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ABSTRACT 

Do learning organizations have strokes of genius? An empirical study of 34 high technology 

R&D and manufacturing organizations suggests not.  The roots of punctuated equilibrium in 

organizational learning can be traced to learning activities that occur within organizational 

subsystems, primarily during R&D.  Continuous improvement at the subsystem level contributes 

significantly to a delayed, rapid surge in organizational performance.  Managers coordinate 

subsystem-level activities to maximize organizational performance by trading off the revenues 

expected from timely learning against the expected costs.  Knowledge accumulated within 

organizational subsystems can remain hidden from organization-level performance metrics for 

prolonged periods of time.   

1.   INTRODUCTION 
Organizational learning theory has successfully characterized industrial activities in which 

unit labor cost or unit cost of production continuously decreases at a decreasing rate as organizations 

gain production experience (e.g. Argote and Epple, 1990).  This phenomenon, which is attributed to 

increasing skill in production, is generally referred to as learning by doing (Arrow, 1962) or the 

learning curve.  Organizational learning theory has been expanded to cover the observed variability in 

learning rates (e.g. Dutton and Thomas, 1984; Argote and Epple, 1990; Hayes & Clark, 1985).  

However, to date, organizational learning theory cannot completely explain radical, discontinuous 

improvement in organizational performance, which occurs in high technology manufacturing 

industries such as pharmaceuticals (e.g. Pisano, 1994, 1996), disc drive fabrication (e.g. Bohn and 

Terwiesch, 1999) and semiconductors (e.g. Terwiesch and Bohn, 2001).  In these industries, 

organizational performance is negligible for a prolonged period of time, rises sharply to high levels in 
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a relatively short period of time, and (under ideal circumstances) saturates near an optimal level.  It 

appears as if a stroke of organizational genius terminates a long period of organizational ignorance.  

In this paper, I investigate radical, discontinuous organizational learning as it relates to the 

high technology R&D process and its immediate aftermath. After reviewing pertinent literature (§2), I 

apply the theory of punctuated equilibrium (Abernathy and Utterback, 1978; Tushman and 

Romanelli, 1985; Gersick, 1991) to organizational learning. I develop a theoretical framework in 

which continuous improvement performed by organizational subsystems enables rapid surges in 

organizational performance that punctuate prolonged periods of stagnating performance (§3).  In §4, I 

describe an exploratory empirical study, which I designed to test the validity of the proposed 

theoretical framework.  I use case study research methods (Yin, 1994; Eisenhardt, 1989) to 

investigate organizational learning in the VLSI (very large-scale integrated) circuit manufacturing 

industry, in which organizational performance can be decomposed multiplicatively into subsystem-

learning activities (Bohn, 1995), and in which rapid surges in organizational performance are known 

to occur (e.g. Stapper and Rosner, 1995; Weber, et al., 1995; Leachman, 1996; Leachman and 

Hodges, 1996; Weber, 2004).  In §5, I develop an analytical model of the lifecycle of a VLSI circuit 

manufacturing process from the empirical findings of the study.  

Existing organizational learning theory cannot completely explain my empirical findings, 

which imply that rapid surges in organizational performance are not the consequence of short bouts of 

intense learning. Instead, managers coordinate subsystem-level learning activities to maximize 

organizational performance – they trade off the revenues expected from timely learning against the 

expected costs.  Contrary to the observations of Gersick (1988), the rapid rise in organizational 

performance, which takes place in the final stages of R&D, largely constitutes a delayed reward for 

prior, prolonged, continuous improvement efforts that transpire within organizational subsystems.  

In §6, I discuss the implications of this study’s findings, which apply to all organizations in 

which one weakly performing subsystem can severely constrain the performance of the organization 
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as a whole.  These findings point to changes in R&D practices, which could improve the effectiveness 

of the R&D process.  For example, the model of the VLSI circuit process lifecycle indicates that 

knowledge, which is accumulated within organizational subsystems during R&D, can remain hidden 

from organization-level performance metrics for prolonged periods of time.  Consequently, managers 

need to monitor subsystem-level performance metrics to become aware of subsystem-level 

knowledge – failure to do so may result in gross strategic blunders.  To optimize performance under 

‘urgency’ (e.g. Gersick, 1988), learning organizations should deploy performance metrics that contain 

a time-dependent revenue component, as well as a cost component.  Finally, additional research that 

could lead to a more comprehensive theory of organizational learning is suggested.  In particular, 

further investigation of subsystem-level learning may reveal that organizational subsystems possess 

more know how and know why (e.g. Bohn, 1994, pp. 62-64) than organization-level performance 

variables would indicate.   

2.   PERTINENT PRIOR WORK  
Numerous early studies in organizational learning (e.g. Wright, 1936; Searle and Gody, 1945; 

Alchian, 1963; Rapping 1965; Hayes and Clark, 1985) suggest it to be a continuous process during 

which organizational performance improves at a decreasing rate as production experience increases.  

Dutton and Thomas (1984), who analyzed over 200 learning curves, observed a high variability in 

learning rates, which has been attributed to phenomena such as ‘organizational forgetting’ (Argote, et 

al., 1990); employee turnover (e.g. Argote and Epple, 1990); knowledge transfer (Argote, et al., 1990; 

Hatch and Mowery, 1998); and scale (e.g. Argote and Epple, 1990).  However, many studies have 

shown that organizational learning is not inherently continuous.  For example, Hirsch (1952) and 

Baloff (1970) observed that unit costs were higher after an interruption in production such as a strike.  

Adler and Clark (1991) enhanced the analysis of learning curves by introducing two managerial 

variables: the cumulative number of hours that workers spent on training and the cumulative hours an 

organization spends on engineering changes.  In their study of an anonymous high technology 

manufacturing firm, the authors discovered that cumulative training and engineering could enhance as 
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well as disrupt total factor productivity. Hatch and Mowery (1998) analyzed quality data from 52 

semiconductor processes, showing that cumulative engineering significantly enhanced learning rates. 

However, when new processes were introduced into manufacturing, cumulative engineering could 

disrupt ongoing learning in existing processes.   

According to Terwiesch and Bohn, (2001, p. 1), “many high tech industries are characterized 

by shrinking product lifecycles, [as well as] increasingly expensive production equipment and up-

front cost.  …  These forces pressure organizations to cut not only their development times (time-to-

market), but also the time it takes to reach full production volume (time-to-volume), in order to meet 

their financial goals for the product (time-to-payback).” Learning in high technology industries is thus 

characterized by a sense of urgency: it is in the interest of high technology firms to begin the learning 

process as early as possible and to ramp to production volume as rapidly as possible.    

Evidence for an early start in learning comes from studies of process R&D in the 

pharmaceutical industry (e.g. Pisano, 1994, 1996), which have shown that firms may acquire 

production skills prior to introducing a product into the factory.  This phenomenon, which Pisano 

(1996) calls ‘learning before doing’, occurs through computer simulations, laboratory experiments, 

prototype testing, pilot production runs and other experiments. The intent is to facilitate a seamless 

transition between research, development and production: if many quality and production issues are 

settled before product introduction, then the ramp to production can be viewed as an increase in scale 

during which little, if any, learning is required. Learning before doing primarily occurs in 

environments such as chemical synthesis, where underlying industrial knowledge is deep. By 

contrast, organizations in the biotechnology environment, for which the underlying theoretical and 

practical knowledge is relatively thin, rely on learning by doing for efficient development.  However, 

von Hippel and Tyre (1995) argue that not all learning can occur before doing.  In their study of 27 

problems that affected two novel process machines in their first years of use in production, the 

authors discovered that many problems could not be resolved prior to field use, because existing 
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problem-related information could not be identified in the midst of complexity, and because new 

problem related-information is introduced by users and other problem solvers, who learn after the 

machine has been introduced into the field.   

Terwiesch and Bohn (2001) investigate learning in semiconductor manufacturing, which like 

chemical synthesis has a deep underlying knowledge base. The authors have observed that a 

significant amount of learning occurs during production ramp-up when resources are scarce, 

production capacity is constrained, the R&D process is not complete, the production process is still 

poorly understood, but products can be sold at a high price. Under these circumstances, the 

semiconductor manufacturer has an incentive to learn to improve yield as rapidly as possible, as well 

as to ramp up to full production capacity at the fastest rate possible.  However, these goals may be at 

cross purposes – ramping rapidly may lower yield, whereas launching many experiments for the 

purpose of improving yield reduces production capacity. Nonetheless, Terwiesch and Bohn (2001) 

conclude that during ramp-up, earlier learning through experimentation is more valuable than later 

learning -- in spite of a high opportunity cost of experimentation -- because the price for 

semiconductor products tends to erode rapidly.  

Gersick (1988) observed that the performance of product-development teams operating under 

a sense of urgency does not improve continuously.  In the early stages of a product-development 

project’s lifecycle, different teams pursued a variety of approaches, which tended not to improve their 

performance significantly.  About halfway through the projects’ duration, the teams developed a 

sense of urgency to complete their respective assigned tasks. Deadline pressure triggered a transition 

meeting, after which the teams fundamentally changed their mode of operation to solving task-related 

problems. Organizational performance improved radically.  It appears as if a stroke of organizational 

genius, which terminated a long period of organizational ignorance and enabled very rapid learning, 

occurred during the transition meeting.    
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Theories that viewed learning as a continuous process could not explain Gersick’s (1988) 

observations, motivating Gersick (1988, 1991) to apply the theory of punctuated equilibrium 

(Abernathy and Utterback, 1978; Tushman and Romanelli, 1985) to organizational learning.  The 

punctuated equilibrium model of change assumes that long periods of small, incremental change are 

interrupted by brief periods of discontinuous, radical change.  Fundamental breakthroughs such as 

DNA cloning, the automobile, jet aircraft, and xerography are examples of radical change (Brown and 

Eisenhardt, 1997), which can enhance or destroy the competencies of incumbents (Tushman and 

Anderson, 1986) and fundamentally alter an industry (Gersick, 1991; Utterback, 1994).  However, 

many organizations have learned to “continuously change and thereby to extend thinking beyond the 

traditional punctuated equilibrium view, in which change is primarily seen as rare, risky, and 

episodic, to one in which change is frequent, relentless, and even endemic to the firm (Brown and 

Eisenhardt, 1997, p. 1).”   Effective managers link current projects to the future with predictable 

(time-paced rather than event-paced) intervals, familiar routines and choreographed transition 

procedures (Gersick, 1991; Brown and Eisenhardt, 1997), enabling organizations continuously 

improve their performance and to continuously adapt to changes in the environment.   

Both continuous improvement and radical, discontinuous improvement in organizational 

performance commonly take place in high technology manufacturing industries such as 

pharmaceuticals (e.g. Pisano, 1994, 1996), disc drive fabrication (e.g. Bohn and Terwiesch, 1999) and 

semiconductors (e.g. Terwiesch and Bohn, 2001). A comprehensive theory of organizational learning 

must incorporate therefore both phenomena.  It is the purpose of this paper to gather empirical 

evidence that could lead to the development of such a theory.        

3.   THEORETICAL FRAMEWORK 
In this section, I take a point of view that synergizes punctuated equilibrium theory with 

continuous improvement.  I submit that radical, discontinuous improvement in organizational 

performance is not necessarily a consequence of a short period of intense learning.  Instead, I propose 
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that this phenomenon is largely caused by continuous improvement efforts that are performed by the 

subsystems of an organization.  I argue that this guiding proposition is consistent with existing 

theories of continuous improvement (e.g. Zangwill and Kantor, 1998; Lapré et al., 2000), and I 

suggest that it can be tested empirically.   

3.1   Continuous Improvement through Waste Reduction 
Zangwill and Kantor (1998) present a framework for continuous improvement and the 

learning curve, which is based on a series of head-to-tail learning cycles in which each cycle 

contributes incrementally to the reduction of “errors, wastes and other inefficiencies that impair the 

operations of the [production] process” (ibid, p. 911).  According to Zangwill and Kantor (1998, pp. 

917-918), the performance metric of a continuous improvement process M(q) can be expressed in 

terms of the differential equation  

dM(q)/dq = -c(M(q) – M*)κ+1      (1),  

where M* designates the metric’s optimal value; c is a coefficient; ‘κ’ represents a parameter that 

reflects the effectiveness of management; and ‘q’ denotes an experience variable.  In equation (1), the 

quantity ‘|M(q) – M*|’ represents the magnitude of the non-value-added (NVA) or ‘wasted’ 

component of M(q), a performance gap that closes with increasing production experience.  The shape 

of M(q) depends upon the value of κ.  When κ<0, M(q) takes the shape of the power function 

associated with the traditional learning curve (e.g. Argote and Epple, 1990). When κ=0, M(q) 

becomes an exponential function that approaches M* asymptotically.  When κ>0, equation (1) 

generates exponential functions, which reach their optimal value M* at a finite amount of production 

experience q.   

Lapré et al., (2000) have conducted a study in a factory that produces tire cord, where 

performance is characterized in terms of yield rates and waste rates whose range is restricted from 

naught to unity.  A yield rate Y(q) is defined as M(q)/Mmax, the ratio of the value of the performance 
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metric at a production experience q to the performance metric’s theoretical maximum value.  The 

waste rate of is given by the quantity ‘1-Y(q)’, which approaches naught as continuous improvement 

efforts reduce waste and drive Y(q) towards unity.  If continuous improvement causes ‘1-Y(q)’ to 

decrease at a decreasing rate with increasing production experience, then Y(q) should be a concave, 

monotonically increasing function of q. Thus observing a concave, monotonically increasing yield 

rate can be considered evidence that a continuous improvement effort may cause the increase in the 

yield rate. If, on the other hand, Y(q) is not a concave, monotonically increasing function of q, then 

the behavior of Y(q) is unlikely to be caused by continuous improvement.  If the benefits of 

continuous improvement must be traded off against the costs of achieving them, as Lundvall and 

Juran (1974) and Chase and Acquilano (1981) have argued for the cost of quality, and the costs of 

continuous improvement are significant, then the maximum may not be the optimum. The optimal 

value for a yield rate ‘Y*’ may be less than unity, and the optimal value for the waste rate ‘1-Y*’, 

may be greater than naught. The optimal value for a yield rate would reside at some point beyond 

which the marginal costs of its continuous improvement would exceed the marginal revenues that 

further continuous improvement would generate.    

The reduction of errors, waste and inefficiencies can take many forms. It may consist of a 

variety of activities such as removing the defects in an automobile production line using the Kaizen 

approach; applying Total Quality Methods in a factory that manufactures tire cord to reduce the 

frequency of cord fractures that occur at each process step (Mukherjee et al., 1998; Lapré et al., 

2000); improving the yield of a manufacturing process by reducing process noise (Bohn, 1995); 

increasing the production rate by reducing equipment downtime; replacing a policy of sacrificing 

product for analytical purposes with inspection policies for quick feedback on the quality of the 

manufacturing process (e.g. Tang, 1991); reducing excess work-in-progress inventory to improve 

yield (e.g. Wein, 1992); or maximizing a factory’s contribution to the bottom line by improving the 
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criteria as to whether to pass a partially defective batch of products, to rework the batch or to remove 

the batch from the manufacturing line (Bohn and Terwiesch, 1999).   

3.2   Subsystem-Level Learning and Organization-Level Performance  
Zangwill and Kantor’s (1998) theory of continuous improvement by waste reduction may 

provide a framework for explaining punctuating surges in organizational performance, if it is applied 

to the level of organizational subsystems.  Zangwill and Kantor (1998, p. 918) postulate that that all 

solutions to equation (1) can be decomposed additively into sub-metrics whose sum equals M(q), and 

that sums of finite exponential forms (κ>0) can approximate all solutions to equation (1). Therefore, 

according to Zangwill and Kantor (1998), the organization-level performance of any continuous 

improvement effort can be estimated from the sum of the performance of subsystem-level continuous 

improvement efforts.  The weakly performing subsystems prevent the organization as a whole from 

performing at its optimal level, but no single subsystem can restrict organizational performance to 

negligible levels.  

In industries such as tire cord production (Mukherjee et al., 1998; Lapré et al., 2000), disc 

drive fabrication (e.g. Bohn and Terwiesch, 1999) and semiconductor manufacturing (e.g. Bohn, 

1995), organizational performance is decomposed multiplicatively, i.e. the organization-level 

performance metric Yorg(q), a yield factor, is the multiplicative product a set of sub-metrics, where 

each sub-metric Yk(q) measures the performance of a subsystem ‘k’ as a yield factor, and ‘ktotal’ 

denotes the total number of subsystems in the organization. Yorg(q) is given by the expression   

   ktotal 

Yorg(q) = Π Yk(q)        (2).  
    k=1 

If all Yk(q) in equation (2) measure continuous improvement efforts that take the shape of 

concave, monotonically increasing functions, then the multiplicative product of these functions will 

not be a concave, monotonically increasing function (Weber, 2003, Ch. 5).  Instead, continuous 

improvement at the subsystem level has the potential of generating a punctuated equilibrium at the 
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organization-level – i.e. a prolonged period of weak organization-level performance during R&D and 

a prolonged period of strong organization-level performance during volume production are 

interspersed by a short period of rapid improvement in performance that occurs during the very late 

stages of R&D.  External observers, who have no knowledge of the organization’s internal learning 

mechanisms, would detect a surge in organization-level performance, and perhaps interpret it as the 

result of period intense learning that occurs during the final stages of the R&D process or simply a 

stroke of organizational genius.  Instead, I submit that in an industry in which organizational 

performance can be decomposed multiplicatively, a punctuated surge in organization-level 

performance constitutes a delayed reward for a prolonged investment in continuous improvement at 

the subsystem level, which can occur during research and development.  This assertion is confirmed, 

if the following propositions are confirmed.  

Proposition 1a:  Yorg(q) remains relatively close to naught, until all its constituent yield 

factors Yk(q) achieve values that significantly exceed naught, and Yorg(q) cannot approach unity (or 

its optimal level) until all its constituent yield factors approach unity (or their optimal levels). 

Consequently, Yorg(q) inherently lags behind its constituent yield factors.  

Proposition 1b:  The constituent yield factor with the weakest performance will have the 

greatest (limiting) impact on Yorg(q), whereas relatively well-performing subsystem level learning 

efforts have proportionally less impact. This proposition is supported, if Yorg(q) does not lag 

significantly behind the constituent yield rates (factors) with the weakest performance, but lags 

significantly behind the constituent yield rates (factors) with the strongest performance.  

In an urgent environment, in which the unit price of the product to be sold deteriorates over 

time, as many units of product need to be produced as soon as possible (Terwiesch and Bohn, 2001). 

The performance metric for an organization operating in such an environment can be given in terms 

of the yield rate ‘Q(t)’, which is defined as the number of units of product that are produced per unit 

time at a particular point in time ‘t’ divided by the maximum number of units of product per unit time 
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that the organization can possibly produce.  (Using time as an experience variable has been shown to 

be particularly effective in characterizing learning processes that to a great degree depend upon 

learning how to execute tasks involving complex operations (e.g. Fellner, 1969; Dudley, 1972).)  If 

the performance of said organization can be decomposed multiplicatively, equation (2) can be 

rewritten as  

          ktotal 

Q(t) = Π Yk(t)        (3),  
           k=1 

where the constituent yield factors Yk(t) are concave, monotonically increasing functions of t, of 

which each represents the performance metric of a subsystem-level continuous improvement effort.  

Equation (3) suggests that an organization with a sense of urgency pursues its various subsystem-

level continuous improvement efforts in parallel and coordinates them in a manner that causes Q(t) 

to surge towards unity as early as possible (Proposition 2).  This proposition is supported if the 

constituent yield factors Yk(t) are observed to be concave, monotonically increasing functions of t that 

run in parallel, and Q(t) surges towards its optimal value Q* once all Yk(t) are nearing the completion 

of gradual approaches to their optimal values.   

4.   RESEARCH METHODS 
In this section, I describe an empirical study that investigates punctuated equilibrium in 

organizational learning.  Beginning with the propositions from §3, I use the case study research 

method (Yin, 1994; Eisenhardt, 1989) to explore how, why and under which circumstances 

subsystem-level learning can generate rapid surges in organizational performance.  Organizations and 

their subsystems consequently constitute the units of analysis of the study.  I have chosen VLSI 

circuit R&D and manufacturing organizations as the setting of the study because the relationship 

between subsystem performance and organization-level performance is clearly defined in the VLSI 

circuit manufacturing industry (Bohn, 1995, p. 33), and because performance at both levels varies 

substantially over the lifecycle of a VLSI circuit production process.  Thus the effect of subsystem-
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level activities should yield clearly discernable patterns at the organization level, which can hopefully 

be linked to the aforementioned theoretical propositions from §3.   

4.1   The Research Setting: VLSI Circuit Manufacturing 
VLSI circuit manufacturing (like most other forms of semiconductor manufacturing) relies on 

batch processing (e.g. Bohn, 1995, p. 33).  Silicon wafers act as batches for products, which are 

known as integrated circuits (ICs), “chips” or “dice”.  The number of products per batch ‘N’ can vary 

from as few as 50 to as many as 400.  The manufacturing line (as well as the R&D line on which a 

production process is developed) consists of a series of fabrication, metrology and inspection steps, 

which are executed on process, metrology and inspection equipment, respectively; there are no 

assembly steps in the line.  Integrated circuits can be destroyed (wasted) by process parameters that 

are out of control, as well as by ‘micro-contaminants’ – particulate matter that can be observed in 

volumes smaller than 1/1000 of a cubic micrometer. Due to the threat of micro-contaminants, all three 

of the abovementioned types of equipment, reside inside a clean room fabrication facility called a 

‘fab’. All chips are tested for functionality and electrical characteristics at the end of the 

manufacturing line, when they are still part of a silicon wafer but can be safely removed from the fab.  

A chip is declared to be non-functional, if one of the many variables that are tested exceeds specified 

limits. Such an anomalous electrical signal is known as a ‘fault’; its detection precludes an integrated 

circuit product from being sold.   

The VLSI process lifecycle bears significant resemblance to process lifecycles in the 

pharmaceutical industry (Pisano, 1994).  In both industries “process development occurs somewhat in 

parallel with product development,” and “processes go through three development phases – process 

research, pilot development commercial start-up” – prior to commencing with volume production 

(ibid, p. 90).  Just as in the pharmaceutical industry, process research (PR) in VLSI circuit 

manufacturing “involves defining the basic structure of the process.  …  The goal of process research 

is to define the basic process architecture rather than the details.” (ibid, p. 90)  This goal is generally 
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achieved by running a set of small-scale experiments in a laboratory setting to select reaction 

sequence from a set of theoretically feasible alternatives.  “Pilot development (PD) involves scaling 

up the process to some intermediate scale and selecting reaction parameters (such as timing, 

temperature, pressure), which optimize the efficiency of the process.” (ibid, p. 90)  Pilot development 

is much more empirical in nature than process research because it relies on the analysis of the output 

of pilot production runs, which are subjected to conditions that reflect actual production environment 

more accurately.  Commercial startup (CS), the last phase of VLSI circuit research and development, 

involves ramping up the VLSI circuit manufacturing process to commercial scale.  “How smoothly 

this phase goes, depends upon how well problem solving during research and pilot development have 

integrated knowledge about the factory environment” (ibid, p. 91).  Similarly, subsequent volume 

production (VP) is less problematic if problem solving has been effective during the CS phase.   

VLSI circuit manufacturing exhibits a series of attributes that makes punctuated learning an 

attractive proposition for firms who compete in that industry.  Firstly, the lifetime of market 

opportunities for particular VLSI products is rather short, and they face eroding unit prices for the 

goods to be sold. As a consequence, VLSI manufacturers are under time-to-market, time-to-volume 

and time-to-payback pressure (Terwiesch and Bohn, 2001). They tend to operate in an environment of 

capacity constraint (Bohn, 1995) for a significant portion of their lifecycles, during which they have 

an incentive to learn as early as possible (Terwiesch and Bohn, 2001) and during which 

organizational performance can be equated with the product output rate.  Secondly, VLSI circuit 

manufacturing, like chemical synthesis, relies on a deep underlying theoretical and practical 

knowledge base, which enables VLSI circuit manufacturers to engage in learning-before-doing during 

research and development (Pisano, 1996).  Thirdly, VLSI circuit manufacturing, like disc drive 

fabrication, can be yield driven (Bohn and Terwiesch, 1999), a happenstance from which VLSI circuit 

manufacturers can derive significant contributions to the bottom line by engaging in waste reduction 

efforts (such as the ones described in Lapré et al., 2000).  Last but not least, the technical 
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requirements of VLSI circuit manufacturing advance along a set of dimensions of merit known as the 

Moore’s Law trajectory.1  These requirements and the dates by which they need to be fulfilled are 

detailed and forecasted in an industry-wide publication known as the International Technology 

Roadmap for Semiconductors (ITRS). 2   Following the guidelines of this biennially published 

document gives VLSI circuit manufacturers and their suppliers a multi-year technology-planning 

horizon, which facilitates the execution of prolonged, coordinated subsystem-level learning activities.  

Organizations that partake in VLSI circuit manufacturing or process development typically 

engage in three functions that involve learning within organizational subsystems. The first function, 

process learning, is generally performed by process engineering subsystems. It primarily consists of 

improving the quality of the manufacturing process by increasing control over key process parameters 

and eliminating the causes of faults. The second, production quality learning, increases the amount of 

material that survives the manufacturing line, whereas the third, production volume learning, 

increases the line’s throughput. Both production quality learning and production volume learning 

require the acquisition of logistical skills and good plant-wide operating practices, especially in 

material handling (Bohn, 1995, p. 33); both are generally considered the responsibility of production 

subsystems.  

Learning in VLSI circuit manufacturing and process development can be expressed in terms 

of subsystem-level performance variables, which use time as the experience variable (e.g. Stapper and 

Rosner, 1995; Weber, et al., 1995; Leachman, 1996; Leachman and Hodges, 1996; Weber, 2004).  

Process learning tends to lead to an increase in batch yield ‘YB(t)’, which is defined as the fraction of 

products within a batch that function to specification at the end of the manufacturing line or the 

fraction of products within a batch that was not wasted in the completion of the industrial process. 3 

An increase in batch yield is correlated with a reduction in batch fault density ‘FB(t)’, which is 

defined as the number of faults contained in a batch. Successful production quality learning tends to 

increase line yield ‘YL(t)’, which is defined as the fraction of batches that survive the manufacturing 
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(or R&D) line; the fraction of batches that is not wasted in the line; or “the fraction of [batches] that 

go all the way through the process without being irreparably damaged by breakage, gross processing 

errors or other systematic problems (Bohn, 1995, p. 33).”  Successful product volume learning 

increases the line throughput rate ‘TL(t)’, which is defined as the number of batches that exit a 

manufacturing (or R&D) line per unit time, assuming that no batches have been lost during the 

manufacturing process, divided by the maximum number of batches that can exit the line per unit 

time. 4  The product output rate ‘Q(t)’ – the primary organization-level performance metric of VLSI 

circuit manufacturing – can be decomposed multiplicatively into YB(t), YL(t) and TL(t) (Bohn, 1995, 

p. 33).   

Q(t) = YB(t) YL(t) TL(t)      (4).  

In equation (4), YB(t), YL(t), TL(t) and Q(t) denote yield rates whose range is restricted from 

naught to unity for all t.  The quantities ‘1-YB(t)’, ‘1-YL(t)’, ‘1-TL(t)’ and ‘1-Q(t)’ represent waste 

rates or non-value-added complements of YB(t), YL(t), TL(t) and Q(t), respectively.  Therefore, waste 

is reduced when YB(t), YL(t), TL(t) and Q(t) move away from naught and towards unity (e.g. Lapré et 

al., 2000, pp. 603-605).  Batch fault density can be expressed as a yield rate for purpose of 

comparison to other yield rates, if it is given in terms of the batch fault yield rate YF(t) = 1-

FB(t)/FB_max, where FB_max denotes the maximum batch fault density that can be measured.   The NVA 

component of the batch fault yield rate is given by ‘FB(t)/FB_max’, a term that goes from unity to 

naught as waste is reduced.   

4.2   Data Sources, Data Collection and Data Analysis  
The primary source of data for this study consists of 34 cases of organizational learning and 

problem solving, which transpired between 1982 and 1999 in 34 VLSI circuit process research-, 

development- and manufacturing organizations located in Asia, Europe and North America.  The 

organizations under study can be considered wholly owned assets of 15 VLSI circuit manufacturing 
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firms from Asia, Europe and North America.  Thirty-one respondents who were personally involved 

in the cases recounted them in personal, one-on-one interviews.  

The respondents answered specific questions concerning the numerical values of subsystem-

level and organization-level performance metrics at the time their cases transpired.  For the purpose 

of generating an analytical model, the responses to these questions were classified as low, if they 

resided close to naught (yield rate < 0.1); as high, if they resided near unity (yield rate > 0.85); or as 

medium, if they were neither near naught nor unity (0.1 < yield rate < 0.85).  The respondents were 

also asked questions concerning the trends and the shape of the curves of all performance metrics.  

For the period of time that they witnessed these cases, the respondents were allowed to answer 

whether ‘on balance’ the yield rate trajectories would be rising, falling or flat, and whether they were 

rising or falling at an increasing or decreasing rate.  This line of questioning would elicit responses 

that focus on long term trends instead of process noise, which tends to be prevalent in semiconductor 

manufacturing (Bohn, 1995). (Serious setbacks in process learning, production quality learning and 

production volume learning can cause the yield rate trajectories to drop below their expected values 

for periods of time that can potentially be measured in weeks.  Conversely, the solution of a major 

problem can create small surges in the yield rates.)  Consequently, when the phrase ‘on balance’ is 

used in §5 of this paper, it refers to an observable long-term trend from which an analytical model of 

the VLSI circuit process lifecycle can be built.  

To calibrate the position of a case within its specific VLSI process lifecycle, the respondents 

were requested to estimate the time that had elapsed since (or was expected to elapse until) the 

anticipated release date for the first product to be realized by processes of the kind that were under 

study.  In addition, respondents were asked open-ended questions whose answers provided a more 

detailed explanation of how the organization in each case learned and how the context of each case – 

a specific production environment during a particular phase of the VLSI circuit process lifecycle – 
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affected organizational learning.  (Please see appendix A for a more detailed description of the 

questions that the respondents were asked.)   

To avoid undesired confusion between the unit of data collection (individuals) and the units 

of analysis (the learning organization and its subsystems) (Yin, 1994, pp. 75-76), data from the above 

case studies have been compared to data from secondary sources. These include published 

semiconductor benchmarking studies (Leachman, 1996; Leachman and Hodges, 1996); historical 

performance data of individual VLSI circuit manufacturing firms (Stapper and Rosner, 1995; Weber, 

et al., 1995); and projections of technical trends, which have been printed in the more recent editions 

of the Semiconductor Industry Association’s technology roadmaps for semiconductor 

manufacturing.2  

The case study data have been coded and displayed in a manner that reveals how subsystem-

level and organization-level performance metrics vary as a function of maturity of the manufacturing 

process (please see table 1).  Two of the organizations under study were engaged in process research; 

the respondents describing these organizations expected to release their first product into production 

within two to three years.  Six organizations were pursuing pilot development; in these organizations 

the first product release was expected within less than a year. Nine organizations were involved in 

commercial startup; their first product release was less than a year behind them. Seventeen 

organizations were engaged in volume production; their first product release was more than eighteen 

months behind them.   

Table 1 indicates that theoretical saturation was achieved relatively easily for cases pertaining 

to the early phases of the process lifecycle.  Within-case analysis provided information regarding the 

relative value of different yield rates within a short time interval. Cross-case analysis revealed 

consistent patterns regarding the behavior of the particular subsystem-level and organization-level 

performance metrics over time, as well as insight into how organizational learning practices changed 

as the VLSI circuit manufacturing process matured.  The picture was less clear during volume 

Page 17 of 40 



12/1/2005, 11:10:31 PM 

production primarily because in many instances the respondents had difficulty determining precisely 

when volume production began or what constituted the optimal level for the previously discussed 

performance metrics during volume production.  However, all 17 respondents reciting cases in which 

the initial product release was at least 18 months behind them agreed that all of the abovementioned 

performance metrics had achieved or had begun to converge on some optimal value, even though the 

vast majority of organizations under observation were still practicing some form of continuous 

improvement.  

An analytical model of organizational learning of the kind that VLSI circuit manufacturers of 

the 1980’s and 1990’s were likely to experience has been derived from within-case analysis and 

cross-case analysis.  The model, which is displayed in Figure 1, tracks the previously identified 

subsystem-level and organization-level performance metrics throughout the lifecycle of a VLSI 

circuit manufacturing process, from the early stages of process research through mature volume 

production.  Product release in this model is defined to occur at t=0.  The model has been validated in 

interviews with 61 experts in VLSI circuit manufacturing, VLSI circuit process development and 

related technical fields. These experts were recruited by recommendations from within their 

respective peer groups.  In addition, some of the respondents that have recited a case have acted as 

experts for cases other than their own. The technical complexity of VLSI circuit manufacturing and 

process development, which results from integrating a multitude of scientific disciplines (Iansiti, 

1998), has warranted such a large number of expert interviews.  For example, an expert in materials 

engineering would not necessarily be able to validate the relevance of a case that revolved around 

optics and polymer chemistry.  Similarly, cases in which production management skills were germane 

to performance improvement required validation by experts in operations management, logistics or 

supply chain management, rather than validation by technical experts.   

{Please insert table 1 and figure 1 about here.} 
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5.   EMPIRICAL FINDINGS AND ANALYTICAL MODEL 
In this section, I present significant results from the study that has been described in §4, and I 

compare the empirically grounded analytical model from figure 1 to the theoretical propositions from 

§3.2.  Patterns suggesting agreement between the empirically derived analytical model and the 

theoretical propositions imply that these propositions possess explanatory power.  Patterns suggesting 

disagreement between the empirically derived analytical model and the initial trial propositions are 

considered evidence that further theory needs to be developed.  Comments by respondents provide 

insight into the reasons for both similarities and discrepancies between theory and observation, which 

can hopefully assist in the development of new theory.    

Empirical evidence from the study in this paper suggests that the subsystem-level yield rates 

behave very differently from each other throughout the VLSI circuit process lifecycle (see figure 1).  

For example, batch yield does not act as if it were driven by continuous improvement.  During 

process research its magnitude is negligible, and the shape of the batch yield trajectories is flat.  Batch 

yield begins to rise in the late pilot development phase in nine out of nine cases under observation and 

takes the shape of an S-curve during commercial startup.  However, evidence from this study suggests 

that process learning (elimination of faults, waste reduction) begins early in the pilot development 

phase at a point in time ‘tPD’ when batch fault density has been reduced to a level ‘FB_Max(tPD)’ at 

which it can be quantified and the analysis of the output of pilot production runs (Pisano, 1996, p. 90) 

can commence.  (According to the respondents who documented the eight cases that transpired in PR 

and PD phases, batch fault density can definitely be measured at 5000 faults per batch (wafer) and 

perhaps as high as 20 000 faults per batch (wafer). Thus, 20 000 < FB_Max(tPD) < 5000. This level of 

process quality is typically achieved between 1.5 and 1 year prior to product release. Thus, -1.5 years 

< tPD < 1.0 years.)  At t=tPD, the process engineering subsystem launches a fault reduction effort that 

results in a subsequent exponential decay in batch fault density. This decay translates into a concave, 

monotonic increase in batch fault yield rate ‘YF(t)=1-FB(t)/FB_max(tPD)’, which lasts throughout pilot 

development and commercial startup; YF(t) saturates near unity during volume production.   
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The shapes of the YF(t) and YB(t) trajectories in figure 1 suggest that the reduction of batch 

fault density constitutes a continuous improvement effort that maintains highly nonlinear learning 

leverage over batch yield, which results from an exponential relationship between batch yield and 

batch fault density.5    In the domain in which FB(t) >> N, which was observed in 8 organizations in 

this study, each unit of product is likely to contain multiple faults; batch yield is negligible; and batch 

fault density has low leverage over batch yield because removing just one fault from a product is not 

likely to cause the product to function to specification.  In all 9 organizations under observation 

around or shortly before t=0, when FB(t) approaches N from above, respondents reported a high batch 

fault yield rate and a low batch yield.  In the domain in which FB(t) ~ N (the CS phase), which was 

observed in 9 organizations, each unit of product is likely to contain approximately one fault, and 

removing one fault from a product is highly likely to cause the product to function to specification. 

Batch yield rises dramatically in this domain, and batch fault density exerts strong leverage over 

batch yield.  The rapid rise in batch yield represents the culmination of a prolonged, continuous 

improvement effort, which has brought batch fault density from FB(t)>>N to FB(t)~N.  Batch yield 

lags 9 to 15 months behind the batch fault yield rate, suggesting that the rise in batch yield which 

begins slightly before product release rises sharply shortly thereafter to a large degree constitutes a 

delayed reward for process learning that has taken place prior to product release.  In the domain in 

which FB(t) << N (the VP phase), batch fault density approaches naught, the batch fault density 

approaches unity, and faults become more difficult to find.  On balance, YB(t) saturates; the effect on 

batch yield of reducing batch fault density becomes negligible once more.   

The cost of increasing batch yield is viewed as very high because identifying faults the size of 

a tenth of a cubic micrometer is associated with many in-line inspection steps (Tang, 1991) on very 

expensive equipment with an inherently low throughput rate.  A yield manager from a VLSI-circuit 

manufacturing facility explains.  
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“An optical inspection tool costs as much as $3 million, and it inspects at a rate of about one wafer 

per hour.  …  We need to purchase many of these tools to conduct inspections at a rate that will 

increase our [batch] yield.  …   We have to amortize [these diagnostic tools] just like regular 

fabrication tools, even though they do not improve anything on the wafers. On the contrary, the 

inspections generally teach us that we may have to scrap some badly contaminated wafers.”     

VLSI circuit manufacturers of the 1990’s operated in an environment in which reaching VP 

six months early could generate more than $ 1 billion in additional profits over the lifecycle of a 

VLSI circuit manufacturing process (Weber, 2004). They consequently had an incentive to move 

forward in time the anticipated surge in batch yield upon which a timely surge in product output rate 

and, by extension, profitability are contingent. The highly nonlinear relationship between batch yield 

and batch fault density enables VLSI circuit manufacturers to generate an earlier surge in batch yield 

by accelerating the rate of batch fault reduction.  VLSI circuit manufacturers are thus inclined to pay 

for technology that accelerates a decline in batch fault density, and focus on process learning during 

pilot development. The yield manager from above explains.  

“We try to get rid of as many faults as soon as we can.  We try to solve the problems that we believe 

cause most of the faults first. We continue to solve problems until [batch fault] density is low enough 

for [batch] yield to rise significantly.  Then we ramp up to volume production. …  This fault reduction 

process takes many months.  …  [Our company] spends tens of millions [of US dollars] on diagnostic 

equipment and fault reduction practices.  The investment is worth it, if it accelerates fault reduction 

by a few weeks.    

Figure 1 suggests that line yield is driven by continuous improvement.  On balance, line yield 

rises throughout process research and pilot development in all eight out of eight cases under 

observation, reaching a high level at the beginning of commercial startup. Line yield continues to 

increase during the CS phase, but in no case does line yield reach unity.  In all cases, on balance, the 

shapes of the line yield trajectories are concave and monotonically increasing throughout the PR, PD 

and CS phases. Line yield saturates during volume production, either by flattening out completely or 

increasing at the margins.  In 41 out of 41 synchronous, pair-wise comparisons between line yield, 
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batch yield and line throughput rate, which span the complete VLSI process lifecycle, YL(t) is greater 

than YB(t) and TL(t).  Increases in line yield primarily result from improvement in equipment 

maintenance and wafer handling procedures, which do not require significant physical 

experimentation or investment in diagnostic tools.  A senior technician in a VLSI circuit R&D facility 

explains.   

“In the early stages of process development, we have to make sure that equipment does not destroy, 

damage or seriously contaminate wafers while they are being processed.  This is done through 

rigorous preventative maintenance.  Human factors like sloppy wafer handling can damage wafers, 

too.  Therefore, better training and wafer handling procedures will increase line yield.   

The skills required to improve line yield can be acquired to prior to product release, an 

accomplishment that is rewarded during the CS phase.  The technician from above explains.    

It is best to learn them [these skills] as soon as you can.  When the engineers [process engineering 

subsystem] start to increase the chip yield [batch yield], then we [in the production subsystem] do not 

want become the limiting factor on the fab’s output.  We want the line yield to be high by then.  …  

Equipment maintenance skills learned during process development will help you in volume 

production.  You are adding more units of the same equipment types during the ramp to volume 

production, so you tend to know what you are doing when [volume] production starts.   

Figure 1 suggests that the line throughput rate does not behave as if it were driven by 

continuous improvement.  Throughout process research and pilot development, the eight 

organizations observed in this study operate at relatively constant line throughput rate that is more 

than an order of magnitude smaller than the line throughput rate of the volume production line at 

which the process and its products are supposed to be manufactured (i.e. TL(t) scores a ‘low’ in table 

1).  (In the two PR-phase cases TL(t) was even lower than in the six PD-phase cases.)   

In all nine cases that occurred during the CS phase, the line throughput rate required 12 to 18 

months to rise to volume production levels.  This prolonged period of time suggests that not all skills 

required for the commercial startup were acquired during pilot development, i.e. not all learning can 
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be done before doing.  Some aspects of production volume learning have to occur in a use 

environment that reflects realistic production conditions on real production equipment (von Hippel 

and Tyre, 1995). In the words of an expert in semiconductor diagnostics:   

“You cannot just crank up a wafer fab like the volume knob on your stereo.  It requires some 

learning. You will add more equipment. You may have to add and manage additional shifts in 

maintenance and production.  Equipment problems that do not occur when you run at low volume are 

likely to appear.  For example, robotic loading equipment is more likely to fail if you run it 

perpetually without maintenance.  …  You may also have to remove a few unnecessary [diagnostic] 

steps from the process to minimize your WIP [work-in-progress] inventory. You will have to learn 

how to run the fab without the information that these [diagnostic] steps reveal.  …  All of this 

[learning] takes time.”  

In principle, a VLSI circuit manufacturer can save time by simulating a realistic production 

conditions on the factory floor prior to product release. The manufacturer could move production 

volume learning forward in time by ramping up to volume production conditions during the PD phase 

or earlier. Production volume learning would run in parallel with attempts to continuously improve 

the batch fault yield rate and YL(t).  A multi-year planning horizon enables the learning organization 

to coordinate the subsystem-level continuous improvement efforts such that YL(t) and TL(t) could 

achieve their optimal values when YB(t) begins to surge.  YL(t) and TL(t) would not delay Q(t); a 

surge in batch yield would translate directly into a surge in the product output rate.   

Evidence from the empirical study in this paper suggests that production volume learning 

does not occur in parallel with process learning and production quality learning prior to commercial 

startup. TL(t) consistently exceeds YB(t) in all pair-wise comparisons from the eight cases that 

transpired in PR phase or the PD phase, indicating that process learning rather than production 

volume learning is VLSI circuit manufacturers’ primary source of concern during these phases.  The 

concave, monotonic increase of the batch fault yield rate during pilot development suggests that a 

continuous improvement effort drives process learning during that phase, and continuous 

improvement line yield occurs throughout the PR, PD and CS phases. A flat line throughput rate 
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during pilot development suggests that process learning and production volume learning are not 

occurring in parallel during that phase because production volume learning is not occurring at all.   

At t=0 (the beginning of the CS phase; the time of product release), nine out of nine pair-wise 

comparisons between YB(t) and TL(t) revealed that YB(t) > TL(t), suggesting that production volume 

learning has replaced process learning as the primary source of concern.  Production volume learning 

occurs during commercial startup, but the effort is not driven by continuous improvement. The shape 

of the line throughput rate trajectory is not concave in any of the nine cases under observation; 

respondents have consistently indicated a convex rise or the shape of an S-curve for TL(t).  A manager 

at a firm, which provides yield management consulting services to many VLSI circuit manufacturers, 

explains why this is so.  

“From what I observe at our customers, the initial ramp to volume is very painful, but gets a lot 

easier as time progresses.  …  You are removing bottlenecks at every process step in the line.  You 

remove the worst bottlenecks first.  In the beginning, there are many bottlenecks, so your efforts do 

not make much difference.  Once there are only a few bottlenecks left, your efforts begin to pay off.  

Your throughput rises dramatically.” 

Respondents primarily attribute the belated effort at production volume learning to a 

deliberate practice that is driven by high materials costs and the inability to amortize the full set of 

plant equipment that is required for volume production.  The expected costs of production volume 

learning before doing may exceed the expected revenues generated by an earlier ramp to volume 

production.  A vice president of a major VLSI circuit manufacturer, who has led many process 

development efforts, provides insight into the materials costs associated with learning.  

“During research and development you are producing at very low [batch] yield, so you are not 

generating any revenue. It is as if you were producing for the garbage can. Everything you do just 

costs. And it costs very much.  …  During R&D, processing one single wafer probably costs more 

than $10,000. If you have fewer than 10 good chips on a wafer -- that amounts to more than $1000 

per chip. Very few chips bring in more than $100 in revenues.  …  You want to run as few wafers as 

possible during R&D.  You cannot afford to ramp up to production until your yield is moderately 
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high, so you have to learn how to produce at high volumes when your [batch] yield is moderately 

high.”  

A manager in a fab that runs multiple VLSI circuit manufacturing processes at various levels 

of maturity explains how a premature ramp to volume production impacts the utilization of fixed 

assets.  

“You have to install the full equipment set when you ramp up to volume production.  If we were to 

ramp up to volume production before we have significant yields, then we would not be generating 

much revenue.  Our production equipment would be exercising its capabilities without producing 

anything. From an accounting point of view, the equipment is essentially idle, or worse – it is 

consuming without producing.  …  A full set of production equipment costs hundreds of millions – we 

cannot afford to install it unless we produce chips.  …  In our particular case, some production 

equipment runs multiple processes.  If we were to ramp up a new process prematurely, we would 

crowd out capacity that we use for existing processes.  We would be interfering with our existing 

production lines and lose some revenue (e.g. Hatch and Mowery, 1998).  …  Accelerating the [ramp 

to volume production] rate by a few weeks is not worth the cost.   

According to the respondents in this study, who observed a total of 34 organizations at 

various stages of the VLSI circuit manufacturing lifecycle, the product output rate tends, on balance, 

to behave as if it were undergoing punctuated equilibrium.  During PR and PD, Q(t) exhibits 

negligible values, and the shape of its trajectory was essentially flat. During the CS phase, Q(t) rises 

significantly and rapidly; in all 9 observed CS cases its trajectory takes the shape of an S-curve.  Q(t) 

is either flat or flattening out during volume production.   

The results of study in this paper dispel the notion that punctuated organizational learning 

results from a stroke of organizational genius, which terminates a prolonged period of organizational 

ignorance.  Instead, empirical evidence suggests that subsystem-level continuous improvement efforts 

influence the behavior of organization level performance functions.  Two subsystem-level continuous 

improvement efforts were identified: 1) production quality learning, which causes line yield to 

continuously increase at a decreasing rate throughout PR, PD and CS; and 2) process learning, which 

Page 25 of 40 



12/1/2005, 11:10:31 PM 

causes the batch fault yield rate to continuously increase at a decreasing rate throughout PD and CS.  

Production volume learning has not been identified as a continuous improvement effort. 

The findings of this study suggest that subsystem-level learning efforts exert highly nonlinear 

leverage over the organization-level performance metric -- the product output rate. In §3.2, 

multiplicative decomposition of Q(t) into constituent yield rates has been proposed as a mechanism 

for nonlinear learning leverage.  Forty-one within-case comparisons of Q(t) to YB(t), YL(t) and TL(t) 

validate this proposition.  In forty-one out of forty-one within-case comparisons Q(t) remains 

relatively close to naught until the CS phase, when its constituent yield factors achieve values that 

significantly exceed naught (Proposition 1a); Q(t) approaches its optimal level when its constituent 

yield factors approach their respective optimal levels (Proposition 1a); and Q(t) lags behind every one 

of its constituent yield rates in a manner that is consistent with equation (4).  Figure 1 shows that this 

lag is asymmetric (Proposition 1b). Q(t) lags months behind YB(t) and TL(t), the constituent yield 

rates that tend to limit Q(t) the most.  Q(t) lags years behind YL(t); YL(t) is not a limiting factor.  

A highly nonlinear relationship between batch fault density and batch yield has been 

identified as an additional mechanism for nonlinear learning leverage that was not anticipated in §3.2.  

The highly nonlinear relationship between FB(t) and YB(t) postpones the rewards of process learning 

for prolonged periods of time.  YB(t) remains near naught until FB(t) approaches N from above. 

Multiplicative decomposition of the product output rate prevents Q(t) from rising above negligible 

levels until YB(t) does so, which occurs when FB(t)~N. Consequently, process learning exerts 

enormous leverage over organizational performance during commercial startup.   

Proposition 2 states that an organization with a sense of urgency pursues its various 

subsystem-level continuous improvement efforts in parallel and coordinates them in a manner that 

causes Q(t) to surge towards unity as early as possible.  The continuous improvement efforts that 

drive process learning and production quality learning occur in parallel (a practice that is consistent 

with urgency) because the relatively low costs of early production quality learning are expected to be 
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less than the additional revenues generated from the resulting earlier ramp to volume production.  By 

contrast, production volume learning is consciously deferred to the CS phase even though a deep 

theoretical and practical knowledge base underlies VLSI circuit manufacturing.  This practice, which 

is apparently inconsistent with urgency, is justified because the high costs of earlier production 

volume learning are expected to be greater than the additional revenues generated from the resulting 

earlier ramp to volume production.   

6. DISCUSSION  
The exploratory study in this paper, which has investigated punctuated equilibrium in 

organizational learning, has provided some new insight into how organizational learning impacts the 

R&D process and its immediate aftermath.  The study’s findings suggest that relatively weakly 

performing organizational subsystems constrain organization-level performance to negligible levels 

of performance for a prolonged period of time, i.e. for most of the R&D process. A rapid surge in 

organizational performance occurs in the last stages of R&D, when no subsystem-level variable 

performs weakly anymore. Saturation of organization-level performance at an optimal level occurs 

only if and when every subsystem-level performance variable is approaching its respective optimal 

level.  In §3.2 of this paper, these results had been predicted for industrial processes in which 

organizational performance can be decomposed multiplicatively into subsystem-level performance 

variables (e.g. Bohn, 1995; Mukherjee, et al., 1998; Lapré et al., 2000).  However, the discovery of a 

more complex mechanism of organizational learning – one that involves highly nonlinear 

relationships between performance variables; performance lags; and conscious, coordinated, 

economically motivated delays of learning activity – suggests the results of the study in this paper 

apply to all organizations in which a weakly performing subsystem severely constrains the 

performance of the organization as a whole.  

The results of the study in this paper suggest that learning organizations can enhance future 

organizational performance, if they are able to take advantage of the inherently nonlinear 
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relationships between the variables by which organizational subsystems measure their own 

performance (e.g. batch fault density, line yield and line throughput rate) and variables through which 

the learning organization as a whole measures its performance (e.g. product output rate), as well as 

understanding the role intermediate variables (e.g. batch yield).  For example, the process engineering 

subsystem can engage in process learning during pilot development without achieving any near-term 

organization-level success, yet maintain confidence that batch yield will surge once batch fault 

density drops to the enabling level.  Organizations that operate in an urgent economic environment 

can coordinate subsystem-level learning activity during R&D to deliver an optimal level of output in 

a timely manner. For example, the production organization can acquire production skills by engaging 

in production quality learning ‘before doing’, while, in parallel, the process engineering subsystem 

conducts process learning. An in depth understanding of the tradeoffs between the additional cost 

incurred and the additional revenue generated by a timely optimal organization-level performance 

allows organizations to optimally time particular learning activities.  For example, the high cost of 

production volume learning causes VLSI circuit manufacturers to defer said activity to commercial 

startup, the final stage of the R&D process, during which rising batch yield generates an increasing 

revenue stream that renders a significant increase in the line throughput rate as economically justified.   

The abovementioned conclusions impact the development of more comprehensive theories of 

organizational learning, which incorporate potential organizational responses to observable 

phenomena such as urgency (e.g. Gersick, 1988), time-sensitive market windows, shortening product 

lifecycles and volatile unit prices for products to be produced (e.g. Bourgeois and Eisenhardt, 1988).  

Organization-level performance metrics that are able to encompass these phenomena must contain a 

revenue component that is sensitive to time as well as a component that reflects the cost of learning.  

The time dependent revenue component captures the sense of urgency that drives the organizations 

under observation in this study to learn to generate revenue sooner rather than later.  A performance 

variable containing both a time-dependent revenue component and a component that expresses the 
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cost of learning allows managers to make rational decisions pertaining to tradeoffs between the costs 

of and revenues generated by earlier learning.   

The empirical findings in §5 of this paper suggest that high technology manufacturing 

organizations accumulate a significant portion of their production knowledge prior to product release, 

a conclusion that is consistent with Pisano’s (1994, 1996) observations from the pharmaceutical 

industry.  For example, figure 1 illustrates that line yield comes very close to its optimal value prior to 

t=0, implying that most knowledge resulting from process learning and production quality learning 

accumulates within organizational subsystems before a factory scales up to volume production.  

However, line yield, the relatively best-performing subsystem-level yield rate, barely contributes to 

the organization-level metric, product output rate, for most of VLSI circuit process lifecycle.  The 

majority of all batches survive the manufacturing line for more than a year before any significant 

product output rate can be detected. The production quality knowledge that is required to get line 

yield to such high levels is not reflected in the organization-level performance variable until batch 

yield and line throughput rate -- the weaker subsystem-level variables -- approach their optimal 

levels. Similarly, the overwhelming majority of all faults are removed from the VLSI circuit process 

before the product output rate deviates substantially from naught. The process knowledge required to 

remove the majority of batch faults does not manifest itself in the organization-level performance 

metric. Both forms of subsystem-level knowledge remain hidden from organization-level 

performance metrics until all critical subsystem-level performance variables approach their optimal 

values.  As a consequence, the organizational knowledge accumulated during R&D is underestimated.  

Hidden subsystem-level knowledge potentially leads practitioners to major judgment errors. 

Figure 1 shows that, shortly prior to t=0, a high level manager who looks exclusively at organization-

level metrics such as the product output rate may correctly observe that the organization as a whole is 

not performing to satisfaction, but may falsely conclude that the R&D process has failed and that 

underperformance will continue for a prolonged period of time. The manager could shut the 
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organization down prematurely, never knowing that strong performance would have been less than 6 

months away.  Had the manager also looked at batch fault density and line yield at t=0, he/she would 

most likely not have made such a strategic blunder.   

During the process research phase of VLSI circuit process development all organization-level 

knowledge and some subsystem-level knowledge is ‘pre-technological’ (Bohn, 1994, p. 63-64).  Due 

to low levels of process quality, neither batch yield nor batch fault density can be measured with any 

accuracy through physical experimentation that uses a VLSI circuit product; thus product output rate 

cannot be determined with any accuracy. A characterization of the full VLSI circuit process (‘know 

how’) or a scientific explanation of how the process operates over a broad region (‘know why’) 

appears elusive.  Yet, figure 1 shows that by the end of the PR phase, production quality knowledge 

advances to the point where most batches that have been introduced into the production line are likely 

to complete manufacturing process without being irreparably damaged.  Figure 1 also suggests that no 

process quality learning occurs until the end of the PR phase, a point in time by which the basic 

architecture of the process has been defined.   

It is difficult to imagine that these achievements could have been accomplished by 

serendipity, by making analogies to unrelated processes or by bringing in knowledge from outside the 

organization, which Bohn (1994, p. 63) suggests is how pre-technological knowledge is acquired.  

Pisano (1994, p. 90) documents process modeling through ‘thought experiments’ during the early 

stages of process research in the pharmaceutical industry, which are followed by physical 

experimentation on a very small scale. In the semiconductor industry, Thomke (1998) has observed 

electronic simulation activities, which are replaced by physical experimentation once that mode of 

learning is proven to be more effective method of improving process and product quality. Both modes 

of experimentation occur during process research, indicating that fault reduction does occur during 

that stage of the process lifecycle.  Significant production quality know how (and perhaps ‘know 

why’) should thus be present within the production subsystem, and significant process know how 
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(and perhaps ‘know why’) should be present in the process engineering subsystem at the end of the 

PR phase.  Further investigation of these phenomena is warranted before a comprehensive theory of 

organizational learning can be built and the R&D process in high technology manufacturing can be 

completely explained.  

The findings of the study in this paper are of importance to high technology manufacturing 

industries in which market timing represents a key success factor, the relationships between 

subsystem-level performance variables and organization-level performance variables are highly 

nonlinear and the cost of continuous improvement can be very high.  However, the study has also 

raised a series of general issues concerning the R&D process, organizational learning and the 

acquisition of technological knowledge. These include the need to incorporate time dependence, a 

revenue component and a cost component into comprehensive organizational performance variables; 

the significance of knowledge that resides in organizational subsystems but is hidden from 

organization-level metrics; and the potential ability to bring subsystem-level knowledge to the ‘know 

how’ and ‘know why’ stage before organizational performance can be measured.  The author of this 

paper calls for empirical research into these topics in the hope of advancing the field organizational 

learning towards a more comprehensive understanding of technological knowledge and the R&D 

process.   

ACKNOWLEDGEMENTS 
I would like to thank Prof. Stefan Thomke of Harvard Business School and Prof. Roger Bohn 

of UC San Diego, as well as Prof. James M. Utterback, Prof. Nelson Repenning, Prof. Michael 

Cusumano, Prof. Eric von Hippel and Prof. Edward B. Roberts, all of MIT’s Sloan School of 

Management, for volunteering their insight into subject matter related to this paper.   

LIST OF REFERENCES 
Abernathy, W. J., and Utterback, J. M. 1978. Patterns of industrial innovation. Technology Review 

80, 40-47. 

Page 31 of 40 



12/1/2005, 11:10:31 PM 

Adler, P. S., and Clark, K. B., 1991. Behind the learning curve: A sketch of the learning process. 

Management Science 37(3), 267-281. 

Alchian, A. 1963.  Reliability of progress curves in airframe production. Econometrica 31, 679-693.  

Argote, L., Beckman, S. L., and Epple, D.  1990. The persistence and transfer of learning in industrial 

settings. Management Science 36, 140-154.  

Argote, L., and Epple, D. 1990. Learning curves in manufacturing. Science 247, 920-924. 

Arrow, K. 1962. The economic implications of learning by doing. Review of Economic Studies 29, 

155-173.  

Baloff, N. 1970.  Startup management. IEEE Transactions on Engineering Management 17(4), 

132-141.   

Bohn, R. E. 1994.  Measuring and managing technological knowledge. Sloan Management Review 

36(1), 61-73. 

Bohn, R. E. 1995. Noise and Learning in Semiconductor Manufacturing. Management Science 41(1), 

31-42.  

Bohn, R. E., and Terwiesch, C.  1999. The economics of yield-driven processes. Journal of 

Operations Management 18(1), 41-59.  

Bourgeois, III, L. J. and Eisenhardt, K. M. 1988. Strategic Decision Processes in High-Velocity 

Environments: Four Cases in the Microcomputer Industry, Management Science 34(7), 816-835.  

Brown, S. L. and Eisenhardt, K. M. 1997. The art of continuous change: Linking complexity theory 

and time-paced evolution in relentlessly shifting organizations, Administrative Science Quarterly 

42(1), 1-34.  

Chase, R. B., and Acquilano, N. J. 1981. Production and Operations Management, third ed. Richard 

D. Irwin, Inc., Homewood, IL. 

Page 32 of 40 



12/1/2005, 11:10:31 PM 

Cunningham, J. 1990.  The use and evaluation of yield models in integrated circuit manufacturing. 

IEEE Transactions on Semiconductor Manufacturing 3(2), 60-71.   

Dudley, L. 1972.  Learning and productivity change in metal products. The American Economic 

Review 62(4), 662-669. 

Dutton, J. M., and Thomas, A. 1984.  Treating progress functions as a managerial opportunity. 

Academy of Management Review 9(2), 235-247. 

Eisenhardt, K. M. 1989.  Building theories from case study research. Academy of Management 

Review 16, 620-627. 

Fellner, W. 1969.  Specific interpretations of leaning by doing. Journal of Economic Theory 1, 119-

140.  

Gersick, C. J. G. 1988. Time and transition in work teams: Toward a new model of group 

development. Academy of Management Journal 31(1), 9-41. 

Gersick, C. J. G. 1991.  Revolutionary Change Theories: A multilevel Exploration of the Punctuated 

Equilibrium Paradigm. Academy of Management Review 16(1), 10-36. 

Hatch, N. W., and Mowery, D. C. 1998.  Process innovation and learning by doing in semiconductor 

manufacturing.  Management Science 44(11), 1461-1477.   

Hayes, R. H. and Clark, K. B. 1985.  Exploring the source of productivity: Differences at the factory 

level, in: Clark, K. B., Hayes, R. H. and Lorentz, C. (eds.), The Uneasy Alliance: Managing the 

Productivity-Technology Dilemma. Boston, MA, Harvard Business School Press, pp. 151-188.  

Hirsch, W.  1952.  Manufacturing progress functions. Review of Economics and Statistics 34, 143-

155.  

Iansiti, M. 1998. Technology Integration: Making Critical Choices in a Dynamic World, Harvard 

Business School Press, Cambridge, MA.  

Page 33 of 40 



12/1/2005, 11:10:31 PM 

Lapré, M. A., Mukherjee, A. S., and Van Wassenhove, L. N.  2000.  Behind the learning curve: 

linking learning activities to waste reduction, Management Science 46(5), 597-611.  

Leachman, R. C.  1996.  Competitive manufacturing survey: Third report on the results of the main 

phase. UC Berkeley Report CSM-31, University of California, Berkeley, CA. 

Leachman, R. C., and. Hodges, D. A. 1996.  Benchmarking Semiconductor Manufacturing. IEEE 

Transactions on Semiconductor Manufacturing 9(2), 1158-1169. 

Lundvall, D. M., and Juran, J. M. 1974. Quality Costs. In: Juran, J. M., Gryna, F. M., and Bingham, 

R. S., Jr. (eds.), Quality Control Handbook, third ed., McGraw-Hill, Inc., New York, NY.  

Moore, G.  1975.  Progress in digital integrated circuits. IEDM Technical Digest 1975, 11. 

Mukherjee, A. S., Lapré, M. A., and Van Wassenhove, L. N.  1998.  Knowledge-driven quality 

improvement. Management Science 44 (11), 35-44. 

Pisano, G. P.  1994.  Knowledge, integration and the locus of learning: An empirical analysis of 

process development.  Strategic Management Journal 15, 85-100.   

Pisano, G. P. 1996.  Learning before doing in the development of new process technology. Research 

Policy 25, 1097-1119. 

Rapping, L. 1965. Learning and the World War II production functions. Review of Economics and 

Statistics 48, 98-112.  

Searle, A. D. and Gody, C. S.  1945.  Productivity increases in selected wartime shipbuilding 

processes. Monthly Labor Review 60, 1132-1147.  

Stapper, C. and Rosner, R.  1995.  Integrated circuit yield management and yield analysis: 

Development and implementation. IEEE Transactions of Semiconductor Manufacturing 8(2), 95-

101.  

Page 34 of 40 



12/1/2005, 11:10:31 PM 

Tang, C. S.  1991.  Designing an optimal production system with inspection. European Journal of 

Operational Research 52, 45-54.  

Terwiesch, C., and Bohn, R. E.  2001.  Learning and process improvement during production ramp-

up. International Journal of Production Economics 70(1), 1-19. 

Thomke, S. H.  1998.  Managing experimentation in the design of new products. Management 

Science 44(6), 743-762. 

Tushman, M. L., and Anderson, P. 1986. Technological discontinuities and organizational 

environments. Administrative Science Quarterly 31, 439-465. 

Tushman, M. L., and Romanelli, E. 1985. Organizational evolution: A metamorphosis model of 

convergence and reorientation, in: Cummings, L. L., and Staw, B.M. (eds.), Research in 

Organizational Behavior 7, JAI Press, Greenwich, CT, pp. 171-222.  

Utterback, J. M., 1994. Mastering the Dynamics of Innovation, Harvard Business School Press, 

Cambridge, MA.  

Von Hippel, E., and Tyre, M.  1995.  How leaning by doing is done: Problem identification in novel 

process equipment. Research Policy 24, 1-12. 

Weber, C. M. 2003.  Rapid Learning in High Velocity Environments. Doctoral Dissertation, MIT 

Sloan School of Management, Cambridge, MA, pp. 220-282.  

Weber, C. M. 2004.  Yield learning and the sources of profitability in semiconductor manufacturing 

and process development.  IEEE Transactions on Semiconductor Manufacturing 17(4), 590-596.  

Weber, C., Moslehi, B., and Dutta M.  1995.  An integrated framework for yield management and 

defect/fault reduction.  IEEE Transactions on Semiconductor Manufacturing 8(2), 110-120.  

Wein, L. M.  1992.  Random yield, rework and scrap in a multistage batch manufacturing 

environment. Operations Research 40, 551-563. 

Page 35 of 40 



12/1/2005, 11:10:31 PM 

Wright, T. P. 1936. Factors affecting the cost of airplanes. Journal of Aeronautical Science 3, 122-

128.  

Yin, R. K.  1994.  Case Study Research, Sage Publishing, Newbury Park, CA.  

Zangwill, W. I., and Kantor, P. B. 1998.  Toward a theory of continuous improvement. Management 

Science 44(7), 910-920.  

APPENDIX A:  QUESTIONS FOR THE RESPONDENTS  
Questions Regarding Special Events:  Did you witness any of the following special events regarding 

the VLSI circuit process that pertained to the particular case that you are recounting: the beginning of 

physical experimentation; the first physical experiment that was performed on a VLSI circuit product 

prototype (t=tPD); the beginning of commercial startup (t=0); the cessation of the increase in the line 

throughput rate?  If yes, at what calendar date did the event occur? Please estimate the numerical 

value of the following performance metrics at that point in time: batch fault density ‘FB(t)’; batch 

yield ‘YB(t)’; line yield ‘YL(t)’; line throughput rate (in wafer starts per month) and product output 

rate (in chips per month).  (Batch fault density was converted into batch fault yield rate by 

substituting observed values for batch fault density into the quantity ‘1-FB(t)/FB_max’, where FB(t) 

represents batch fault density at the point in time at which the special event occurs.  Given that FB(t) 

cannot be measured at t<tPD, the highest level of batch fault density that could be measured acted as a 

proxy for FB_max.)  

Questions Regarding Maximum Performance:  What was the maximum value for line throughput 

rate (in wafers per month) and product output rate (in chips per month) that your company could 

possibly achieve in the venture that you have described in your case?  (Line throughput rates and 

product output rates were converted into yield rates by dividing observed values by maximum 

values.)   

Questions Regarding VLSI Circuit Process Technology:  How many instances of a VLSI circuit 

product (prototype) design did the batches (wafers) in your case contain?  What were the minimum 
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features of the VLSI circuit products in your case?  What were their dimensions? How many clock 

cycles per second (key performance indicator for VLSI technology) does a leading-edge device 

realized by the process technology in your case achieve?  If your case transpires in the early phases of 

the VLSI process lifecycle, what are the minimum feature sizes and maximum device clock speed 

that the VLSI circuit process under observation is intended to realize?   

The Timing of the Case:  What are the key calendar dates that pertain to your case?  When did 

learning and problem-solving activity pertaining to your case begin?  When was it completed?   

Reciting the Case:  Please recite the case as you believe it transpired.  Please answer the following 

questions in the process.  How was the problem in your case detected initially?  How was it localized 

to a specific technology? How was the root cause of the problem identified?  What was the fix? Was 

the fix implemented? Why or why not? How?  How was the fix confirmed?   

The Case – Performance variables (Numerical Values):  Please estimate the numerical value of the 

following performance metrics at the time your case transpires: batch fault density ‘FB(t)’; batch yield 

‘YB(t)’; line yield ‘YL(t)’; line throughput rate (given in wafer starts per month) and product output 

rate (given in chips per month).  How did the actions taken in your case affect these values?   

The Case – Performance Variables (Long-Term Tendencies, Shapes of Curves):  Please indicate 

which of the following best describe the long term tendencies of batch fault density, batch yield, line 

yield, line throughput rate and product output rate at the time your case took place: a) decreasing at an 

increasing rate; b) decreasing at a decreasing rate; c) flat – little change; d) increasing at a decreasing 

rate; of e) increasing at an increasing rate.  How did the actions taken in your case affect these rates?  

The Cost of Learning:  Approximately, how many instances of each equipment type were present in 

the fab the time the case you are reciting transpired?  What was the cost of a silicon wafer at the time 

of your case? What was the cost of a fully processed wafer?  What are the specific costs associated 
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with increasing batch yield, line yield and the line throughput rate? Please rank these performance 

parameters with respect to cost of improvement.  

Optimal Performance Levels:  What was the optimal level of performance for batch fault density, 

batch yield, line yield, line throughput rate (in wafer starts per month) and product output rate (in 

chips per month) that the organization in the case was trying to achieve?  

Financial Performance:  Approximately what was the (expected) unit price of VLSI circuit product 

of the type your venture would produce?  At the time the case transpired, did you believe the venture 

was (going to be) profitable?  Did your expectations materialize?  If your case occurred after the 

release of the first major product do expect the unit price of your product to increase, stay the same or 

decrease over time?    

Temporal Calibration:  When (calendar date) do you believe the organization in your case had to 

achieve optimal performance levels for maximum profitability to occur?  At the time the case 

transpired, did you believe that you were ahead of Moore’s Law, in synch with Moore’s Law or 

behind Moore’s Law?  By how much time?    

CAPTIONS 
Table 1: Yield Rate Data 

Figure 1:  Empirically based model the lifecycle of a VLSI circuit manufacturing process.  CI 
stands for continuous improvement.  

 

FOOTNOTE TABLE  
1 For a detailed description of Moore’s Law, please see Moore (1975).  
2 Semiconductor Industry Association (1994, 1997). The National Technology Roadmap for Semiconductors.  
Semiconductor Industry Association (1999, 2001, 2003). The International Technology Roadmap for 
Semiconductors. 
3 Batch yield is colloquially known as ‘chip yield’, ‘die yield’ or ‘die-sort yield’ in the semiconductor industry 
(Bohn, 1995, p. 33).  
4 In the semiconductor industry, line yield is frequently referred to as ‘survival yield’ because it represents the 
fraction of batches that survive the manufacturing line or the fraction of batches that is not wasted in the line.  
The line throughput rate is colloquially known as ‘wafer starts’ because it roughly corresponds to the number of 
wafers that entered the fab a few weeks earlier.   
5 The relationship between batch yield and batch fault density varies from process to process and from product 
to product.  Most process engineering subsystems tend to characterize this relationship empirically as a highly 
nonlinear function known as a yield model (e.g. Cunningham, 1990; Stapper and Rosner, 1995).   
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FIGURE 1 
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