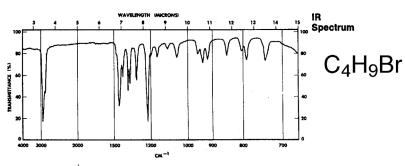
ORGANIC CHEMISTRY

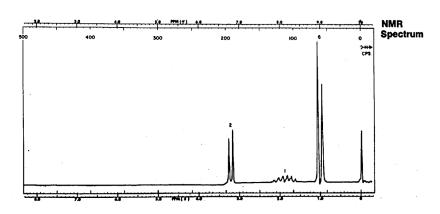
Structure Determination Workshop

1. Compounds **A** and **B** have the formula C₅H₁₁Cl. Neither **A** nor **B** react with NaI in acetone or with NaSCH₃ in dimethylsulfoxide with any appreciable rate. **B** also does not react with NaOCH₂CH₃ in dimethylsulfoxide at an appreciable rate. In contrast, **A** reacts with NaOCH₂CH₃ in dimethylsulfoxide to give compounds **C** and **D**, which both have formula C₅H₁₀ and IR bands between 1650-1660 cm⁻¹. The ¹H NMR spectra of **A** and **C** are tabulated below.

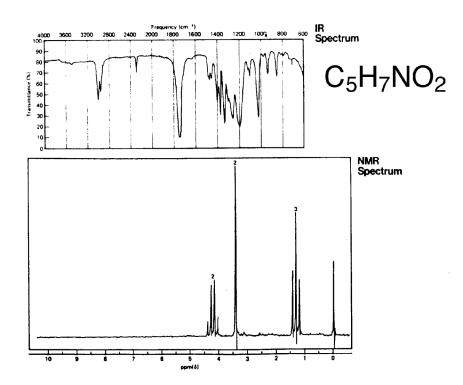
Propose structures for **A–D** that are consistent with the experimental observations. Assign each of the ¹H NMR resonances to sets of equivalent protons in **A** and **C**.

¹H NMR (**A**)


¹H NMR (**C**)


δ (ppm)	Area	Multiplicity		$\delta(ppm)$	Area	Multiplicity
1.01	3Н	triplet	_	1.57	3H	doublet
1.51	6H	singlet		1.60	3H	singlet
1.73	2H	quartet		1.68	3H	singlet
				5.17	1H	quartet

- 2a. Compound **E**, C_5H_9N , exhibits strong absorption in the infrared spectrum at 2252 cm⁻¹ and gives the following ¹³C NMR spectrum: 13.2 (q), 16.8 (t), 21.8 (t), 27.4 (t), 119.8 (s).
- 2b. Compound **F**, $C_9H_{16}O_4$, exhibits strong absorption in the infrared spectrum at 1735 cm⁻¹ and gives the following ¹H NMR spectrum: 0.80 (t, J = 7.1 Hz, rel. area 3), 1.93 (q, J = 7.1 Hz, rel. area 2), 3.71 (s, rel. area 3).
- 3. An optically active compound G, C_6H_{10} , was hydrogenated over a platinum catalyst to give an optically inactive hydrocarbon, C_6H_{12} , which was identical to methylcyclopentane. Give the structure of the optically active C_6H_{10} compound and explain why this structure is uniquely consistent with the data.


4. Deduce structures for the unknown compounds based on the spectroscopic data provided below.

b)

