containing a Class 1 clean room, indicating that airborne 
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micro-contaminants may not be a major factor that limits the production of state-of-the-art 

photomasks.    

 
Table 3.  Technology Index vs. Number of Engineers per Plate Shipped 
Regression Statistics R2  AR2  SE  n
     0.915 0.887 0.101 5 
ANOVA   Coef. SE  t-stat 1-p
Intercept ‘b’   0.332 0.0535 6.20  0.992 
Slope ‘a’   0.677 0.119 5.70  0.989 
 
Table 4.  Technology Index vs. Number of Engineering Plates/Number of Plates Shipped 
Regression Statistics R2  AR2  SE  n
     0.949 0.899 0.122 3 
ANOVA   Coef. SE  t-stat 1-p 
Intercept ‘b’   0.315 0.092 3.44  0.820 
Slope ‘a’   0.684 0.158 4.33  0.856 
 
Table 5.  Technology Index vs. Number of Plates Shipped (number of plates 
shipped>20,000/year) 
Regression Statistics R2  AR2  SE  n
     0.719 0.625 0.127 5 
ANOVA   Coef. SE  t-stat 1-p 
Intercept ‘b’   0.439 0.122 3.59  0.963 
Slope ‘a’   0.579 0.119 2.77  0.931 
 

Table 5 illustrates that a fairly strong, direct correlation between the technology index and the 

number of plates produced per year exists for participants that produce more than 20,000 product 

plates per year.  This finding implies that large photomask manufacturers are better able to take 

advantage of economies of scale, when it comes to financing tools and innovations that are 

required to provide customers with masks of the next technology node.  The correlation between 

the technology index and the number of plates shipped is no longer significant when mask shops 

that produce fewer than 10,000 plates per year are added to the sample.  Very small photomask 

manufacturers may be engaging in different strategies from the ones that larger photomask 

manufacturers are pursuing.     
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5. SUMMARY 

Our survey-based empirical study of photomask manufacturing productivity has led to a few 

significant conclusions.  Firstly, the wide variation in productivity indicators from company to 

company suggests that all participants may have significant cost-reduction opportunities within 

their operation.  Secondly, capital is underutilized even among the most productive photomask 

manufacturers. These results strongly suggests that detailed follow-on studies of the cost 

structure, the management structure and the procedures within mask shops will result in reduced 

mask costs.  Thirdly, high downtime of pattern-generation tools is limiting productivity. In 

addition, producing smaller feature sizes is correlated to an investment in engineering and 

experimentation capacity. It could not be confirmed that photomask manufacturers are taking 

advantage of economies of scale.  Given that scale has been established as a key factor 

contributing to the profitability of photomask manufacturers [20], this finding suggests that the 

profitability outlook for many manufacturers is precarious at best.   

The survey approach in this paper is limited in a variety of ways. Firstly, it provides no data on 

time- or node-lifecycle-dependent cost issues (e.g., yield improvement rates, equipment purchase 

timing relative to node introduction, etc.). Secondly, it contains only questions that only yield 

numerical answers, thus not allowing access to important best practices and methodology 

information. Thirdly, the current survey format provides no information on organization, 

procedures, training, geographical variations, or merchant-versus-captive management 

differences. Some external survey information on such issues is available from external sources, 

but not in a comprehensive form.  Obtaining information of this kind would require an approach 

much like that of the CSM study carried out for the semiconductor industry by UC Berkeley in 

the 1990’s [31, 32], involving site visits and a one-time survey for mask making that addresses 
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the aforementioned issues. This approach should reveal photomask industry trends, best practices 

and strategies for ameliorating photomask cost escalation.  

Finally, the authors recommend that this survey be repeated on an annual basis as a regular 

feature of Sematech’s mask industry assessment effort (e.g., [12-15]) and perhaps be expanded.  

Regular answers to productivity-oriented questions are likely to provide the important relative 

measures of cost-related performance, which are considered to be so important to guiding 

management priorities and actions in mask shops.  Larger sample sizes, which would result from 

full participation by all photomask manufacturers, would permit statistical identification and 

multivariate analysis of the underlying factors that drive photomask manufacturing.  However, 

the broad participation of the respondents in 2005, as well as their willingness to answer these 

new and highly proprietary questions in the survey, indicates a strong interest in productivity-

related aspects of the mask-making business within the mask-making community.    
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APPENDIX 
 

Table A1.  Normalized survey results pertaining to operating cost factors 
 
 
 
 

n      avg.

6.

 
 
 
 
 
 
 
 
 
 
 
 
 

0
6.1 Masks shipped per square foot of total clean room space 5 1.33
6.1a Masks shipped per square foot of Class 1 clean room space 5 6.29

6.1.1 Fraction of mask shop space that is Class 1 5 0.43
6.1.2 Fraction of mask shop space that is Class 10 5 0.28
6.1.3 Fraction of mask shop space that is Class 100 5 0.30

6.2 Masks shipped per FTE employee 5 140.14
6.3 Masks shipped per non-exempt FTE empoyee directly involved in manufacturing 5 577.00
6.4 Masks shipped per exempt non-engineering FTE employee directly involved in manufacturing 4 325.07
6.5 5 1069.06

6.5.1 Number of process control engineers per 10,000 masks shipped 4 5.92
6.5.2 Number of yield engineers per 10,000 masks shipped 4 5.58
6.5.3 Number of equipment maintenance/installation engineers per 10,000 masks shipped 4 19.54
6.5.4 Number of R&D, new process development engineers per 10,000 masks shipped 4 18.82
6.5.5 Number of data processing engineers per 10,000 masks shipped 4 5.28
6.5.6 Number of sustaining engineers per 10,000 masks shipped 4 20.08

Operating Cost Factors

Masks shipped per engineering FTE employee directly involved in manufacturing

n      avg.

6.0
6.1 Masks shipped per square foot of total clean room space 5 1.33
6.1a Masks shipped per square foot of Class 1 clean room space 5 6.29

6.1.1 Fraction of mask shop space that is Class 1 5 0.43
6.1.2 Fraction of mask shop space that is Class 10 5 0.28
6.1.3 Fraction of mask shop space that is Class 100 5 0.30

6.2 Masks shipped per FTE employee 5 140.14
6.3 Masks shipped per non-exempt FTE empoyee directly involved in manufacturing 5 577.00
6.4 Masks shipped per exempt non-engineering FTE employee directly involved in manufacturing 4 325.07
6.5 5 1069.06

6.5.1 Number of process control engineers per 10,000 masks shipped 4 5.92
6.5.2 Number of yield engineers per 10,000 masks shipped 4 5.58
6.5.3 Number of equipment maintenance/installation engineers per 10,000 masks shipped 4 19.54
6.5.4 Number of R&D, new process development engineers per 10,000 masks shipped 4 18.82
6.5.5 Number of data processing engineers per 10,000 masks shipped 4 5.28
6.5.6 Number of sustaining engineers per 10,000 masks shipped 4 20.08

Operating Cost Factors

Masks shipped per engineering FTE employee directly involved in manufacturing

 
 
 
 
 
 
Table A2.  Normalized survey results pertaining to masks shipped per equipment. 
 n      avg.

7.1 Average number of masks shipped per Pattern Generator 
7.1.1 Laser PG's 5 1099
7.1.2 Vector shaped e-beam PG's <50 kV   3 522
7.1.3 Vector shaped e-beam PG's  > = 50 kV  4 566
7.1.4 Raster or vector spot e-beam PG's <50 kV 3 212
7.1.5 Raster or vector spot e-beam PG's > = 50 kV 5 0
7.1.6 Other PG's 1 229

7.2 Average number of shipped masks measured per CD Measurement Tool 
7.2.1 Optical MUV tools 5 1197
7.2.2 Optical DUV tools 4 152
7.2.3 SEM CD tools 3 195
7.2.4 Other CD tools 1 2591

7.3 Average number of shipped masks inspected per Defect Inspection Tool
7.3.1 Die:die inspection tools 5 934
7.3.2 Die:database inspection tools  5 1482

7.4 Average number of shipped masks repaired per Defect Repair Tool
7.4.1 Laser repair tools 5 744
7.4.2 FIB repair tools   5 204
7.4.3 Mechanical (nano-shaping) tools  2 44

n      avg.

7.1 Average number of masks shipped per Pattern Generator 
7.1.1 Laser PG's 5 1099
7.1.2 Vector shaped e-beam PG's <50 kV   3 522
7.1.3 Vector shaped e-beam PG's  > = 50 kV  4 566
7.1.4 Raster or vector spot e-beam PG's <50 kV 3 212
7.1.5 Raster or vector spot e-beam PG's > = 50 kV 5 0
7.1.6 Other PG's 1 229

7.2 Average number of shipped masks measured per CD Measurement Tool 
7.2.1 Optical MUV tools 5 1197
7.2.2 Optical DUV tools 4 152
7.2.3 SEM CD tools 3 195
7.2.4 Other CD tools 1 2591

7.3 Average number of shipped masks inspected per Defect Inspection Tool
7.3.1 Die:die inspection tools 5 934
7.3.2 Die:database inspection tools  5 1482

7.4 Average number of shipped masks repaired per Defect Repair Tool
7.4.1 Laser repair tools 5 744
7.4.2 FIB repair tools   5 204
7.4.3 Mechanical (nano-shaping) tools  2 44
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Table A3.  Normalized survey results pertaining to engineering (non-production) plates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.5 Fraction of plates printed that are engineering (non-production) plates 3 12.6%
(Next 6 lines should add to 100%)
7.5.1 % printed on Laser PG's 6 29.5%
7.5.2 % printed on Vector shaped e-beam PG's at your facility:  <50 kV   3 7.0%
7.5.3 % printed on Vector shaped e-beam PG's at your facility: > = 50 kV  5 71.6%
7.5.4 % printed on raster or vector spot e-beam PG's at your facility:  <50 kV 3 14.7%
7.5.5 % printed on raster or vector spot e-beam PG's at your facility:  > = 50 kV 6 0.0%
7.5.6 % printed on other PG's at your facility 6 0.0%

7.6 Fraction of plates CD measured that are engineering (non-production) plates 2 13.7%
(Next 4 lines should add to 100%)
7.6.1 % measured on optical CD measurement MUV tools at your facility 3 60.4%
7.6.2 % measured on optical CD measurement DUV tools at your facility 2 18.0%
7.6.3 % measured on SEM CD measurement tools at your facility  4 45.7%
7.6.4 % measured on other CD measurement tools at your facility 4 0.0%

7.7 Fraction of plates inspected by Defect Inspection Tools that are engineering plates 1 14.0%
(Next 2 lines should add to 100%)
7.7.1 % measured on die:die inspection tools at your facility 5 62.9%
7.7.2 % measured on die:database inspection tools at your facility  6 47.6%

7.8 Fraction of plates altered using Defect Repair Tools that are engineering plates 2 1.4%
(Next 3 lines should add to 100%)
7.8.1 % altered using laser repair tools at your facility 3 34.9%
7.8.2 % altered using FIB repair tools at your facility   4 67.3%
7.8.3 % altered using mechanical (nano-shaping) tools at your facility  3 19.7%

n      avg.
7.5 Fraction of plates printed that are engineering (non-production) plates 3 12.6%

(Next 6 lines should add to 100%)
7.5.1 % printed on Laser PG's 6 29.5%
7.5.2 % printed on Vector shaped e-beam PG's at your facility:  <50 kV   3 7.0%
7.5.3 % printed on Vector shaped e-beam PG's at your facility: > = 50 kV  5 71.6%
7.5.4 % printed on raster or vector spot e-beam PG's at your facility:  <50 kV 3 14.7%
7.5.5 % printed on raster or vector spot e-beam PG's at your facility:  > = 50 kV 6 0.0%
7.5.6 % printed on other PG's at your facility 6 0.0%

7.6 Fraction of plates CD measured that are engineering (non-production) plates 2 13.7%
(Next 4 lines should add to 100%)
7.6.1 % measured on optical CD measurement MUV tools at your facility 3 60.4%
7.6.2 % measured on optical CD measurement DUV tools at your facility 2 18.0%
7.6.3 % measured on SEM CD measurement tools at your facility  4 45.7%
7.6.4 % measured on other CD measurement tools at your facility 4 0.0%

7.7 Fraction of plates inspected by Defect Inspection Tools that are engineering plates 1 14.0%
(Next 2 lines should add to 100%)
7.7.1 % measured on die:die inspection tools at your facility 5 62.9%
7.7.2 % measured on die:database inspection tools at your facility  6 47.6%

7.8 Fraction of plates altered using Defect Repair Tools that are engineering plates 2 1.4%
(Next 3 lines should add to 100%)
7.8.1 % altered using laser repair tools at your facility 3 34.9%
7.8.2 % altered using FIB repair tools at your facility   4 67.3%
7.8.3 % altered using mechanical (nano-shaping) tools at your facility  3 19.7%

n      avg.

 
 
 
 
 
 
 
Table A4.  Normalized survey results pertaining to scheduled downtime 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n     avg.
7.9

7.9.1 Laser PG's 4 6.0%
7.9.2 Vector shaped e-beam PG's:  <50 kV   3 5.0%
7.9.3 Vector shaped e-beam PG's: > = 50 kV  4 7.1%
7.9.4 Raster or vector spot e-beam PG's:  <50 kV 1 2.0%
7.9.5 Raster or vector spot e-beam PG's at your facility:  > = 50 kV na N/A
7.9.6 Other pattern generators 1 2.0%

7.10
7.10.1 Optical CD measurement MUV tools 2 1.2%
7.10.2 Optical CD measurement DUV tools   2 0.9%
7.10.3 SEM CD measurement tools  3 1.9%

7.10.4 Other CD measurement tools 1 2.0%
7.11

7.11.1 Die:die inspection tools 4 2.6%
7.11.2 Die:database inspection tools 3 3.7%

7.12
7.12.1 Laser repair tools 4 2.0%
7.12.2 FIB repair tools   4 3.0%
7.12.3 Mechanical (nano-shaping) tools  2 2.0%

Total scheduled down time of all Defect Inspection Tools of a given type (percent) 

Total scheduled down time of all Defect Repair Tools of a given type (percent) 

Total scheduled down time of Pattern Generators of a given type (percent) 

Total scheduled down time of all CD Measurement Tools of a given type (percent) 

n     avg.
7.9

7.9.1 Laser PG's 4 6.0%
7.9.2 Vector shaped e-beam PG's:  <50 kV   3 5.0%
7.9.3 Vector shaped e-beam PG's: > = 50 kV  4 7.1%
7.9.4 Raster or vector spot e-beam PG's:  <50 kV 1 2.0%
7.9.5 Raster or vector spot e-beam PG's at your facility:  > = 50 kV na N/A
7.9.6 Other pattern generators 1 2.0%

7.10
7.10.1 Optical CD measurement MUV tools 2 1.2%
7.10.2 Optical CD measurement DUV tools   2 0.9%
7.10.3 SEM CD measurement tools  3 1.9%

7.10.4 Other CD measurement tools 1 2.0%
7.11

7.11.1 Die:die inspection tools 4 2.6%
7.11.2 Die:database inspection tools 3 3.7%

7.12
7.12.1 Laser repair tools 4 2.0%
7.12.2 FIB repair tools   4 3.0%
7.12.3 Mechanical (nano-shaping) tools  2 2.0%

Total scheduled down time of all Defect Inspection Tools of a given type (percent) 

Total scheduled down time of all Defect Repair Tools of a given type (percent) 

Total scheduled down time of Pattern Generators of a given type (percent) 

Total scheduled down time of all CD Measurement Tools of a given type (percent) 
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Table A5 -- Normalized survey results pertaining to unscheduled downtime  
 n     avg.

7.13
7.13.1 Laser PG's 3 4.0%
7.13.2 Vector shaped e-beam PG's:  <50 kV   2 8.9%
7.13.3 Vector shaped e-beam PG's: > = 50 kV  4 5.1%
7.13.4 Raster or vector spot e-beam PG's:  <50 kV 1 1.0%
7.13.5 Raster or vector spot e-beam PG's at your facility:  > = 50 kV 0 n/a
7.13.6 Other pattern generators 1 1.0%

7.14
7.14.1 Optical CD measurement MUV tools 2 0.8%
7.14.2 Optical CD measurement DUV tools   2 0.8%
7.14.3 SEM CD measurement tools  2 6.2%
7.14.4 Other CD measurement tools 1 10.0%

7.15
7.15.1 Die:die inspection tools 4 2.8%
7.15.2 Die:database inspection tools 4 3.0%

7.16
7.16.1 Laser repair tools 4 2.5%
7.16.2 FIB repair tools   4 4.6%
7.16.3 Mechanical (nano-shaping) tools  2 6.0%

Total unscheduled down time of all Defect Inspection Tools of a given type (percent) 

Total unscheduled down time of all Defect Repair Tools of a given type (percent) 

Total unscheduled down time of Pattern Generators of a given type (percent) 

Total unscheduled down time of all CD Measurement Tools of a given type (percent) 

n     avg.
7.13

7.13.1 Laser PG's 3 4.0%
7.13.2 Vector shaped e-beam PG's:  <50 kV   2 8.9%
7.13.3 Vector shaped e-beam PG's: > = 50 kV  4 5.1%
7.13.4 Raster or vector spot e-beam PG's:  <50 kV 1 1.0%
7.13.5 Raster or vector spot e-beam PG's at your facility:  > = 50 kV 0 n/a
7.13.6 Other pattern generators 1 1.0%

7.14
7.14.1 Optical CD measurement MUV tools 2 0.8%
7.14.2 Optical CD measurement DUV tools   2 0.8%
7.14.3 SEM CD measurement tools  2 6.2%
7.14.4 Other CD measurement tools 1 10.0%

7.15
7.15.1 Die:die inspection tools 4 2.8%
7.15.2 Die:database inspection tools 4 3.0%

7.16
7.16.1 Laser repair tools 4 2.5%
7.16.2 FIB repair tools   4 4.6%
7.16.3 Mechanical (nano-shaping) tools  2 6.0%

Total unscheduled down time of all Defect Inspection Tools of a given type (percent) 

Total unscheduled down time of all Defect Repair Tools of a given type (percent) 

Total unscheduled down time of Pattern Generators of a given type (percent) 

Total unscheduled down time of all CD Measurement Tools of a given type (percent) 
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