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The maps we consider are roughly those that can be obtained by truncating non-invertible maps to weakly monotonic

maps (they have a flat piece). The binary sequences that correspond to order-preserving orbits are shown to satisfy a nu;umax
ven:

principle (which was already known for order-preserving orbits with rational rotation number). The converse is also p
all minimax orbits are order-preserving with respect to some rotation number.

For certain families of such circle maps one can solve exactly for the parameter values for which the map has a specified
rotation number rho. For rho rational we obtain the endpoints of the resonance intervals recursively. These parameter values
can be organized in a natural way as the nodes of a Farey tree. We give some applications of the ideas discussed.

1. Introduction

Symbolic dynamics is often used to describe
aspects of complicated behaviour (Guckenheimer
and Holmes [1]). In this paper, we study the full
shift on {0,1}N and applications thereof to a class
of circle maps. In particular, we are interested in
order-preserving orbits of circle maps.

Order-preserving orbits are models for similarly
behaving orbits in two-dimensional area-preserv-
ing twist maps. These orbits, in turn, describe
physical phenomena such as he minimal energy
states of a chain of atomg submijtted to a periodic
potential (Aubry [2], Au d LeDaeron [3]).
Non-periodic order-preserving orbits of twist maps
are also important in the study of disappearance

" of invariant KAM tori (Mather [4], Katok [5],

Mackay and Stark [6]) and in the study of the fhix
from one resonant region t6 another across can-
tori (Meiss et al. [7]).

In the latter case, the cantori are related to
orbits of monotone circle maps with irrational
rotation number and which are not dense on the
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circle. Circle maps which admit such orbits are
sometimes called Denjoy counter examples
(Nitecki [8], Herman [9], chapter 10).

In this paper we are interested in describing
such orbits as they occur in certain families of
circle maps. In particular, for a one-parameter
family of continuous, piecewise linear “flat spot”
circle maps @, (see solid graph in fig. 1), we give
an exact representation of the orbits for rational,
as well as for irrational, rotation numbers. We also
find the parameter value A for which ¢, admits
orbits of prescribed rotation number p, thereby
explicitly solving for the graph R(A) in some
simple cases (figs. 7a, b and c). The properties of
R(X) in a more general context have been in-
vestigated by many authors.

It was argued (numerical methods) in Jensen
et al. [10, 11] that for a one-parameter family of
circle maps with cubic inflection point, the set A
of parameters for which R(A) is irrational, has
fractal dimension 0.87.... This would imply that
the set has measure zero. So far, proofs of these
statements have not been given.

To our knowledge, the examples presented here
are the only ones in the literature for which the
graph of R(A) can be described analytically. The
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192 P. Veerman / Symbolic dynamics of order-preserving orbits

fact that A has measure zero, for instance, can be
easily proven. Unfortunately, our maps are not
cubically critical. Nevertheless, they may provide
exemplary insight.

In section 2, we limit ourselves to the study of
binary sequences in {0,1}™. A minimal set under f
is a closed, f-invariant set that has no f-invariant
closed subsets. The main theorem states that for
each number p €0, 1] there is a unique minimal
set 3, in (0,1} under the shift with the follow-
ing properties: 1) Each sequence in X, has an
average of p ones. 2) The shift on > , 1s semi-con-
Jugate to rotation by p (order preservation). 3)
Among all minimal sets with rotation number p,
the greatest element of fp is smaller than the
greatest element of any other set. 4) The corre-
sponding statement for the smallest element of
fp. The theorem is a generalization of that given
in Gambaudo et al. [12], who proved it for ra-

tional p (after some partial results had appeared

in Bernhardt [13]).

Various authors have argued that the organiza-
tion in a Farey tree of the midpoints of the
resonance intervals of families of circle maps leads
to some understanding of R(A) (Feigenbaum [14],
Ostlund and Kim [15), Cvitanovic et al. [16]). The
main result of section 3 asserts that for the fami-
lies of circle maps we consider, the organization of
the endpoints of the resonance intervals in a Farey
tree gives complete understanding of R(A). The
idea is not to order the rotatioiqumbers them-
selves in the tree, but, rather, to order the binary
sequences that describe the s:r;;olic dynamics
pertaining to monotone maps with those rotation
numbers (see fig. 4).

In section 5 we mention some applications of

the ideas developed in sections 2 and 3. Among ~

other things, we note that the A, defined as before,
has zero Lebesgue measure and Hausdorff dimen-
sion zero. ‘
Finally we give some of the conventions we use.
The shift o is defined on {0,1}"V as follows:

0(iyiqgiy -oe ) =igigig .

Throughout, we will use the distance |+-+] on

{0,1}N, (5,5’ € {0,1}N)

o

x(5)= T 2, Js=s| = fx(s) - x(s), (11)

n=1

where usually 1= 2.

Identifying s and s’ whenever x(s)=x(s"), we
effectively give {0,1}™ the topology of the real
interval [0,1]. This is a connected space.

The symbol,p,(s) is used to denote the average
number of ones in the first n digits of a sequence
5o (or: p, = (A/n)L}.i)). The limit lim, p,(s) (if
it exists) is called the rotation number. -

2. Order-preserving orbits

The main result of this section will be the

' extension of a theorem of Gambaudo et al. [12].

Consider the shift ¢ acting on {0,1}V. We call
an orbit orb (s) or o*(s), s€{0,1}V, k>0
minimax if it satisfies the following requirements:
s has a rotation number p, and for any other
sequence s’ with the properties

Slipx(o"(s)) < Slipx(ﬂk(s')),

where x(s) is the real number associated with the
sequence s. There is a similar definition for maxi-
min orbits a*(s), with the inequality

ir/:fx(a"(s)) > ilzfx(o"(s’)). \

We will briefly recall some notions from
Veerman [17] for later use. Define ¢=2xmod1l
and @ as the truncation of ¢ as depicted in fig. 1
(Kadanoff [18] and Boyland [19] used this con-
struction to study non-invertible map). Each Pg 1s
a (weakly) monotone degree-one continuous circle
map. Let @, be the lift of @g- The rotation num-
ber

7 (x)—x -
. B
R(%)=nlgr°1° —=p

e
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X0 X4
Fig. 1. Construction of ¢p from x - 2x mod1.

is well-defined and independent of x (see Nitecki
(8], Herman [9]). In fact R is a continuous func-
tion of B. For each rational value R(8)=p/g, in
smallest terms, the graph of R has a plateau of
length (29— 1)"! (see Veerman [20] and related
results in Nagumo et al. [21] and Boyd [22]). For
later use we define the resonance interval I, . as
the interval of parameter values where R(B)=
p/q. The complement of the union of the inverse
iterates of (x,,x,) (the flat piece of the map)
contains the unique nonwandering set, A, C
[x4> X;] which is also a minimal set (Nitecki [8],
Boyland [19], Herman [9]). The orbits in A, pre-
serve the cyclic order of rotation by p (order-
preservation), that is: for B such that R(B)=p
and forx€ A, (p irrational),

B (x) < s (x)+(p.+ 1) enp<p,+1

(2.1)

(see also Nitecki [8]). Note further that A, might
vary with B when p = constant. That this is not
the case, is one of the direct consequences of
theorem 2.1.3 and 5, and the fact that A, is
unique (Veerman [17]).

To study the non-wandering set, note that it is
contained in an interval of length 3 and that g
restricted to A, is equal to 2x mod 1. Writing the
elements of A as binary sequences, it becomes
clear that A, 1s a minimal set under the shift o

y

Fig. 2. Construction of sequences of _Z"p.

operating on {0,1}" as studied for instance, in
Hedlund [23]. As a minimal set under the shift, we
will refer to this set as = ,» s a minimal set under
@g, we will call it A,

Let p, be the (umque) sequence of integers that
satisfy (fixed d, see fig. 2)

—d<np-p,<1-d, de[0,1),neN. (22)
Then, define sequences with digits i, as follows:

in=Dp=Pa-1, NEN. (2.3)
We will refer to d as the index. For each index
d €[0,1) we obtain in a different binary sequence.
We call this set of sequences Z,. The 2 is
defined similarly but with the equality sign in (2.2)
under the second inequality and d € (0,1] and is
equal to =, for p rational. The extension to dou-
bly mﬁmte binary sequences is straightforward:
just take n € Z in (2.2) and (2.3). (By projecting
this construction onto the vertical axis one obtains
2, and 2} by pure rotation as in Hedlund [23].)

The closure of either 2, or 2 turns out to be
the union of these two sets

We can now state the main result of this sec-
tion. For rational rotation numbers this theorem
was proven by Gambaudo et al. [12], some of
whose results, in turn, were anticipated by
Bernhardt [13].

Theorem 2.1. For a fixed rotation number p the
following statements are equivalent for s in {0, 3
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and an element of a minimal set:
1) o*(s) is minimax,
2) 6%(s) is maximin,
3) sup, (x(a*(s)) — inf, (x(a*(s)) < 4
(p rational),
sup, (x(a*(s))) - inf, (x(a*(s)) = 3
(p irrational),
4) 0|, is order-preserving,
where o(s) = {o"(s)|n €N},
5) se S'p.

In the following proof we suppose that p is
irrational. If p is rational, say p/q, the proof goes
through with only the modification that sequence
in f?p /4 bave exactly p ones among every ¢ digits.

To prove the equivalence of statements 1 to 5 of
theorem 2.1, consider first:

Lemma 2.2. 5) <= 4).

Proof. It was shown in Veerman [17] that for s to
be a member of I , is equivalent to the following:
For every k, the first n digits of 6*(s) contain p,
or p,+1 ones where p, and n satisfy (p irra-
tional)

p,<np<p,+1. (2.4)

Now, @g restricted to A, is equal to the shift on
x € A, written as a binary sequence s. Every time
the integer value of ®5*/(x) increases by one, the
first digit of Qé‘*"‘l(x) must have been a one. So
(2.4) is equivalent to ‘

Vk,neEN:
D (x) +p, <P "(x) < B (x) + (p, + 1)
«p <np<p,+1, '

which in turn is equivalent to (2.1). O
Lemma 2.3. i) 5) e 1); ii) 5) = 2).

Proof. According to the previous lemma we may
replace 5 by 4 in lemma 2.3.

i) Fix p and let p; satisfy eq. (2.5). Recall that
we only consider sequences that are members of a
minimal set.

Suppose that s is a sequence that satisfies 4)
while s’ does not. Then s’ must have a subse-
quence of length n with either 1) more than p, +1
ones or 2) less than p, ones.

In the first case, shift s’ so that its first » digits
are t,. All sequence in f.‘p have no more than
p,+ 1 ones among their n digits. It is easy to see
that there is an N€{0,1,...,n—2} such that
o™(s") is greater than any element of 3 - (Namely,
choose r such that ¢/ of length r is the shortest
subsequence of ¢, having p,+ 2 ones. Then ¢/ has
a one as its first and last digit. The sequences in
3, can (at most) have #/_, as initial digits, fol-
lowed by a zero.)

The second case reduces to the first one by
making the following observations. There are
M, < M, i € N, such that, whenever ¢, appears for
the ith time it will appear for the i+ 1st time
exactly n + M, digits later. (This assertion is proven
by noting that if s’ contains arbitrarily long subse-
quences without ¢,, then there is a sequence z in
the closure of U,0%(s") that does not contain 7,.
The closure of the iterates of z do not contain ¢,,
and that would constitute a proper invariant sub-
set of the original minimal set.) If none of the
subsequences of length M, contain more than
Py, + 1 ones, the following contradiction arises:
Since in n + M, digits there are at most p,— 1+
Pu, + 1 ones, we have

(p,,—1+pM,.+1) (p,,+pM
P<SWP\ ™M, |~
The latter inequality is derived from (2.5) and the
boundedness of M,.

It follows that supx(o*(s)) is smaller than
sup x(o*(s")) for any choice of s and s’.

Note that the reasoning goes either way, so that
we have proven equivalence.

ii) The proof is entirely analogous to i). ]

Lemma 2.4. 5)« 3).

Proof. «: Suppose there is a sequence s’ that
satisfies 3). Then a B can be chosen such that the
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i

X0 X4

Fig. 3. F| A, is monotone for p irrational.

orbit of x(s") under @g never lands in the flat spot.
By hypothesis, s’ is member of a minimal set. The
only minimal set ¢, allowed is A, as remarked
above, or 2, under the shift.

= : As proved by Veerman [17] O

p?

Remark. The theorem partially generalizes with
respect to the base 7 in x(s)=X% i, /n. It is
straightforward to check that if one replaces % by
1/7 in 3) the theorem holds for any 7 > 2. State-
ments 3), 4), and 5) are equivalent for any base
T>1.

The formulate a corollary, let f be a continu-
ous, degree-one circle map, such that its lift F is
non-decreasing. Suppose further, that f has a
rotation number p and a non-wandering set A,.
Define the map s that assigns binary “addresses”
to each point x € A the nth digit is a zero when
int F"(x) and int F"~!(x) have the same value, a
one if not (see fig. 3).

Corollary 2.5. s is a non-decreasing map A, —;_f,‘p
(=2, if p is rational).

Proof. Suppose x, € A, and x,> x,. Then
F"(x,)= F"(x,) for all n, and so

s(x3) 2 5(xy).

Into = , follows from the fact that the order has to

be preserved (F monotone) and that all order-pre-
serving orbits are elements of X according to
theorem 2.1. m|

Remark. In Hockett and Holmes [24] these orbits,
along with others, are constructed with the aid of
the somewhat more indirect methods outlined in
Katok [5]. These methods use Hausdorff limits
and apply in general to Aubry-Mather sets of
2-dimensional twist maps (Mather [4], Katok [5]).

3. Resonance intervals and the Farey tree

The purpose of this section is to give a simple
recursive scheme that generates R(B) (see figs. 7a,
b and c) for a piecewise linear “flat spot” map.
The only information one needs to generate R(f)
is the slope T of the slant part of g,.

Recall the definition of the family @, and the
resonance interval I, from section 2. It was
shown in Veerman [20] that the coordinate of the
right-most end-point of I, ,, (see fig. 7a) is equal
to x(a(p/q)) = Ii,/2" where a(p/q)={i,)7
is the element of X,  constructed with index
d=p/q (see 2.2 and 2.3). This sequence is peri-
odic with period g and has p ones in each period.
Periodic sequences will be denoted by: (--- ).
Note that a sequence is interpreted in two ways.
The average number of ones defines a rotation
number p/q and the value on the base two defines
the endpoint x(a( p/q)) of the resonance interval
I, ,,- As indicated before, the length of I, is
27-1)"L

Define Farey addition @ on the periodic se-
quences (where it is non-commutative) and on the
rationals (where it is commutative). as follows (¢,
are finite sequences):

(1) ®(ty) =tity) = bttty -,
PrgPr_PrtP
9 9. q1tq;°

It is clear that if (z,) has rotation number p,/q,
and (t,) has rotation number p,/q,, then (t,) &
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{t,) has rotation number p,/q, ® p,/q,. Suppose
that p,/q, < p,/q,. We define these two rationals
to be Farey-adjacent whenever ¢,p,—~¢,p; =1
(Hardy and Wright [25]). We now have:

Theorem 3.1. Let p,/q, and p,/q, be Farey-
adjacent, then

o 3)(3)e 42
9 42 92 9
except when gﬁ =

2

ol 20 2)-d{t)ou(2)
@ D 1 N
Proof. i) The proof is straightforward and elemen-

tary, but somewhat long-winded. It relies on two
basic ingredients, the first one being the definition

of a(p/q)-

e el

a(ﬁl): Y Y T Py
q q: US 1

a(-’-’l): P Py - B2
q> Up) 9, 9>

(3.1)

where h,, resp. [, counts the number of ones in
the first k digits of a( p,/q;), resp. a( p,/q,) (see
2.2 and 2.3, we have left out the equality sign
because we assume k > 0).

We define af(p, +p,)/(q; + ¢5)] (abbrevmted
as a*):

«. _P1tps P1+P2k_ <1- Pyt P,
* q1+q, 41+ 4 &k Gi+q;°

(3.2)

In a) it will be proven that one can replace g, by
h, for ke {1---4,}. In b) it will be proven that
8x+q can be replaced by /[, for k€ ({1--: q,}.
The composition of the rest of the sequence fol-
lows from its g, + ¢, periodicity. The second in-
gredient is that p,/q, be Farey-adjacent to p,/q,

P92

1
GiPr~ QP =1 T = =py = o (3.3)

a) Let ke {1---¢q,}. Since «* has a greater
rotation number and greater index than a( p,/q,),
it is clear from fig. 2 that h, <gq,. So the first
inequality in (3.2) with g, replaced by &, follows
immediately.

To prove the second inequality, note that from
(3.1) it follows that

APy

—h,<1-
k 91 91

- Together with (3.3), this implies

(py+p2)k _.hk(‘h +4q,)

k+1
— P2 q (3-4)
1

<q+q,-
For k<g,—1 we can drop the only fractional
term:

(pr+p)k—h (g +q)<q+q,—p,+ps.

Adding p, +p, to both sides and dividing by
q, + g, we see that the left-hand side is fractional
whereas the right-hand side is not. So we can drop
the equality in the last equation. For k<gq; -1
the second inequality of (3.3) is proven.

To deal with the last two digits, we note
(Veerman [20]) that the ¢st digit of the p,/q,
scaling sequence is a zero. Then

hy—1=p; and h, =

For k = g, — 1, (3.4) becomes (using (3.3))
h+1
L=pr=P<qi+t =Pt -

This inequality is satisfied also if (k+1)/q; is
dropped, because, by assumption, g, + g, > 1. For
k = q,, using (3.4)

k+1
q;

1<gq,+q,=pr—p2t+

It is straightforward to derive that the term (k +
1)/q, can be dropped iff p,/q, #1/1.
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b) Let ke {1---4,). To prove that 8k+q
can be replaced by p, +/,, note first that from
(3.1) it follows that

< &k<1k<l— Py _ Py

9> q, 9 4
From this follows

k+1 .

TPiTPT T < (p1+p2)k—1(q+q;)

. k+1

<@ tq—pr—pPr— 4

2

Then add P
92

4, = (P1 +P2)‘h _P1(41 + ‘12)

to each of the terms:

g, - k-1
PPt 2—42—‘—
<(pi+p )i +k)=(pr+1,)(q1 + ¢)
q,— k-1

<qt+q,—p,—p,- Z

One can then proceed as in a) to prove that the

fractional can be dropped.
i1) The proof is entirely analogous to that in i).
a

Remarks. Note that every relative prime rational

N
VANVAN

3 3
5 4

VA AN

< 0010> <O01010>

smaller than one in absolute value appears in the
Farey tree (Hardy and Wright [25]). The theorem
then implies that the right-most endpoint can be
found by Farey addition of (0) and (1) (see fig.
4). According to the theorem by Farey concatenat-
ing the smallest sequence first, except when (1) is
one of the sequences (in that case concatenate (1)
first). The graph of R(B) for the family Pg can
then be drawn as follows (see fig. 7). Draw the
Farey tree up to a desired level, as in fig. 4. The
right-most endpoint of the plateau 1, 3, for in-
stance, is given by p =2/3,

1 1 0 1 -1
,B=5+-2—2+¥+?+E§..
6. 1 1 6
=§(1+§+§ )=7-

The results are, clearly, also valid for the fami-
lies @, (7>1, fixed), defined as follows (see
Veerman [20]): ¢, , is piecewise linear, the slope
is 7 and the flat spot has length (t —1)/7. The
only difference being that now the sequences are
interpreted on the base r rather than on the base
2. In fig. 7b, the rotation number as a function of
B (varying in [0,1/(r — 1)] is plotted. In this case
T =1.2. Note that the resonance intervals, pertain-
ing to the low rationals, tend to be smaller than

<0> <{>
\/<10>\/
<010> <{10>

<10110> <1110>

ANATENARYA

Fig. 4. The Farey tree for the rationals and the Farey tree for binary sequences.
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Fig. 5. ¢'=h-o- h-1. Note that ¢’ is not differentiable.
+

(4B (52

1
!
|
1
1

T-1

—_—

T

Fig. 6. Picture of f, p for =12 and B=1.

the corresponding intervals for greater T (as in fig.
7a). However, because of the slower decay, more
intervals are visible than in fig. 7a, where 7= 2.

Instead of truncating ¢ = 2x mod 1, one could
define a new family ¢’ by truncating ¢’ = h-g-h™t
and h is a homeomorphism (see fig. 5). It is easy
to see that if we truncate ¢ at B and ¢ at
B’ + h(B), then gz and g are topologically con-
jugate (with the same conjugation h). It follows
(Herman [9], 11.2.10) that both have the same
rotation number. The rotation number of @5 as a
function of B was given by R( B). So,

R(B") = R'(h(B)) =R(B)

P. Veerman / Symbolic dynamics of order-preserving orbits

or

R(B)=R-h"'(B)

gives the rotation number of @p as a function of
the truncation height. An example of a conjugated

family is given in fig. 5.

©

05 3
Fig. 7. (a) Rotation number versus parameter of @g. (b) Rota-
tion number versus parameter of @1, g- (c) Rotation number
versus parameter @p., where @' = h-p-h~! and h™'=2y—
252

5
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0 B

Fig. 7. continued

<o>\ /<1>
/<O1>

<001> <0ii>

7\

<000t> <00{01> <0101 > <01{1>

/\ NN /\

Fig. 8. Smallest elements of X, /..

4. Concluding remarks

In fig. 7c, we have plotted R-h~!, where h~! =
2y —2y% (Note that h is not differentiable. Also
note that if ¢ and ¢’ are expanding, then they are
conjugate according to a theorem of Shub’s (Shub
[26], also in Smale [27]). However, the function A
is not necessarily known, nor easy to find.)

Similarly, f, ;, and ¢, ; have identical rotation
numbers: f, g=r5-@, g-r_5 where r; is a rota-
tion by § and ¢, g as defined before. Choosing
8=(r—-1- )/, one obtains a family, f, 4,
which is piecewise linear with slope 7, but now the
flat spot occupies the interval [0,(7—1)/7] for
each B (see fig. 6). The new truncation height is
rs(B)=@1+ B)(r—1)/7]. We are interested in
the parameter range of 8 such that there are no
fixed points. It follows that we take 8 €[0,1/(7—
DI

As a final remark in this section, we mention
that the Farey tree, as constructed in fig. 4, not
only gives information about R(f), it also gives
the location of one of the periodic points (remem-
ber that the sequences are periodic) of ¢, 4.
Applying the shift (or the inverse shift) to each
sequence in the tree yields the image (or inverse
image) of those points. In principle we can con-
struct another of those points. In principle we can
construct another of those points. In principle we
can construct another Farey tree by applying o”,
n € Z to the current one. It can easily be proven
(see Veerman [17]) that the new Farey tree can
also be constructed recursively, by slightly varying
the recipe given in theorem 3.1. In fig. 8 we have
drawn the tree when o~! is applied to the tree in
fig. 4.

From the considerations in the previous sections, it is clear that certain (simple) families of critical circle
maps can be completely understood. In particular, the rotation number as a function of the parameter,
and, for each parameter value, the structure of the orbits can be predicted. This appears to be useful in
applications where circle maps that are very close to the described ones play a role. One example is that of -
Cherry flows on a torus (see Boyd [22]). Considering the Poincaré maps of such a flow results in a circle
map with a flat spot. Another example is a measurement of internal and external rotation numbers in
Birkhoff attractors of twist maps on the cylinder (Casdagli [28]). The measurement of each of these
rotation numbers gives rise to a circle map with a discontinuity. The inverse of this map is a map with a
gap, or, without changing the rotation number, a flat spot map.
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It is tempting to try to find scaling results, as defined in Shenker [30], for the family ¢, 4. Following
Shenker, define B; as the parameter value at the midpoint of the g,/Q; resonance interval. Here ¢,/Q; are
the continued fractions approaching an irrational number p =[a,,...] (where a; are the continued fraction
coefficients of p [31}. Define

.Bi-l_.Bi

8= lim | 7=t
:—lvrga Bi—.Bi+1

. (4.1)

The following exponent is also calculated in Wilbrink [29].

Proposition 41. 8 = co.

Proof. B,_;— B; is equal to the half-width of the ¢;,_,/Q,_; interval plus the half-width of the ¢,/Q,
interval plus other resonance widths in between, the biggest of which has denominator Q;_; + Q,. Using
the expression (7 — 1) /(77— 1) for the p/q resonance width, the quotient in (4.1) becomes

7—1
2

S(r =) (10 =) S,

(12-1-1) " 4+ (72 -1)"'+ S,

= lim

n—oo

T —

2

where the rest term S; can be estimated as follows (i being large enough):
had R | ] >, r—=1)(j—1
S, < Z ( o (/) < Y ( j)£11 )
J=Qi1+ Qi T

jmom+e, 1
0;+Q;+1
<(r=DE(+ )= (- e =)
J

T—1 (O.+0.
< ( 5 )C(Q,+ Qi—l)T (Q,+Q,—1)’

where we have taken x =771, C some constant depending on 7 and ¢ is Euler’s phi function, counting
the relative primes p, to g, as defined in section 5.4 of Hardy and Wright [25]. Now, using that Q,,, =
a,,1Q,+ Q,_,, expanding (% — 1)~ = (1/7%)1 — r7%)7!, and multiplying by 7%-1-2/(r - 1):

All terms in this expansion, except 1 in the numerator approach zero. Therefore, § = c0. a

Note that & is the same for every irrational rotation number. The fact that 8 = co agrees with the
following intuition. Shenker’s result {30] for the golden mean rotation number (8§ =2.83...) is valid for
maps with a cubical critical point. As the critical point becomes more degenerate (i.e., of higher order), the
flat part of the map becomes more prominent, making it easier for low iterates of the map to have a fixed
point. Large 8 simply means that low order locking intervals are preferred with respect to higher order
ones.
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Define, for a one-parameter set of maps ¢, 5 (7 fixed), the set 4 as follows:
A = { B|the rotation number of @, 4 is irrational } .

Proposition 4.2. u(A) =0 (u is Lebesgue measure).

Proof. The idea is to add up all the lengths of the resonance intervals, and show that their sum is equal to
the length of the entire parameter interval (see also Veerman [20]).
Again, ¢ is Euler’s phi function. The function satisfies ¥ ,,,,¢(d) = m, where the sum runs over all

divisors of m (including 1 and m), as in section 5.4 of Hardy and Wright [25].

T, Z(p(ql(f 1) _

q=2 g=2

= (1'—‘1) Y (k+1)r7F2

k=0

-1) Y olg) X v —('r—l) > (k=1)r7*

nx=2 k=2

772 1

=(1'—1)

—1)2=7—1' _ o

Remark. A completely different proof of this fact (for a more general class of maps) was given in Boyd
[22]. In fact, in his article, Boyd also proves that the Hausdorff dimension of A equals zero.
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