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Abstract

We characterize the eigenvalues and eigenvectors of a class of complex valued tridiagonal
n by n matrices subject to arbitrary boundary conditions, i.e. with arbitrary elements on the
first and last rows of the matrix. For large n, we show there are up to 4 eigenvalues, the
so-called special eigenvalues, whose behavior depends sensitively on the boundary conditions.
The other eigenvalues, the so-called regular eigenvalues vary very little as function of the
boundary conditions. For large n, we determine the regular eigenvalues up to O(n−2), and the
special eigenvalues up to O(κn), for some κ ∈ (0, 1). The components of the eigenvectors are
determined up to O(n−1).

The matrices we study have important applications throughout the sciences. Among the
most common ones are arrays of linear dynamical systems with nearest neighbor coupling,
and discretizations of second order linear partial differential equations. In both cases, we
give examples where specific choices of boundary conditions substantially influence leading
eigenvalues, and therefore the global dynamics of the system.

1 Introduction

We consider a n + 6 (complex) parameter family of n + 1 by n + 1 complex valued tridiagonal
matrices (exhibited in equation (8.1)). After some simple operations (described in appendix 1),
each member of this family reduces to a matrix of the form

An+1 =



−b0 1− b1 0 . . . 0
1 0 1 . . . 0
0 1 0 1 . . . 0
...

. . . . . .
...

0 . . . 1 0 1
0 . . . 0 1− c−1 −c0


. (1.1)
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In this paper, we characterize the spectrum and eigenvectors of A when n is large. Matrices of
this type arise naturally when describing the dynamics of systems of objects arranged in a line
with nearest-neighbor interactions, in this case the values of the parameters b0, b1, c−1 and c0 are
determined by how the boundary conditions for the interactions are specified. A fundamental
question motivating this work is to understand how choices for the boundary conditions can affect
the global dynamics of such systems.

As already stated, our results apply to the n + 6 (complex) dimensional family of n + 1 by
n + 1 matrices B = Bn+1 of the form given in equation (8.1). Such a matrix can be reduced to
a matrix of the form A by a few simple transforms. Namely, there are a diagonal matrix D with
non-zero diagonal entries in C and complex numbers q 6= 0 and d, such that

B = q−1
(
D−1AD − dI

)
, (1.2)

where I the identity. The spectrum of B can be characterized in terms of the spectrum of A. Details
are given in Appendix 1, so that we concentrate on the spectrum of A.

Matrices of this form are commonly encountered in such a wide variety of contexts that it
is impossible to do the subject justice with a few remarks. They are found for example in one-
dimensional arrays of coupled linear ODE’s whenever interactions are between nearest neighbors
only. They also occur in discretizations — such as finite differences — of second order PDE’s [10].
They are also important in solid state physics where they play a crucial role in the study of crystal
vibrations ([3], chapter 22). We will briefly discuss both these examples in Section 7. Many other
uses can be listed here. Our own interest derives from its uses in the description of flocking and
traffic (see for example [5, 6]). We note that in many classical physics problems, the matrix A must
be symmetric. In these cases, the boundary conditions are of course expressed in the first two and
last two rows of the matrix (see [7] and references therein). These matrices can also be transformed
to the ones given by equation (1.1). We describe the results in section 7.

Of course, in the unperturbed case when equation (1.1) is a pure tridiagonal Toeplitz matrix,
the eigenvalues and eigenvectors are explicitly known for a very long time (see pages 35 and 53 of
[4]). In [18] and [8] special cases of the matrices defined in equation (1.2) were studied. Eigenvalues
of tridiagonal matrices with the upper left block having constant values were studied in [14]; this
structure holds for our matrix A if b0 = b1 = 0. They essentially derived estimates for what we
call the “regular eigenvalues” (see below). In [11] estimates for all eigenvalues were obtained in the
same situation. Here we generalize that approach to the general form given in equation (8.1), where
all parameters are arbitrary complex numbers (except that the αi and q are not equal to zero). For
large dimension n, we now give analytic expressions for all eigenvalues that are accurate at least
to order O(n−2) (instead of O(n−1)). This increased accuracy is important as it allows also for the
determination of the components of the eigenvectors up to O(n−1).

The structure of this paper is as follows. In section 2 we define a polynomial H associated
to the matrix A. This polynomial is not the characteristic polynomial, but does have the property
that the eigenvalues λ of A are simple functions of the roots r of H, namely λ = r + r−1.

In sections 3 and 4 we give approximate expressions for the roots of the associated polynomial.
The roots fall into two groups. The ones we call regular (section 3) tend to fall close to the unit
circle (within O(n−1)). We determine them using a topological argument (Brouwer’s fixed point
theorem) and we give expressions for them that are accurate within O(n−2). In section 4, we look
at the special ones that fall “far” from the unit circle and we give expressions that are exponentially
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(in n) accurate. In section 5, we formulate our main theorem that gives the eigenvalues of A,
and we describe the eigenvectors of A. In section 6, we describe accurate numerical computation
of eigenvalues based on these results and analyze the computational complexity. Finally, section
7 discusses applications of these ideas to the common physical assumption of periodic boundary
conditions, and the study of the eigenvalues of the discretized advection-diffusion equation. In both
of these applications, we show that for certain parameter regimes the eigenvalue with largest real
part (which is necessarily significant for the global dynamics of the system) can be one of the special
eigenvalues that strongly depends upon the boundary conditions.

Acknowledgements: We are grateful to Jeff Ovall for pointing out the usefulness of the conjuga-
tion by a diagonal matrix (see Appendix 1) and to Paula Neeley for contributing Figure 7.1.

2 The Associated Polynomial

Definition 2.1 We define the 2n+ 4 degree polynomial H associated to A as

H(z) = z2n(b1 + b0z + z2)(c−1 + c0z + z2)− (b1z
2 + b0z + 1)(c−1z

2 + c0z + 1),

and the auxiliary functions f and g as

f(z) = z2n and g(z) =
(b1z

2 + b0z + 1)(c−1z
2 + c0z + 1)

(b1 + b0z + z2)(c−1 + c0z + z2)
.

Finally we define the auxiliary polynomial p(z) = (b1z
2 + b0z + 1)(c−1z

2 + c0z + 1) and note that

g(z) =
p(z)

z4p(z−1)
.

We now describe how the eigenvalues of A can be calculated by analyzing the roots of H. In the
following we denote the spectrum of A by σ(A).

Remark: If b1 = 1 we see by inspection of An+1 that −b0 is an eigenvalue and that the remaining
eigenvalues are equal to those of An but now with b0 and b1 set to 0. We are thus allowed to assume
without loss of generality that b1 6= 1. A similar remark holds for c−1.

Remark: The set of roots of H is invariant under z → z−1.

Proposition 2.2 Let T be the set of roots of H(y)
(y−1)(y+1)

. Then σ(A) = {(y + y−1) : y ∈ T}.

Proof: By the previous remarks we assume without loss of generality that b1 6= 1 and c−1 6= 1.
Note first that as H(1) = H(−1) = 0, it follows that H(y)

(y−1)(y+1)
is a polynomial. Letting

v = (v0, v1, ..., vn)T , the eigenvalue equation Av = rv is equivalent to the n+ 1 equations

(1− b1)v1 = (r + b0)v0 (2.1)

vk−1 + vk+1 = rvk for 1 ≤ k ≤ n− 1 (2.2)

(1− c−1)vn−1 = (r + c0)vn (2.3)
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We will proceed by writing the general solution to the linear recurrence relation implied by
(2.2), with the other two equations above providing boundary conditions. Equation (2.2) implies

vk+1 = rvk − vk−1. Introducing C =

(
0 1
−1 r

)
, we may rewrite this as

(
vk
vk+1

)
= C

(
vk−1

vk

)
, which

implies

(
vk
vk+1

)
= Ck

(
v0

v1

)
.

The characteristic polynomial of C is λ2 − rλ + 1, which has repeated roots precisely when
r2 − 4 = 0. Thus if r 6= ±2, the eigenvalues of C will be distinct. Assume for now this is the case,
and denote the eigenvalues of C by x+ and x−. It then follows that we must have vk = c+x

k
+ +c−x

k
−

for 0 ≤ k ≤ n, for some constants c+ and c−. Valid eigenvalues r will be those such that these
expressions for vk are also consistent with the boundary conditions (2.1) and (2.3). These imply

(1− b1)(c+x+ + c−x−) = (r + b0)(c+ + c−)

(1− c−1)(c+x
n−1
+ + c−x

n−1
− ) = (r + c0)(c+x

n
+ + c−x

n
−) .

We now note that x+ + x− = trace(C) = r and x+x− = det(C) = 1. We use the latter to
introduce the substitution x+ = y and x− = y−1. These then imply that

r = (y + y−1) and vk = c+x
k
+ + c−x

k
− . (2.4)

Substituting these into the above and simplifying gives the system of equations (noting that y 6= 0)(
b1y

2 + b0y + 1 b1 + b0y + y2

y2n(c−1 + c0y + y2) c−1y
2 + c0y + 1

)(
c+

c−

)
=

(
0
0

)
. (2.5)

There will be nontrivial solutions for c± if and only if the determinant of the corresponding matrix
is zero. This corresponds exactly to H(y) = 0. If y is a root of the above equation not equal to ±1,
then the corresponding r = y + y−1 6= ±2, and the previous steps imply that r ∈ σ(A).

We now consider the case when r = ±2. We show that this occurs exactly when H(y) has a

repeated root at ±1, so that the polynomial h(y) ≡ H(y)
(1−y)(1+y)

will have a root at y = ±1. Denote

ξ = (b0, b1, c0, c−1) ∈ C4. Since hξ(z) is a polynomial in z, it is a continuous function of ξ. It
is also well-known that the eigenvalues of a matrix are continuous functions of its entries (in this

case ξ). Let y+(ξ) be r
2

+
√

r2

4
− 1. Choose a path ξ(t) so that r(ξ(t)) = ±2 iff t = 0. Then

hξ(t)(y+(ξ(t))) = 0 for t 6= 0. So, by continuity we have

lim
t→0

hξ(t)(y+(ξ(t))) = hξ(0)(y+(ξ(0))) = 0 ,

and thus the polynomial hξ(0) has a root at ±1.

3 Regular Roots of the Associated Polynomial

We begin our study of the roots of H(y) of Definition 2.1. First we introduce the following notation.
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Definition 3.1 Let γ(t) = eit for t ∈ [0, 2π). Using the auxiliary function g from Definition 2.1,
we define differentiable functions R : R+ → R and Ψ : R→ R by requiring:

g(eit) = R(t)eiΨ(t) (3.1)

Assume that g has no zeros or poles on the unit circle. Then eiΨ(t) and g
∣∣
γ

have the same well-defined

winding number w ∈ Z.

Remark: Note that the continuous map Ψ is the lift of eiΨ : R → S1 (the circle) to the real line.
Thus Ψ(2π)−Ψ(0) = 2πw.

Definition 3.2 Let Q be the number of zeros (with multiplicity) of the auxiliary polynomial p inside
the unit circle.

Lemma 3.3 The winding number w of g
∣∣
γ

equals 2Q-4.

Proof: The winding number satisfies (see [2]):

w =
1

2πi

∫
γ

g′(z)

g(z)
dz = N − P

where N is the number of zeroes of g inside γ and P the number of poles inside γ. Clearly N = Q.
Furthermore z4p(z−1) is a quartic polynomial whose roots are the inverses of the roots of p(z).
Hence P = 4−Q.

Definition 3.4 Choose ∆ such that ∆−1 < 1 < ∆ and let A∆ = {z ∈ C |∆ < |z| < ∆}. Choose
C > 1 and D > 0 be constants so that on A∆:

C−1 < |g(z)| < C and |g′(z)| < D .

We now collect a few lemmas. The first two proofs are elementary and are left to the reader.

Lemma 3.5 For all x > 0: 1− x−
1
2n ≤ x

1
2n − 1 ≤ x− 1

2n
(with equality iff x = 1).

Lemma 3.6 Let f the auxiliary function of Definition 2.1, then on A∆ we have:

1

2n(1 + ∆)
≤
∣∣∣∣ ddzf−1(z)

∣∣∣∣ ≤ 1

2n(1−∆)
.

Lemma 3.7 The function Ψ satisfies |Ψ′(t)|2 =
|g′(eit)|2 − |R′(t)|2

|g(eit)|2
< C2D2 .
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Proof: Differentiating equation (3.1) with respect to t gives

g′
(
eit
)
eit i = [R′(t) + iΨ′(t)R(t)] eiΨ(t).

Taking the absolute value and squaring yields∣∣g′ (eit)∣∣2 = R′(t)2 + Ψ′(t)2R(t)2,

and with R(t) = |g(eit)| and Definition 3.4 this implies the result.

Definition 3.8 We call t ∈ [0, 2π) a phase root if it is a solution to e2int = eiΨ(t).

Proposition 3.9 For any value of n, there are at least 2n + 4 − 2Q phase roots in [0, 2π). Fur-
thermore, for n > CD

2
, there are exactly 2n + 4 − 2Q phase roots {ti}2n+4−2Q

i=1 in [0, 2π), and these
roots ordered in ascending magnitude satisfy

2π

n+ CD
≤ |tk − tk−1| ≤

2π

n− CD
.

Proof: Let h be the continuous function from R to itself given by h : t → 2nt − Ψ(t). The phase
roots are the solutions of h(t) ∈ 2πZ. Since h satisfies h(2π)− h(0) = 2π(2n− w) (see the remark
after Definition 3.1), we have at least 2n − w solutions. This is equal to 2n + 4 − 2Q by Lemma
3.3, which proves the first assertion of the proposition.

Now assuming the condition on n, Lemma 3.7 gives

0 < 2n− CD < h′(t) < 2n+ CD,

and thus there are exactly 2n − w solutions. Also for two successive phase roots tk+1 and tk the
mean value theorem gives

2n− CD <
2π

tk+1 − tk
< 2n+ CD,

which implies the result.

Before we present our main result, which is valid for complex matrices, we address an impor-
tant remark for the real matrix case.

Proposition 3.10 If A is real, then each eitk is an exact root of H(z), where tk is a phase root.

Proof: If A is real-valued then the coefficients of p(z) are real, and so for any t ∈ R one has
p(eit) = p(e−it). It follows that |p(eit)| = |p(e−it)|, which implies |g(eit)| = 1. Now let tk be a phase
root. Then ei2ntk = eiΨ(tk) where Ψ is the lift map defined in Equation (3.1). But as |g(eit)| = 1 for
all t, it must be that eiΨ(tk) = g(eitk) and thus that eitk is an exact root of H(z).
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Definition 3.11 For g as in Definition 2.1 and each 1 ≤ k ≤ 2n+4−2Q, define the approximate roots

z∗k = |g(eitk)|
1

2n eitk

and the approximation discs

Bk =

{
z : |z − z∗k| ≤

CD

2(1−∆)n2

}
.

Theorem 3.12 Suppose n > max
{

CD
2(1−∆)

, C
∆

}
. Then each of the 2n+ 4− 2Q discs Bk contains a

unique root of H(z) in Definition 2.1.

z∗k tk
Bk

g(Bk)
g

f−1
f−1(g(Bk))

branch cut f−1

unit circle

Figure 3.1: Illustration of the phase roots tk, approximate roots z∗k and approximation discs Bk

from the proof of Theorem 3.12.

Proof: Let f and g be as in Definition 2.1. We show that for each k ∈ {1, · · · , 2n − w} we can
choose an inverse branch f−1 of f such that f−1 ◦ g is continuous and maps Bk to Bk (see Figure
3.1). By Brouwer’s theorem this gives a fixed point. Uniqueness is then implied by the observation
that on Bk, f

−1 ◦ g is a contraction. Let z ∈ Bk, then

|z − eitk | ≤ |z − z∗k|+ |z∗k − eitk | ≤
CD

2(1−∆)n2
+
(
|g(eitk)|

1
2n − 1

)
<

CD

2(1−∆)n2
+
C − 1

2n
.

For the last inequality we have used Definition 3.11 and Lemma 3.5. By the hypothesis on n, this
last quantity is less than C

n
which in turn is less than ∆ and thus Bk ⊆ A∆.

We can thus use Definition 3.4 to ensure that for z ∈ Bk

|g(z)− g(eitk)| < CD

n
.

By Definition 3.1 and Proposition 3.9 we have that z∗k = f−1 ◦ g(eitk). With the above equation and
using Lemma 3.6 this gives∣∣f−1 ◦ g(z)− z∗k

∣∣ =
∣∣f−1 ◦ g(z)− f−1 ◦ g(eitk)

∣∣ < DC

2(1−∆)n2
, (3.2)
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which proves that f−1 ◦ g(Bk) ⊆ Bk.
Since Bk ⊆ A∆ we have that on Bk, |g(z)| > C−1. Thus if g(Bk) encircles the origin, there

must be points z1 and z2 in Bk such that by using Definition 3.4

2C−1 < |g(z2)− g(z2)| ≤ D diam(Bk) =
CD2

2(1−∆)n2
.

But this is impossible by hypothesis. Thus we choose a branch cut for f−1 so that the local inverse
on g(Bk) is continuous. This establishes the existence of the fixed point.

The fact that f−1 ◦ g is a contraction on Bk follows from this simple calculation:∣∣∣ d
dz

f−1 ◦ g(z)
∣∣∣ =

∣∣∣ d
dz

f−1
∣∣∣
g(z)

∣∣∣ · |g′(z)| < D

2n(1−∆)
, (3.3)

which is smaller than 1 by the hypothesis on n.

Remark: The contraction mapping f−1 ◦ g can be iterated to give more accurate estimates of the
roots, this is developed further in section 6.

4 Special Roots of the Associated Polynomial

If n is sufficiently large so that Theorem 3.12 holds, then we refer to the 2n+ 4− 2Q roots of H(z)
that are contained in the approximation discs Bk as “regular roots”, the remaining roots of H(z)
will be denoted as “special roots”.

Proposition 4.1 Let z0 be a root of g(z) that is inside the unit circle, with multiplicity m, and fix
ρ satisfying |z0| < ρ < 1. Then there is a constant K such that for sufficiently large n, the circle of
radius ε = K(ρ1/m)2n centered at z0 contains m roots of roots of z2n − g(z).

Proof: We apply Rouché’s theorem (see [1]) to f1(z) = g(z) and f2(z) = g(z)− z2n.
Pick an ε so that 0 < ε < ρ− |z0| and denote Dz0(ε) the sphere of radius ε centered at z0. On

Dz0(ε), we have

|f1(z)− f2(z)| = |z|2n < ρ2n

|f1(z)| =
∣∣∣g(m)(z0)

m!
(z − z0)m +O((z − z0)m+1)| > Mεm

for M =
∣∣1

2
g(m)(z0)
m!

∣∣. Thus if we set ε = M−1/mρ2n/m, we have that |f1(z)− f2(z)| < |f1(z)|. Hence
by Rouché’s theorem f1(z) = g(z) and f2(z) = z2n − g(z) must have the same number of zeros in
Dz0(ε).

Theorem 4.2 If p(z) has Q roots inside the unit circle, then for n large enough, H(z) in Definition
2.1 has 2Q special roots (counting algebraic multiplicity).
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Proof: Proposition 4.1 shows there are Q roots of H(z) associated with the Q roots of g(z) inside
the unit circle. Since the set of roots is invariant under z → z−1, there must also be Q roots
outside the unit circle. For large enough n, none of these roots are in the approximation discs Bk of
Definition 3.11, because these discs can be made to lie arbitrarily close to the unit circle as n→∞.
Finally, we note that all roots of g(z) are roots of p(z) (see Definition 2.1).

5 Eigenvalues and Eigenvectors of A

We first present the main result concerning eigenvalues and, after that, we discuss eigenvectors.
The main result is an immediate corollary of Theorems 3.12 and 4.2. By Proposition 2.2 each of
these two sets of roots is invariant under z → z−1. In that same Proposition we see that 2 roots y
and y−1 combine to give an eigenvalue.

Corollary 5.1 Let the parameters for the matrix A be such that the auxiliary function g(z) has
no zeros or poles on the unit circle. Then, for sufficiently large n, the spectrum of A consists of
n+ 1−Q regular eigenvalues {rk}n+1−Q

k=1 and Q special eigenvalues {sk}Qk=1, given by

rk = |g(eitk)|1/2neitk + |g(eitk)|−1/2ne−itk +O(n−2)

sk = yk + y−1
k +O(κ−2n)

where tk are the n+ 1−Q phase roots satisfying 0 < tk < π, and yk are the Q roots of the auxiliary
polynomial p(z) inside the unit circle, and κ is a number greater than 1.

This result allows us to determine the eigenvectors of A. Let z be one of the regular roots of Theorem
3.12, then equations (2.4) and (2.5) imply that the components vk of the eigenvector associated to
y + y−1 are given by

vk = (b1 + b0z + z2) zk − (b1z
2 + b0z + 1) z−k +O(n−1) . (5.1)

The error of O(n−1) in zk for k ∈ {−n, · · ·n} follows because z itself is determined up to O(n−2).
The modulus |vk| is bounded in some interval [K−1, K] for some K > 1 independent of n.

The eigenvectors associated with any special root z exhibit a different behavior. In this case
the error in z is exponentially small in n (see Theorem 4.2). Thus the error in zk for k ∈ {−n, · · ·n}
is also exponential. Equation (5.1) holds but with an error O(τ 2n) for some 0 < τ < 1. However in
this case the values |zk| become exponentially large and those of |z−k| exponentially small (or vice
versa, depending on the value of |z|).

Finally in the case that we have an eigenvalue ±2, the eigenvectors of A are well-known: we
have

vk = −(k − 1)a+ kb

for arbitrary a and b. This of course is exact.

9



Our results simplify in the important case when A is real valued. In this case the “approximate
roots” z∗k from Definition 3.11 are in fact exact. Additionally, we may remove the additional
assumption that g(z) has no roots or poles on the unit circle.

Corollary 5.2 Suppose the matrix A is real. Then g(z) has no zeros or poles on the unit circle,
and for sufficiently large n, the spectrum of A consists of n+ 1−Q regular eigenvalues {rk}n+1−Q

k=1

and Q special eigenvalues {sk}Qk=1, given by

rk = 2 cos tk

sk = yk + y−1
k +O(κ−2n)

where tk are the n+ 1−Q phase roots satisfying 0 < tk < π, and yk are the Q roots of p(z) inside
the unit circle, and κ is a number greater than 1.

Proof: If A is real then the coefficients of p(z) are real, so roots of p(z) are either real or occur
in conjugate pairs. Thus if p(z) has a root eiφ on the unit circle, then e−iφ is also a root of p.
However this implies that z4p(z−1) has a root at eiφ, and so these roots cancel in the expression for
g(z). Thus g(z) can have no zeros or poles on the unit circle. Next, Proposition 3.10 implies that
the phase roots tk yield exact roots eitk of H(z). The corresponding eigenvalues rk = eitk + 1/eitk

(notably, without the O(n−2) term) imply the desired result.

6 Numerical Eigenvalue Computation

We describe and analyze a numerical procedure for computing the regular eigenvalues of A to
machine precision based on first computing the phase roots then iterating the contraction mapping
described in section 3. We compute the phase roots by applying the bisection method to determine
the roots of k(t) = Arg( e

i2nt

g(eit)
), where Arg : C \ {0} → (−π, π] gives the angle of a complex number.

The bisection method is guaranteed to converge to a root, if initialized with the endpoints of an
interval (called a bracket) that contains a root and over which k(t) is continuous. We determine
a set of brackets for the phase roots by setting N = 6n and defining the N intervals u` = 2π

N
`

for 1 ≤ ` ≤ N + 1. Note that the function k(t) is pointwise discontinuous at any value t where
k(t) = π. We retain as brackets the intervals I` = [u`, u`+1] for which k(u`)k(u`+1) < 0, and for
which |k(u`) − k(u`+1)| < π/2. This latter condition is needed to avoid retaining brackets which
contain a point where k(t) is discontinuous.

Proposition 6.1 Let n > CD/2, where C and D are from definition 3.4. Then, for N ≥ 6n, each
interval I` can contain at most one phase root. Additionally, each interval I` which contains a point
of discontinuity of k(t) will satisfy |k(u`)− k(u`+1)| > π/2.

Proof: Proposition 3.9 implies that the distance between any successive two phase roots is at least
2π

n+CD
. As the length of I` is 2π

N
, I` cannot contain two phase roots if 2π

N
< 2π

n+CD
. This is ensured

provided N > n+ CD, which is ensured by the assumption on n for any N > 3n.
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1.6 1.8 2 2.2 2.4 2.6 2.8

log
10

(n)

-14

-12

-10

-8

-6

-4

-2

lo
g

1
0
(E

)

b
0
=0.61-0.14i, b

1
= 0.22-0.07i, c

-1
=1.92-1.39i, c

0
=-1.54+0.06i

M=1,  = -2.016
M=2,  = -3.030

M=3,  = -4.039
M=4,  = -5.043

Figure 6.1: Maximum error in estimated eigenvalues. Errors are computed by comparing eigenvalues
computed by the proposed method, using a fixed number M of iterations of (6.1), to those computed
using the numerical eigenvalue routine eig in MATLAB. Given α values are the slopes of the least-
squares linear fits (dotted lines).

Second, observe that k(t) = h(t)( mod 2π), where h(t) = 2nt − Ψ(t) is as defined in the
proof of 3.9 and where representative angles are chosen on (−π, π]. As h′(t) < 2n + CD, over a
single interval, h(t) can change by no more than (2n+CD)2π

N
< 8πn

N
< 3π

2
, where the last inequality

follows from N > 6n. This implies that if an interval does contain a jump discontinuity (at which
k(t) changes by 2π), the values of k at the endpoints will differ by more than π/2.

Given the 2n+4−2Q phase roots tk, we define f−1
k to be a branch1 of the inverse of f(z) = z2n

satisfying f−1
k ((eitk)2n) = eitk . Define the iterates z

(i)
k by setting

z
(i)
k = f−1

k ◦ g(z
(i−1)
k ) (6.1)

with z
(0)
k = eitk . From the analysis in section 3, it follows that limi→∞ z

(i)
k = z̃k is a root of z2n = g(z).

Given a fixed desired precision ε, our numerical procedure for computing the regular eigenval-
ues consists of the steps: (1) Compute the phase roots tk to within ε by bisection (2) For each phase
root, iterate equation (6.1) until convergence within ε (3) Calculate the eigenvalues via r = z+ 1/z
where z is the converged result from step 2.

Proposition 6.1 implies that, for N = 6n , this procedure is guaranteed to find all of the regular
eigenvalues of A (provided n > CD/2). Before discussing the computational complexity of this

procedure, we analyze the iterates of equation (6.1). Theorem 3.12 implies that |z(1)
k −z̃k| < CD

2(1−∆)n2 .

Using the bound on (f−1 ◦ g)′ from equation (3.3), we see that the later iterates satisfy

|z(i)
k − z̃k| < 2C

(
D

2(1−∆)

)i
1

ni+1
. (6.2)

This implies that the residual error in the eigenvalues computed from applying M steps of (6.1) is
proportional to 1

nM+1 . This behavior is illustrated in Figure 6.1, where we show the maximum error

1Explicitly, we define f−1k (reiθ) = r1/2neiθ
′/2n, where θ′ = θ+ 2πm and m is such that 2ntk − π ≤ θ′ < 2ntk + π.

This holds for m = d 2ntk−θ−π2π e.
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of the estimated eigenvalues as computed by our method vs n, for n ∈ {50, 150, 250, 350, 450, 550},
and M ∈ {1, 2, 3, 4}. On a log-log plot, the observed slopes are close to −(M + 1), consistent with
error proportional to 1

nM+1 .
We now examine the computational complexity of our overall numerical procedure as a func-

tion of the matrix size n, by counting the number evaluations of either k(t) or f−1 ◦ g as a proxy for
computational cost. Computation of the initial brackets takes N = 6n function evaluations. The
error from the bisection method after q steps is bounded by 2−q times the length of the original
bracketing interval, in our case 2π

6n
. This implies the need for q = log2(ε−1)− log2(3n) bisection steps

for each phase root, implying a total cost of 6n + (2n + 4 − 2Q)(log2(ε−1) − log2(3n)) to compute
all of the phase roots. Iterating equation (6.1) for all of the roots requires at most (2n+ 4− 2Q)M
function evaluations, where M is the maximum number of iterations performed. The bound (6.2)
implies that convergence within ε is assured if 2C

n
( D

2(1−∆)n
)M < ε. Under the conditions n > 2C

and n > D
(4(1−∆)

, which hold for sufficiently large n, convergence within ε is assured for (1
2
)M < ε,

which holds for M = log2(ε−1). Thus for sufficiently large n, iterating equation (6.1) for all of
the roots will require no more than log2(ε−1)(2n + 4 − 2Q) function evaluations. Together, these
imply that the total computational cost of computing all of the regular eigenvalues is bounded by
6n + (2n + 4 − 2Q)(2 log2(ε−1), which is O(n log2(ε)). For ε fixed independent of n, the overall
computational complexity of our approach is O(n). This should be contrasted with the standard
QZ algorithm for computing all of the eigenvalues of a matrix, which has complexity O(n3) [9].

Finally, we note that the numerical procedure developed here does not apply to the Q special
eigenvalues of A, however as these are given by Corollary 5.2 with exponential (in n) accuracy, this
is not a major limitation.

7 Applications

Matrices like the one we study are often employed in systems of ordinary differential equations.
One example of this is in the study of traffic. If one assumes that the acceleration of a car depends
linearly on the perception of the relative velocities and positions of the car in front of it and of the
car behind it, then some analysis gives rise to the equations

ẍ = B1x+B2ẋ,

where B1 and B2 are matrices of the type given in equation (8.1) with the additional property that
they have row sum zero. In the special case that B1 and B2 are simultaneously diagonalizable, one
may use methods similar to those in this paper to study stability (see for example [17, 16]). In the
more general case, one takes refuge in the method of periodic boundary conditions. This raises the
broader question of the mathematical foundation of the validity of that method. Below we make
some remarks that relate that question to our present topic.

Discretizations of second order linear partial differential equations (PDE) naturally give rise
to tridiagonal matrices similar to the ones in this paper. Below we give an example in 1 dimension.
In principle, our theory can also be used in certain higher dimensional situations. Suppose we have
a linear second order PDE on a rectangle. We can discretize horizontally and vertically so that each

12



lattice point interacts with its horizontal neighbors through a matrix, say L1, and with its vertical
neighbors through L2. It is easy to show that the interaction on the entire lattice is given by (see
[9], section 4.8)

L = L1 ⊗ I + I ⊗ L2

where ⊗ is the Kronecker product. The eigenvalues of L are give by the Minkowski sum of the
eigenvalues of L1 and L2:

σ(L) = { z1 + z2

∣∣ z1 ∈ σ(A1), z2 ∈ σ(A2) },

and the eigenvectors are given by the Kronecker product of the eigenvectors of L1 and L2.
We now make some more detailed comments.

Periodic Boundary Conditions

Perhaps the most common example of periodic boundary conditions is part of the foundation
of solid state physics and has many applications in various technologies. A set of identical ions
on the line is separated by a distance a (a 1-dimensional Bravais lattice). The position of the ion
near ja is denoted by xj and is a function of time. After rescaling of the variables and various
approximations, among which the assumption that ion interact only with their nearest neighbors,
one arrives at the following equation of motion:

ẍ = q(A− 2I)x and q > 0 , (7.1)

where A is the matrix from equation (1.1) and q is a positive constant related to the strength of
the interaction and the mass of the ion. Since physical systems are obviously finite, the remark is
then, in the words of [3] (Chapter 22), that “we must specify how the ions at the two ends are to be
described. [...] but this would complicate the analysis without materially altering the final results.
For if N is large, then [...] the precise way in which the ions at the ends are treated is immaterial
[...]”. And thus one chooses a convenient way to do that, namely periodic boundary conditions.
The idea is clearly that physical bulk — i.e. no boundary phenomena — properties are unchanged
by the use of such boundary conditions. That is: An+1 − 2I is replaced by

Ln+1 =


−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . . . . .
...

1 . . . 0 1 −2

 , (7.2)

so that now:
ẍ = qLx and q > 0 . (7.3)

To the best of our knowledge, there is no mathematical proof for this important fact at all. It is
thus tempting to employ the theory developed here to have a closer look at this.

Write equations (7.1) and (7.3) as linear first order systems. One easily sees that the eigenval-
ues of those systems are

√
q times the roots of the eigenvalues of (A−2I) and of L, respectively (and

q is positive). The eigenvalues of L are well-known (and easily derived), namely 2(cos 2πm
n+1
−1). Ex-

panding this to second order and taking the root, we obtain the (approximate) leading eigenvalues

13



for the system of equation (7.3):

νm,± = ±i 2πm

n+ 1
m ∈ {0, 1, 2, · · ·n} .

In fact, the dynamics is that of traveling waves (e.g., see [3]), which implies Lyapunov stability.
We expect instabilities to fundamentally influence all physical properties. So if the matrix A

in equation (7.1) has an eigenvalue λ such that ±
√
λ− 2 has positive real part, we can say that

periodic boundary conditions fails. We now proceed to establish that for many systems periodic
boundary conditions actually does fail, precisely because of the presence of instabilities.

That periodic boundary conditions fails for general complex coefficients b0, b1, c0, and c−1 can
be seen from Corollary 5.1. Typically, |g(eitk)| will not be equal to one. Thus the regular eigenvalues
rk will be O(n−1) away from the real axis, which leads to positive real part of the same order of
one of the roots ±

√
rk − 2. Perhaps this is not surprising, since physical systems tend to be real

and even symmetric. We now look at those cases.

Lemma 7.1 The polynomial p1(z) = b1z
2 + b0z + 1 with real coefficients

(i) has real roots in (0, 1) if and only if

b1 < −1− b0 or 0 < −b0

2
< b1 ≤

b2
0

4

(ii) and has complex (non-real) roots in the open unit disk if and only if

b1 >
b2

0

4
and b1 > 1 .

Proof: We first prove (i). Since p1(0) = 1, we have a real root in (0, 1) if p1(1) < 0 or b1 +b0 +1 < 0.
The only other possibility to get a real root in (0, 1) is when b1 > 0 and the minimum p1(x−) at x−
satisfies the following:

x− =
−b0

2b1

∈ (0, 1) and p1(x−) = 1− b2
0

4b1

≤ 0 .

This is equivalent to the second set of inequalities. (Note that the two possibilities are not mutually
exclusive.)

To prove (ii), we note that p1 has two conjugate roots iff the discriminant b2
0− 4b1 is negative

(and so b1 ≥ 0). From the quadratic formula one deduces that the absolute value of these roots

equals b
−1/2
1 .

Theorem 7.2 For sufficiently large n the system corresponding to equation (7.1) is unstable if and
only if the conditions in Lemma 7.1 hold for b1 and b0 and/or for c1 and c0, respectively. These
regions are illustrated in Figure 7.1.

Proof: From Definition 2.1, we get the associated polynomial for A: p(z) = (b1z
2 +b0z+1)(c−1z

2 +
c0z + 1). From Corollary 5.2, we obtain the eigenvalues of A for sufficiently large n. The regular
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Figure 7.1: Schematic drawing of the regions indicated in Lemma 7.1. The horizontal axis is b0 and
the vertical one is b1. The darker (green) shaded region corresponds to the conditions of item (i)
and the lighter (pink) region to the condition in item (ii) of that lemma.

eigenvalues are rk = 2 cos tk. These give eigenvalues ±
√

2 cos tk − 2 for the system of equation (7.1)
which are on the imaginary axis.

The special eigenvalues of A are sk = yk + y−1
k +O(κ−2n), where the yk are the roots of p(z)

that are inside the unit circle. These gives eigenvalues νk,± = ±
√
yk + y−1

k − 2 +O(κ−2n) for the

system of equation (7.1). At least one of these roots νk,± has positive real part if and only if yk is
either in (0, 1) or is non-real and in the open unit disk. The theorem now follows from Lemma 7.1.

In classical physics (real) matrices are symmetric. As explained before, the validity of periodic
boundary conditions is of paramount importance in this case. To the best of our knowledge, this
question has so far not been addressed (although the statement is very widely used). So let

Cn+1 =



−b0 β 0 . . . 0
β 0 1 . . . 0
0 1 0 0
...

. . . . . . . . .
...

0 . . . 1 0 γ
0 . . . 0 γ −c0


,

where all parameters are real. Without loss of generality, these are the matrices studied in [7].

Theorem 7.3 For sufficiently large n the system corresponding to ẍ = q(C − 2I)x with q > 0 is
unstable if and only if

β2 > 2 + b0 or 1− b2
0

4
≤ β2 < 1 +

b0

2
< 1
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or if either of the corresponding conditions holds for γ and c0.

Proof: From Lemma 8.4, we see that C is conjugate to A with b1 = 1− β2 and c1 = 1− γ2. From
Definition 2.1, we get the associated polynomial p(z) = ((1−β2)z2+b0z+1)((1−γ2)z2+c0z+1). The
remainder of the proof is almost verbatim that of the previous theorem (except that all eigenvalues
are real).

In [5], [6], [13], and [12] the notion of periodic boundary conditions is considered for more
complicated systems. In general, it is still an open question which boundary conditions may be
replaced by periodic boundary conditions without altering the physical “bulk” properties of the
system. The presence or absence of instabilities may very well not be the only decisive factor.
A comprehensive statement in this direction would obviously be of great value in all kinds of
applications.

The Advection-Diffusion Equation

We consider a linear advection-diffusion equation on [0, 1]

∂tu = ∂2
xu+ 2K∂xu , (7.4)

with Dirichlet boundary conditions:

u(0, t) = f0(t) , u(1, t) = f1(t) , (7.5)

and with Dirichlet-Neumann boundary conditions:

u(0, t) = f0(t) , ∂xu(1, t) = f1(t) . (7.6)

Letting uj(t) stand for u( j
n
, t) and using finite differences (see [10]), one derives the following n− 1-

dimensional (not n+ 1 as in the previous sections) system of ODE. Here u̇ indicates derivative with
respect to time of u. For the system with Dirichlet boundary conditions, we get

u̇1

u̇2
...
...

u̇n−1

 = n2


−2 1 + K

n
0 . . .

1− K
n

−2 1 + K
n

. . .
...

. . . . . .
...

. . . 1− K
n

−2 1 + K
n

. . . 0 1− K
n

−2




u1

u2
...
...

un−1

+ n2


(1− K

n
)f0(t)

0
...
0

(1− K
n

)f1(t)

 . (7.7)

For the system with Dirichlet-Neumann boundary conditions, we obtain the following n dimensional
system.

u̇1

u̇2
...
...
u̇n

 = n2


−2 1 + K

n
0 . . .

1− K
n

−2 1 + K
n

. . .
...

. . . . . .
...

. . . 1− K
n
−2 1 + K

n

. . . 0 2 −2




u1

u2
...
...
un

+ n2


(1− K

n
)f0(t)

0
...
0

2n−1(1 + K
n

)f1(t)

 . (7.8)
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The matrix in this equation will be denoted by B. In the remainder of this section, we are interested
in the eigenvalues of the systems in equations (7.7) and (7.8).

Proposition 7.4 i: Fix K. Then for any n > |K|, all eigenvalues of the matrix n2B in equation
(7.7) are real and less than −K2.
ii: Fix K ≤ 0. Then for any n > |K|, all eigenvalues of the matrix n2B in equation (7.8) are real
and less than −K2.

Proof: The proof of part i follows easily from that of part ii. We start with the latter. First, we
use Appendix 1 to bring the matrix B in the form used in this paper. Comparison with equation
(8.1) shows that

qα−1
i = 1 +

K

n
, qαi = 1− K

n
, and qd = −2 .

Solve for q, αi and d:

αi = α ≡

(
1− K

n

1 + K
n

) 1
2

, q =

(
1− K2

n2

) 1
2

, and d = −2

(
1− K2

n2

)− 1
2

. (7.9)

Defining the diagonal matrix D as in Lemma 8.2, one sees that

A ≡ D−1
(
q−1B − dI

)
D =


0 1 0 . . .
1 0 1 . . .
...

. . . . . .
...

. . . 1 0 1

. . . 0 2
1−K

n

0

 . (7.10)

Comparison with equation (1.1) shows that

b0 = 0 , b1 = 0 , c0 = 0 , and c−1 = 1− 2

1− K
n

= −
1 + K

n

1− K
n

= −α−2 . (7.11)

Thus the associated polynomial (see Definition 2.1) is:

H(z) = z2n−2 z2
(
c−1 + z2

)
−
(
c−1z

2 + 1
)

= z2n
(
z2 − α−2

)
−
(
1− α−2z2

)
. (7.12)

Re-interpret the polynomial p(z) = 1− α−2z2 and the auxiliary functions f and g as

f(z) = z2n and g(z) =
p(z)

z2p(z−1)
=

(1− α−2z2)

(z2 − α−2)
. (7.13)

We know from Proposition 3.10 that if tk is a phase root, then eitk is a root of H(z). By
Proposition 2.2, the roots eitk of H(z)/(z2 − 1) correspond to eigenvalues λk = 2 cos(tk) of A. By
Corollary 8.3, the corresponding eigenvalues νk of n2B are given by:

νk = n2(qλk + qd) = 2n2

(
1− K2

n2

) 1
2

cos tk − 2n2 < −K2 . (7.14)
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Therefore all eigenvalues of n2B arising in this way from roots of H(z) on the unit circle are real
numbers less than zero, and no instability arises from them.

When K = 0, it follows that α = 1 and H(z) simplifies to

H(z) = (z2n + 1)(z2 − 1) .

Clearly all of the roots of H(z)/(z2 − 1) lie on the unit circle and none are equal to 1, and so all of
the corresponding eigenvalues of B are real numbers less than 0.

When K < 0, then α > 1, and p(z) (in equation (7.13)) has no roots inside the unit circle, and
so Q = 0. Adapting the proof of Lemma 3.3 to our re-interpreted g(z) (by recognizing that g(z) is
now a rational function of degree 2 rather than of degree 4) shows the winding number of g is 2Q−2.
A similar adaptation of Proposition 3.9 shows that there must be at least 2n+2−2Q = 2n+2 phase
roots, each yielding a root of H(z) on the unit circle. But as H(z) is a 2n + 2 degree polynomial,
all of the roots of H(z) are on the unit circle and so all of the eigenvalues of n2B are real numbers
less than −K2.

Now we return to part i. By the same reasoning as before, we now obtain that c−1 is also 0.
Thus in this case,

H(z) = z2n − 1 .

The roots of H equal e
πik
n , and are thus regular. The eigenvalues λk of A equal cos πk

n
for k ∈

{1, · · ·n− 1} and the corresponding eigenvalues of n2B are less than −K2 as follows from equation
(7.14).

We return to the system with mixed boundary conditions. For K > 0, p(z) in equation (7.13)
has precisely 2 roots inside the unit circle. For symmetry reasons, these must be either on the unit
circle, in which case the corresponding eigenvalues of n2B are again less than −K2, or else the two
roots are on the real line. In the latter case, one is the negative of the other. This leads to two
special eigenvalues λ and −λ of A, where λ is a positive real. By equation (7.14), we see that the
eigenvalue of n2B which corresponds to −λ will tend to −∞ as n tends to ∞, and it is therefore
not relevant for the dynamics of the system. One can show that the other special eigenvalue of n2B
is always a real number in (−K2, 0). For brevity, we omit that argument.

Instead we will show that for large positive K, the leading eigenvalues of the two systems of
equations (7.7) and (7.8) are very different. This is illustrated in figure 7.2. This implies a difference
in global dynamics (if given appropriate initial conditions) entirely due to the different boundary
conditions.

Theorem 7.5 Let K be positive and large. The leading eigenvalue of the system with Dirichlet-
Neumann boundary conditions is real and satisfies

ν = − 4K2

e2K + 1
+O

(
K

(e2K + 1)2

)
+O(n−2) ,

while the leading eigenvalue of the system with Dirichlet boundary conditions equals −K2 − π2 +
O(n−2).
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Figure 7.2: (a) Leading eigenvalues of n2B for the mixed boundary conditions and the Dirichlet
boundary conditions, vs K (note logarithmic scale) (b) Leading eigenvalue of n2B for the mixed
boundary condition system, and the prediction from Theorem 7.5, convergence is observed as K
increases.

Proof: The second part follows immediately from the previous proposition.
Fix a large value of K, we locate real roots of H(z) for n arbitrarily large. To do this, set

ζ ≡ z2n, h(ζ, s) ≡ H(z), and s ≡ 1/n, then

h(ζ, s) = ζ

(
ζs − 1 +Ks

1−Ks

)
+ ζs

1 +Ks

1−Ks
− 1 .

The equation for the corresponding eigenvalue of n2B becomes:

ν = s−2
(√

1−K2s2
(
ζ
s
2 + ζ−

s
2

)
− 2
)
.

These equations have a meaningful expansions around s = 0, namely

h(ζ, s) = [ζ(ln ζ − 2K) + (ln ζ + 2K)] s+O(s2) .

Thus, in order for this equation to yield zero near s = 0, we must have

ζ(ln ζ − 2K) + (ln ζ + 2K) = 0 or ln ζ(ζ + 1) = 2K(ζ − 1) . (7.15)

The expansion of the second equation (the eigenvalue) is

ν = −K2 +

(
ln ζ

2

)2

+O(s2) . (7.16)

From equation (7.15) we see that if K is positive and large and ζ ∈ (0, 1), then ln ζ ≈ −2K,
and thus ζ is very small. We make the following substitution

u ≡ 1

K
and µ ≡ −u−2 +

(
ln ζ

2

)2

,
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and obtain
ln ζ = 2

√
µ+ u−2 and ζ = e2

√
µ+u−2

,

where µ is small when u is small. Equation (7.15) becomes:

2
√
µ+ u−2

(
e2
√
µ+u−2

+ 1
)

+ 2u−1
(

1− e2
√
µ+u−2

)
= 0 .

Multiplying by u
2

and rearranging gives:√
1 + µu2 = 1− 2

e2
√
µ+u−2

+ 1
.

Note that as K = u−1 becomes large, µ tends to zero exponentially in K. Squaring and then
subtracting 1, gives

µu2 = − 4

e2
√
µ+u−2+1

+
4(

e2
√
µ+u−2+1

)2 . (7.17)

Taylor expand the right hand side of this equation around µ = 0. Then substitute the first approx-
imation for µ. Finally, by equation (7.16), ν and µ differ by O(n−2).

The proof of the second statement follows immediately from the proof of part i of Proposition

7.4. Indeed, the reasoning there implies that ν1 = 2n2
(

1− K2

n2

) 1
2

cos π
n
− 2n2 which implies the

result.

8 Appendix 1: A More General Form of the Matrices

In this appendix we show that with a little work one can expand the class of matrices to which
Corollary 5.1 can be applied. Namely, let d, q, and {αi}ni=1 be arbitrary complex numbers such that
q and αi (for all i) are not zero. Define

Bn+1 = q



d− b0 α−1
1 (1− b1) 0 . . . 0

α1 d α−1
2 . . . 0

0 α2 d 0
...

. . . . . . . . .
...

0 . . . αn−1 d α−1
n

0 . . . 0 αn(1− c−1) d− c0


. (8.1)

We characterize the eigenpairs of B in terms of those of A given in the main text. For convenience
of notation we drop the subscript n+ 1. The following results are simple computations.

Lemma 8.1 Let D ∈ M be the diagonal matrix with εi 6= 0 as its i-th diagonal element. Let
M ∈M arbitrary. Then (

D−1MD
)
ij

= ε−1
i εjMij .
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Lemma 8.2 Set εi =
∏

`<i α` and ε1 = 1, and let A be the matrix given in equation (1.1). Then

D−1
(
q−1B − dI

)
D = A or B = q

(
DAD−1 + dI

)
.

Corollary 8.3 Let λ ∈ C and v ∈ Cn+1. Then (q(λ+ d), Dv) is an eigenpair of B if and only if
(λ, v) is an eigenpair of A.

Remark: In numerical work it is advantageous to work with the matrix A and not with B, because
B tends to have exponentially large condition number. This expresses itself in the fact that regular
eigenvectors v of A tend to have bounded components and, in contrast, the regular eigenvectors Dv
of B (see Lemma 8.2) tend to have components whose ratios diverge as

∏
`<i α`. Clearly this can

grow exponentially in n, for example if all or most of the αi > 1 + c and c > 0.
We briefly mention two examples. Let T ∈ M be the tridiagonal Toeplitz matrix whose

diagonal elements equal δ, whose sub-diagonal elements are equal to σ, and whose super-diagonal
elements are equal to τ . On the other hand, let A0 ∈ M be the matrix whose sub- and super-
diagonal elements are 1, with 0 on the diagonal. Corollary 8.3 says that

T =
√
στ DA0D

−1 + δI.

Since the spectrum of A0 is easy to derive (namely, 2 cos( πi
n+2

) for i ∈ {1, · · ·n+ 1}), the spectrum
of T follows immediately (see [15]).

For applications related to consensus forming and flocking, the following matrix was studied
in [11]:

Ln+1 =



ψ 0 0 . . . 0
σ 0 τ . . . 0
0 σ 0 0
...

. . . . . . . . .
...

0 . . . σ 0 τ
0 . . . 0 σ + φ θ


. (8.2)

One sees that L is conjugate to Ã where

Ãn+1 =
√
στ



ψ√
στ

0 0 . . . 0

1 0 1 . . . 0
0 1 0 0
...

. . . . . . . . .
...

0 . . . 1 0 1

0 . . . 0 1− φ
σ

θ√
στ


. (8.3)

The spectrum of Ã can be studied with the methods of the main text.
For applications in classical physics, we consider the symmetric real matrices (see [7])

Cn+1 = q



d− b0 β 0 . . . 0
β d 1 . . . 0
0 1 d 0
...

. . . . . . . . .
...

0 . . . 1 1 γ
0 . . . 0 γ d− c0


. (8.4)
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Lemma 8.4 Suppose β 6= 0. Let D be the diagonal matrix whose diagonal elements are {β−1, 1, · · · , 1, γ−1}
and let A be the matrix given in equation (1.1) with b1 = 1− β2 and c−1 = 1− γ2. Then

D−1
(
q−1C − dI

)
D = A or C = q

(
DAD−1 + dI

)
.

Corollary 8.5 Suppose β 6= 0. Let λ ∈ C and v ∈ Cn+1. Then (q(λ+ d), Dv) is an eigenpair of C
if and only if (λ, v) is an eigenpair of A.

References

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979.

[2] T. M. Apostol, Mathematical Analysis, 2nd edn, Addison-Wesley, 1973.

[3] N. W. Ashcroft, N.D. Mermin, Solid State Physics, Harcourt, 1976.
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