WORKSHOP 7a

Stereochemistry

1. Identify all the stereocenters in the following compounds.

cysteine

β-D-glucose

morphine
2. a) Determine the relationship between the compounds in each of the following pairs.
b) Identify the optically active (chiral) compounds and any meso compounds.
c) Assign configuration (\mathbf{R} or \mathbf{S}) to all stereocenters.

CH_{3}

Note: among four structures, there are six pairwise relationships.

3. For each of the following reactions, give a careful representation of the structure of the product and predict whether the product will be optically active, a racemic mixture or achiral. Explain your choice.
a. (+)-2-chlorobutane $\underset{\text { in } \mathrm{CCl}_{4}}{\mathrm{Br}_{2, \mathrm{~h}}}$ 2-bromo-2-chlorobutane
b. (+)-2-chlorobutane $\xrightarrow[\text { in } \mathrm{CCl}_{4}]{\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{~h} \nu}$ 1,2-dichlorobutane

Several other products are formed.
This product is separated by gas
chromatography and collected for analysis.
c. (+)-2-chlorobutane $_{\text {in EtOH }}^{\mathrm{KOH}} \xrightarrow[\text { ether }]{\mathrm{HBr} \text { in }}$
d. cis-2-butene in CCl_{4}
e. (+)-1,3-dimethylcyclopentene $\xrightarrow[\text { in CCl4 }]{\text { NBS } h \nu}$
f. (+)-3-methylcyclopentene $\xrightarrow{\mathrm{PtO}_{2} \mathrm{H}_{2}}$

