WORKSHOP, Chapter 15

Alcohol Reactions and Syntheses

1. Compounds A, B, and C all have the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$. All three compounds were treated independently to two oxidation reactions (conditions X and Y).

These were the results of the reactions.

Compound E has the ${ }^{1} \mathrm{H}$ NMR structure of
$11.2 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}): 2.3 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H}): 2.0(\mathrm{t}$ of sept, 1 H$): 1.0(\mathrm{~d}, 6 \mathrm{H})$
Draw and name all the possible structures of compounds A, B, C, D, E and F. What are conditions X and Y ?
2. Design a racemic synthesis of 1,1,4-trideuteropentane-1,4-diol and 4-deuteropentane-1,4-diol starting from

3. Show how to prepare each of the two compounds below using Grignard coupling reactions for the $\mathrm{C}-\mathrm{C}$ bond-forming steps. All the carbons in the products must originate from benzene or alcohols having three or fewer carbon atoms. You may use any needed reagents or solvents.

4. Design a synthesis of 2,2,6,6-tetramethyltetrahydro-2H-pyran starting from acetaldehyde. You can use any reagents needed.

2,2,6,6-tetramethyltetrahydro-2H-pyran

