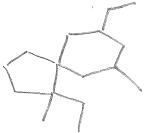
October 17, 2012


Name (last, first)

1. Name the following compounds. (15 pts)

trans-1-sec-butyl-3-butylcyclohexane

7-ethyl-2-isobutyl-1-methylbicyclo[4.2.0]octane

2. Draw 1,7-diethyl-1,9-dimethylspiro[4.5]decane in bond line. (5 pts)

3. The following compounds are ______. (circle your answer) 9 pts

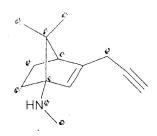
constitutional/structural isomers

conformational isomers

stereoisomers

constitutional/structural isomers

conformationa isomers


stereoisomers

constitutional/structural isomers

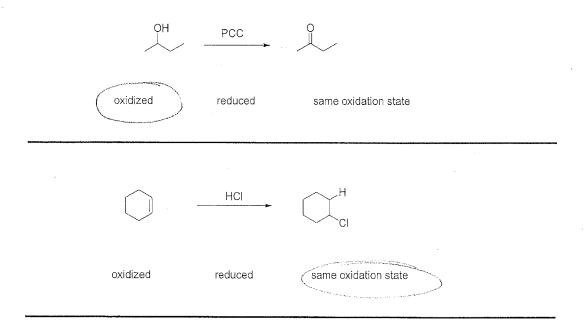
conformationa isomers

stereoisomers

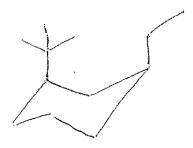
- 4. Answer the following questions about compound X.
 - a. What is the molecular formula (mf) for compound X? (3 pts)

- . .
- b. Compound X has __iO__ sp³ atoms (2 pts)

C₁₃H₁₉N


- compound X
- c. Compound X has 2 sp atoms (2 pts)
- 5. Fill in in the missing curved arrows (electron pushing) for the following reactions. (18 pts)

b


$$N \equiv N$$

6. Draw, in bond line, all the structural isomers that have the molecular formula $C_4H_{10}O$. (14 pts)

7. In the following reactions, decide if the organic molecule (not just a single atom) is oxidized, reduced, or is at the same oxidation state. Please circle your answer. (9 pts)

8. Draw *cis*-1-tert-butyl-3-ethylcyclohexane in its **least** stable conformation. (4 pts) *** Poorly drawn chairs and bad bond angles **will cost points*****

9. Arrange the following compounds according to their boiling points by writing <u>highest bp</u>, <u>middle bp</u>, and <u>lowest bp</u> under the structure. (3 pts)

- 10 a. Draw two additional resonance structures for the following compound. (6 pts)
 - b. Decide which is the better resonance structure and explain why you picked this structure. (3 pts)

- 11. a. Write Newman projections for the three staggered conformations of 3-fluorohexane, looking down the C4 C3 bond. (6 pts)
 - b. write <u>most stable</u> under the most stable conformation. (1 pt)

3-fluorohexane

Most stable

Circle the structural isomers of $C_{12}H_{20}O$. All molecules have 12 carbons. $\square H \square =$