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In the space of binary sequences, minimal sets, that is: sets invariant under the shift operation,
that have no invariant proper subsets, are investigated. In applications, such as a piecewise linear
circle map and the Smale horseshoe in a mapping of the annulus, each of these sets is invariant
under the mapping. These sets can be assigned a unique rotation number equal to the average of
the number of ones in the sequences.

One special minimal set is the optimal set for which the convergence of the running average to
the rotation number is faster than for any other minimal set. These sequences are instrumental in
analytically solving for the width of the parameter intervals for which members of a one parameter
family of piecewise linear critical circle maps have rational rotation number.

1. Introduction

In the study of nonlinear maps and flows, aspects of complicated behavior
can often be described in terms of symbolic dynamics. In this approach, the
action of the mapping restricted to an appropriate subset of the domain, is
shown to be conjugate to a subshift on a set of sequences of finitely many
symbols'). The simplest case is the full shift on the space {0, 1) of two symbol
sequences, which arises, for example, in the study of Smale’s horseshoe mapz).

In this study we shall work in the space S of bi-infinite sequences of ones and
zeros. We equip the space with the norm =77 i,,/2"'| where i, are the digits of an
element s of S. This metric induces one to establish an isometry of S to the set
of pairs of real numbers (x, y) € [0, 1) x [0, 2):

i i
y=> 21_",. , yE[0,2) (includes 2—%) .

0378-4371/86/$03.50 © Elsevier Science Publishers B.V.
(North-Holland Physics Publishing Division)
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S with the given metric corresponds to the rectangle [0, 1) x [0,2) equipped
with the induced “Manhattan”’-metric (the sum of the x and y distances rather
than the root of the squares of the sums). S is then obviously a connected space
because the rectangle is connected. When later on we consider one-sided
sequences we shall prove that the sets we are interested in project one-to-

onto the x-axis, so that we can identify bi-infinite sequences with semi-infi
ones.

Let o denote the shift operation, i.c.

one
nite

o(8)=o( .. iy iy ify..)= .., i_yholy - byiy. .. .

We propose to study sets minimal with respect to the shift. A minimal set is
closed set which is invariant under the transformation of interest and which
contains no proper subset with the same properties’). The minimal sets we
consider can be assigned a “rotation-number”, p, defined as follows. Let

p,(s)=(1/n) 2} i , then we consider sets for which the following limits exist and
have the same value:

lim p,(s) = lim p,(s) = p(s):

n—»oc n-»>—oo
p(s) is simply the average number of ones in the sequence. These minimal sets
turn out to be Cantor sets in the space of sequences. (A Cantor set is a closed,
perfect and totally disconnected set.)

The reason for calling the quantity p a rotation-number is that in ap-
plications it corresponds to the usual rotation-number. In Hockett and Hol-
mes®) the authors consider a Poincaré section of the Josephson junction
equation which defines a mapping on the two-dimensional annulus. They prove
that, in a certain parameter-range, there is a transversal interaction of stable
and unstable manifolds giving rise to a Smale horseshoe. Restricted to the
horseshoe, the mapping is conjugate to the shift. They then show that the
average number of ones (if this limit exists) of a sequence s corresponding to
point x in the horseshoe is a very simple manner related to the rotation-
number of x under the Poincaré map. Minimal sets with rotation-number p in
S represent minimal sets in the horseshoe under the Poincaré map.

In this paper we extend their use of symbolic dynamics in the study of
rotation-numbers and indicate applications to invariant sets of a piecewise
linear analogue of a critical circle map.

In section 2 we start by constructing a specific minimal set for each irrational
number p (the number p will denote an -irrational number throughout this
work, unless otherwise mentioned), called the optimal set fp. This is the
minimal set for which the running averages p, converge faster to p than for any

other m:
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other minimal set. The sequences in 2 exhibit great regularity. Although
non-periodic, each finite subsequence in s € 2 reappears infinitely often. In
this section we develop a geometrical algorlthm for generating all the elements
of Sp.

Under certain conditions, these sequences correspond to the “order-preserv-
ing orbits” constructed by Hockett and Holmes*) (i.e., the points on each orbit
have the same relative ordering as the orbit of a point under rigid rotation).

In section 3 we prove that the optimal sets are minimal sets as well as Cantor
sets in S. The proofs are quite general and apply also to the other “non-
optimal” examples of minimal sets that we give in this section. In one example,
we construct for each irrational p uncountably many minimal sets, all of which
are Cantor sets. This result also carries over to the example of Hockett and
Holmes: for each rotation-number p there are uncountably many minimal
Cantor sets in the horseshoe. The other example we give is a construction very
similar to Aubry’s construction of minimal energy orbits for area preserving
monotone twist maps of the annulus’).

In section 4 it is argued that the construction of sequences in E_p is intimately
related to the theory of continued fractions. It is proven that some of the

sequences in 3 can be constructed from the continued fraction coefficients 8,
of p, where

_1
P=B+1
B+

This construction is entirely symbolic, i.e.: it consists of concatenating finite
subsequences without doing any calculations. The sequences we obtain this way
are self-similar, non-periodic sequences, self-repeating on every length-scale.
Some of the sequences constructed in this fashion turn up quite naturally in an
irrational decimation procedure of a path-integral®).

In section 5 we work out a particular application of optimal strings. Consider
the complex map f:z — z° restricted to the unit-circle |z| = 1 parametrized by the
angle x = (1/27)arg(z) (this is simply the angle-doubling map: 6:x -
2x, mod 1). Then, writing x as a binary number, 8 is just the shift map. Among
all the minimal sets under 6, the only ones that are contained in a closed
interval [B/2, B/2+ 1/2] for some B € [0, 1] are the optimal sets E-p for irrational
p.

We then modify the map # by mapping the complement of this inverval to 8
(see fig. 1) and call the -esulting “cut-off”’ map ¢;. The piecewise linear map ¢,
is now a degree on ‘3/.xap It is an analogue of a critical map in that it has a
piece with derivative zero (fig. 12). For the family ¢;, we work out exactly the
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a/2

0=1

Fig. 1. Angle-doubling on the circle.

length of the locking intervals (the intervals in parameter space where ¢, has
periodic orbits) using the properties of optimal sequences. This result is then
generalized to apply to degree one mappings ¢, , obtained in a similar manner
from

8.:x— tx(mod 1)

where 7 is an arbitrary real number greater than one. In addition to this we
find the exact representation of the invariant attracting set ¢, , for all rotation
numbers. In Kadanoft’) and Boyland®) a similar “cut-off”” map is used to obtain
information about orbits in a supercritical map.

Finally in this introduction we give the notation for equivalence-classes that
we will use. In [0, 1) an equivalence relation is defined by ~:

x,~ x,iff x,=(kp+x,)modl, kEZ.
The equivalence-classes
{x|x=(d+ kp)mod 1| k€ Z}
are denoted by [d], so that for instance [ p] includes the number 0.
In (0, 1] the equivalence is defined similarly. The only relevant distinction to
make is that now 1 is an element of [p], whereas 0 is not in the interval. This
distinction plays a role in proving some of the results (lemma 3.4).

The number p is fixed and irrational throughout the paper except in section 5
where it is being varied.

2. The optimal sets

In this section we address the question of constructing sequences for which
the running rotation number p,(s) approaches its limit as fast as possible

(optime
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(optimal sequences). The sequences will in fact be such that, for every k,
pn(a-ks) approaches its limit as fast as possible. The construction has a very
geometrical flavor to it.

A way of visualizing sequences is the following. For each n € Z pick integers
p, that satisfy (fig. 2)

inEpn_pn—l’ ine{()"l}

and i, are the digits of the sequence s. Note that p, — p, gives the number of
ones in the digits 1 through n (for negative n: —p, — p, gives the number of
ones in the digits n + 1 through 0). In what follows p, will always be equal to
zero. The running rotation number p,(s) is simply the tangent of the line
through the origin and (n, p,) (see fig. 2):

pa(s)="2.
n

The question that arises first is: which sequences have converging running
averages p,? Denote the limit of p, by p. It is then obvious (divide by n) that
these sequences are characterized by

Inp = p,| = 2(n) (n—>=).

The points (n, p,) for sequences with a rotation-number p lie in an ever-
widening band around the line px. The width of the band grows slower than n
asymptotically.

—O—

>,

Fig. 2. The dots indicate the pairs ¢(n, p,). p-»=—1and p.;=0so i.y=1; ps=2 and ps=3 so
g=1.
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Let I(x) denote the integer part of x. We define 3, (not fp), a subset of the
sequences with rotation number p, as follows:

p.=I(np+d),
with the definition of i, in terms p, as before. In other words
~-d<snp-p, <1-d, dejo, 1), 2.1
or equivalently
O=np+d-p, <1, deo,1). 2.2)
Sequences constructed this way will have rotation-number p (see fig. 3). We will
call d the index.
Another subset 3% of sequences with rotation-number p is defined in a
similar way,
-d<np-p,<1-d, de(,1], 2.3)
or
Osnp+d-p, =1, de{0,1]. 2.4)
The integers p, for a sequence s in either 3, or in 37 are uniquely defined

and thus so is the resulting sequence s. If p is given with sufficient accuracy

many digits of s can be easily calculated with a pocket-calculator using criterion
(2.1) or 2.3).

y
“y= px+d
/”/ P
1T,
‘,/'T S
- A y
/1'/ }yi--”' J 3 X
,ﬁ" \r
4+ J
-
0
A

Fig. 3. The dots indicate the pairs (n, p,).
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The optimal set E_p (optimal with respect to p) is defined to be the union of
the elements of 3, and of 3. It is easy to see that in (2.2) and (2.4) equality is
not attained if d  [p] (see section 1 for equivalence-classes), because in this case
4+ np is irrational for all n. So for every index d € [0, 1]\[ p] there is a unique
sequence s € fp. If d € [p] equality is attained and there are 2 binary sequences in
3 corresponding to that index, one in 3, and the other in 3.

P
Consider the vertical distances 7, in fig. 3 defined by

y,=np+d and n,=np+d-p,=y,modl. 2.5)

So 7, is generated by a rigid rotation on the circle [0, 1) with initial condition
n,= d € [0, 1). The sequences in 3, can also be constructed by partitioning the
circle as in fig. 4.

i,=1, if n,€[0,p),
i =0, otherwise. (2.6)

(This is the construction described by Hockett and Holmes®*).) From definition
(2.5) of n,, it follows that 7, € [0, p) is equivalent with p, — p,_, = 1, so that we
indeed construct the same sequences. The elements of X% can be gotten by
choosing d in (0, 1] and interchanging open and closed endpoints in (2.6).
Again for d Z [p] », never assumes the values 0 or p.

The map s from [0, 1] to Z_p that assigns to d the sequence belonging to that
index is well-defined on [0, 1]\[p]. We denote equivalence-classes of sequences
with d-equivalent indices by [s,]. Then for

5:{0, I\[p] = 3, \[s,]
we have

Lemma 2.1. The map s restricted to [0,1]\[p] is a homeomorphism onto its
image.

uou

Fig. 4. Rotation by p.
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Proof. By definition s is well defined and onto. To prove that it is a bijection,
let d and d’ be two different indices. According to (2.5) we construct two
sequences s and s’ with

n,=m,+ (@~ d)+(p,— pl) @.7)
and 7, and 7, are rotations on the circle (fig. 4). Their orbits are dense and so
for some n, 7, falls in a “1” region while 7, does not. Thus s is a bijection. To
prove continuity let d & [p]. The numbers 7, see (2.5), for —-N<n=<N are
bounded away from 0 to 1 by a quantity §(N) which is decreasing with N. For
all 4’ with |d’ — d| < 8(N), we have in the right-hand side of (2.7)

n,+(d' —d)E[0,1), |n|<N.

Therefore p, = p,, for |n| <N and thus

d(s,s)<e=2"N*?, B

In fact for the bijection part we don’t have to restrict s to [0, 1)\[ p]. The map
establishes a bijection between [0, 1) and 3. This implies that the cardinality of
3, (and of 3)) is that of the continuum. (The homeomorphism is needed in a
later section.)

The following is a statement of the invariance of E_p under the shift.

Lemma 2.2. If s€ 3,(37%) has index d then s'= o*s is the (unique) element in
3,(2%) with index d' = (kp + d)mod 1.

Proof. The sequence s’ can be constructed from the same figure as s by
translating the origin over the vector (k, p,). The line px now intersects the new

vertical axis at (kp + d) mod 1. See fig. 5. ]

We now give a formal definition of an optimal sequence and in the main
theorem below we prove that elements of 3 satisfy this definition.

Definition. An optimal sequence s (with respect to p) is a sequence for which

Vk,n€Z, |p-p,(o*s) <l . (2.8)
n

Note that if p is rational, say p/q, then pq(a"‘s) has to be equal to p/q for all k
(this would not be true if we replace < by =< in 2.8 so that pq(o-"s) could also be
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Fig. 5. The shift.

equal to (p = 1)/q). Now suppose that p is irrational and s is optimal. Then in
every n consecutive digits there are either m or m + 1 ones where

m m+1
—<p<
n n

For example, if p is the golden mean (=0.6180339887...) then every 3
consecutive digits contain either one or two ones, every 4 consecutive digits
contain either two or three ones, and so forth. Optimal sequences provide us
with the most regular way to make an irrational average with ones and zeros in
the sense that there is a minimal amount of accumulation of identical groups of
digits: ““1101” is possible but “11011101” is not, because g is not close enough

to p (also it contains a subsequence with three ones in three digits which is not
allowed).

Our main theorem asserts that all optimal sequence are elements of E_p and
all elements of 3 are optimal sequences (p irrational):

Theorem. s € E_p < s is optimal.

Proof. > : Let s € 3, so that o*s € 3 also.
Using (2.1) and using lemma 2.2 we have

—(kp+d)mod1=<np—np,(c*s)<1-(kp+d)mod1.

Since (kp + d)mod 1 € [0, 1), by dividing the above relation by n we see that s
is optimal.
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For s € E; < and < change places and now (kp + d)mod1 & (0, 1] which
also proves that s optimal.

<&: Suppose s & Z_p. According to (2.1) and (2.3) there are then [, m € Z such
that for s:

mp—p,=a, lp-p,=B, and |la—B|=1.
Now let p, count the ones in o™s, then:
|(—m)p—pial=la—Bl=1;
so that s is not optimal. n
It can be concluded that the sequences constructed in (2.1) and (2.3) for

irrational p have a very balanced distribution of ones and zeros. This obser-
vation leads us to expect the orbits corresponding to these sequences in the

horseshoe mapping of Hockett and Holmes*) to have nice properties. If there v

are any order-preserving-orbits, one would expect these orbits to be can-
didates.

3. Minimal sets

In this section we prove that Z_p for each p is a minimal set under the shift
operation. The existence of this minimal set was already proven by Hedlund?),
although his approach is slightly different. We attempt to do a more detailed
analysis that leads to a picture of Z_p, its elements being interpreted as (pairs of)
real numbers. We will prove that 3 is a Cantor set. In addition we will give
some other examples of minimal Cantor sets. All these results apply to the case
that Hockett and Holmes have studied but the results are interesting also in their
own right.

The lemma that we want to prove next is most easily understood in the
context of fig. 6. For the construction of s in,say, 3% we draw the line
l:y = px + d. According to (2.4), when [ crosses a horizontal integer-axis then
p, increases by one unit. Project the positions x, of the crossing of y = n down
to the x-axis:

x, =22 (31)
p P

The convention is that if x, for some n falls in the interval [/ -1, ) then

i=1. Giv
sequence ¢

Lemma 3.
) 2\ls, ]
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Fig. 6. Projection on the x-axis.

i;=1. Given the positions x, one can immediately (by hand) construct the
sequence of ones and zeros. (For s € 3, redefine: i, =1if x, €(/-1,1].)

Lemma 3.1. (a) fp is a closed set. In fact (b) fp is the closure of X \[s,] =

S:\[s,]-

Proof. (a) is proven by showing that Z—p is equal to the set of its contact-points.
We prove now that an arbitrary sequence not in Ep is not a contact-point.
Solet r& Z—p. Just as in the proof of < of the theorem in section 2, there are

integers m, | € Z such that

l(=m)p=pi,l=la-pl=1,

where p, counts the ones in o”r = r’. However, every sequence s in 3, obeys

(theorem in section 2)

I(l_ m)p—pl—ml < 1 ’
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p, counting the ones in s. So 7’ and s havc a different number of ones in /-
digits. Then r and s have a different number of ones in I digits.
Or

ds,r)=2", Vs€x,

and r is not a contact-point.

To prove (b) we have to show that the sequences with index in [p] are
contact-points of 3 \[s,].
Lets€E Ep have an index d = —kp mod |, then according to (3.1)

_1+(kpmod1)+£
p p

n

The equation x, = [ with [ integer has a solution / = k. So one of the x, falls of!
a boundary between intervals: x, = +k. (See fig. 7.) Consider a sequenct
s'€ 3 \[s,] with index d’=d+ 8 (0<8 < 1). By definition, the kth digits of
and s’ are the same; in both cases x, lands in the kth interval (k — 1, k]. It can
be seen from fig. 7 and proven in the manner in which continuity in lemma 2.|
is proven, that for 8 | 0 the distance d(s, s") is decreasing to zero. (In fact this ix

left-continuity.) This proves that there is an s € 3 \[s,] in every neighborhoo!
of s. "

This proves the hardest lemma in this section. We now have the following:

Lemma 3.2. All orbits in 5, are dense in X
Proof. Orbits o*s of an element s in fp\[*}] with index d correspond to ortitt
(d+kp)mod1 in [0,1\[p] according to lemma 2.2. The latter orbits W
obviously dense in [0, 1]\[p]. Then, ™ocause of the two spaces beinr
homeomorphic, the orbit o*s is dense in fb\[sp]. Now, the elements [s,] are
the closure of fp\[sp]], so o*s is also dense in all of Sp,

Consider now the orbit of r& [sp]. We ‘ust proved that o*s is dense. Thet

Xp=k
§ § 14 } } ¢ i B § _
— 1 11 1'1\*1‘1‘1'
0
x. =k-3

Fig. 7. Upper sequence s with d € [p], lower seQuwnce s’ with d’ & [p]. s and s’ are very chwee
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for every ¢ there is an N such that
_ £
d(O’ NS, 7') < W

and therefore: d(s, o™r) < & which proves that the orbit of r is dense. |

Note that also all forward, k >0, orbits are dense everywhere in Z because
so are (d + kp)mod 1 for k >0 in [0, 1].

This enables us to state our first main theorem of this section:
Theorem 1. (Hedlund): E_p is a minimal set (with respect to o).

Proof. Z_p is closed and invariant under o. Further, every orbit under the shift is
everywhere dense, so there is no smaller invariant subset in 3, n

In order to make our proof of the next theorem easier, but also with an eye
on applications to be discussed in section 5 we would like to be able to think
about sequences as though they were points on the real line. As discussed in

the introduction we can identify the space of sequences S with the rectangle
= [0, 1) x [0, 2) as follows:

s=>(xy),

where
S= iy iy iy

and

]

=>i0/2", y=>1i /2",
0

1

The norm on the rectangle is just the induced norm

+oo

e, Yl = 2 52" = x| + ]yl

—c0

and so R (which is now equipped with the Manhattan metric) and S are

isomorphic. Interesting questions, of course, are what do 3, and U, 5

look like in R? However, in later applications we want to work with
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semi-infinite sequences and we shall therefore only study the projection of fp
on the x-axis (fig. 8): (x, y)—> (x,0) where x corresponds with a semi-infinite
sequence.

Let a denote a real number such that (a, B) corresponds to an element s of
E_p with index d. The ordering of fp with respect to d is (almost) the same as
the ordering with respect to the magnitude of a.

Lemma 3.3. For elements s in 3,:d > d'& a > «'. Similarly for 373.

Proof. = : Consider two sequences s and s’ with indices d > d’ (fig. 9). There is
a smallest positive integer k such that x, and x; fall in different intervals.
According to (3.1) we have x, < x;. This implies that « > a’.

&: The inverse is obtained by noting that « > ' implies x, < x; for some k
and thus d > d'. |

To understand the next lemma, recall from section 2 that there are two
different sequences for d = kp mod 1, one in 3, and one in 3%. We will call
these sequences s and s*, corresponding to the real numbers a and a*.

Lemma 3.4. Consider the sequences in E_p then (@) d>d'©®a>a'andd # d’;
(b) Let d = +kp mod 1, there are two sequences with index d, s and s* which
differ only in two digits and if k <O then a = a*+2*"'. If k >0 then a = a*.
(See also fig. 8.)

Proof. The first statement (a) is equivalent to lemma 3.3. For the proof of (b),
note that according to (3.1) the positions x, (figs. 6 and 7) in the construction of

--—-101. - \

double valuedness k >0

.

Tttt

.010--- {
gap k< O

Fig. 8. The set 3, for irrational p.
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+ :I.:'|.:‘: ‘
1 1 ]1 0 1 1 0 1 1 { sequencea

[ [} 4. K 4 1, 4 | &
’ t + ¥ + t + + T sequence a
111 0 1 1 1 0 1 1 g

Fig. 9. Two sequences.

s and of s* are the same. In both cases, there is an n such that x, = —k and no
other x, fall on a boundary. In constructing s and s* the only difference is:

i—k i—k+1
s 1 0
s* 0 1

and all the other digits are the same. In particular
a=a*+2""", for k<0. (3.2)

For k = 0,°the indices are different, d =0 and d* = 1 and (a) applies (compare
(2.1) and (2.3)). For k >0, in projecting down on the real axis the digits that are
different are deleted and a and a* are identical. n

These lemmas are somewhat subtle. Their consequences, however, are
far-reaching. First of all, different elements s and s’ of Z_P correspond to
different a and a’ except when s and s’ both have index kp mod 1, k> 0. Since
both sets, fp and its projection, are so closely related we will denote them both
(an abuse of notation) by 3. The statements we make below hold for both sets
(unless otherwise mentioned). In other words, Ep stands for those real nu_mbers
in [0, 1) whose binary expansion yields the right half of a sequence in 3. The
only sequences that map to the same number are:

s(d)in3,, s(d)in 3} ->a(d),
where
d=kpmod1l, fork>0. (3.3)

Another consequence of the lemmas is that we can conclude the ordering of a
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is the same as the ordering with respect to d, except that at d = kpmod 1 k<1
there are “gaps” in 2—,, on the real axis given by (3.2). Note that in (3.2) there
are no a’' € 3, such that

a<a <a*

a and a* have the same index so a’'€E€ E— is greater than both a and a* or
smaller. Since the gaps occur at all values d = kp mod 1, they are dense in 2
and also in the projection of 2

Notice that the ordering of one orbit in fp is_ exactly the same as the ordering
of (d+ kp) mod 1. That means restricted to 3, the shift is order preserving’).
The main conclusion that we want to draw is:

Theorem 2. The real numbers in E_‘, form a Cantor set which is contained in a
closed interval of length ; and not in any smaller interval and which has
Lebesgue measure zero.

Proof. 2_ is closed. The orbits of x under iteration are dense everywhere, so
every point is a limit point. The ‘“gaps” are dense, i.e. between every two
points in 2 there is a gap. Thus E is totally disconnected. The smallest
number « in Zp has index 0, the greatest has index 1. Both 0 and 1 are equal to
0- p mod 1 and therefore the numbers differ in the first digit only. So, if one has
numerical value e, then the other has the value a +3.

The gaps have length 27" k = 1. Since =7 1/(2**") = % they form a set of full
measure in [a, a +3]. The remainder has measure zero. |

Note that when we project E_p on the y-axis, none of the reasoning changes
except that we have one digit (the zeroth) more to worry about. This projection
would yield a Cantor set contained in an interval of length one.

As we have said before, these results carry over to the study of the dynamics
on a horseshoe (shift on bi-infinite sequences). In Hockett and Holmes") the
horseshoe for a time 1 map of a particular flow is constructed. The domain of the
time 1 map is an annulus. It is proven there that the orbits of this map,
corresponding to orbits in Z can be assigned rotation numbers in the way we
defined them. 2 corresponds to a minimal Cantor set in the horseshoe. Under
certain addmonal conditions orbits in Ep are indeed order-preserving. We shall
show below that there are in fact uncountably many minimal Cantor sets for each
irrational p. These other sets are not optimal.

Let p be a fixed irrational number. We will now construct a continuum of
minimal Cantor sets Z—p(e)"). They will be continuously parametrized by the
parameter e and have rotation number p. The construction is as in fig. 10. We draw
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two lines, each with points on it separated by a distance 2/p (associated with
rotation-number p/2). The parameter e gives the distance between the two first
points on each line. The sequences are again defined by projecting down the
coordinates of these points and assigning a “1”” to an interval that contains one of
these points.

Obviously, if one interval is to contain at most one of the projected points
then e must be contained in [1, 2/p — 1]. Note, however, that in the figure we
can interchange the upper with the lower line and still obtain the same
sequence. To eliminate such duplications, e is restricted to

ec[1,1/p].

For e = 1/p we have the optimal set 2_9 back. For e and p fixed and d varying
in [0, 2], one proves by an analysis similar to the one in this section and the two
lemmas in section 2, that fp(e) is also a minimal Cantor-set (for each e). More
complicated sets, parametrized by n parameters ¢, . . . e,, can be constructed by
drawing n + 1 lines each with points on it separated distance (n + 1)/p.

The last example of a minimal Cantor set is constructed in a way very similar
to the construction of the optimal set in section 2. Instead of a straight line

y = px +d, we draw a periodically oscillating line (see fig. 11). Let g(x) be a
function with period 2 and

lg'to)l<1.
Egs. (2.2) and (2.4) are replaced by

S, 0<snp+d+gmp+d)-p, <1, d€[0,1),
St 0<mp+d+gnp+d)-p,<1, de€0,1].

e>1 2/p
"—H —
P DU SN dorot # L
! ; i ! : 2
! [l : [l |
l ; : i |
b y, | . 0 ootal
A I R A I R
L A L
1 1 i 1 t ¥ 1 I
— b Ly 1.4 L —L L ol gbe rOY #
0O 1 i 0 1 1 o} 1 1 (0] i P
—
1-d

°|

Fig. 10. A sequence belonging to f,,(e).
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Fig. 11. Construction with a periodic function g of sequence.

Note that if g(x) has period 1 then g(xp) has period 1/p. Similar to (2.5) we
define y, to be

y,=np+d+gnp+d). (3.4)

Again the same analysis as before will show that the union of S, and S} is a
minimal Cantor set. We mention this example specifically because it plays an
important role in the study of ground state configurations in the Frenkel-
Kontorova model’). In fact, (3.4) has exactly the same form as the expression
for ground state configurations with rotation-number p in the work of Aubry
and Le Daeron (except that in their work g can possibly have countably many
jumps per period).

Finally we mention without proof that if p = p/q where p and q relative
prime then the set fp is finite. It actually consists solely of one sequence and its
iterates of which there are g, since the sequence is g-periodic. For example:

3,5 ={(100)", (010), (001)"} .

4. Continued fractions

In this section we consider again the optimal sequences as defined in section
3. We will restrict ourselves to semi-infinite sequences. First we will (for any
sequence optimal to p) consider the sequence of numbers {p,/n}, and prove
that the continued fraction expansion of the number p is a subsequence of
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these numbers. On the other hand we can also construct a semi-infinite
sequence from the knowledge of the continued fraction expansion of p. The
construction of this sequence is symbolic; it involves no calculations, only
symbolic manipulations of ones and zeros. This sequence is then shown to be a
member of 3 o

The continued fraction expansion {gq,/Q,}; with continued fraction
coefficients {o;}; of the number p is defined as follows™"):

Q1= 19,7 9,y with ¢,=0, ¢,=1,

Q=0+ Q_;, with Q;=1, Q;=ay; “4.1)
so that

4q; 1

Qi_ a+1 -
a,+

R

and

p=lm—,

n—»x n

or
p=la,ayas,...].

Proposition. Let s € E—p have an index d € [0, 1]. Then there is an N >0 such
that {q,/Q,}} is a subsequence of the running averages {p,(s)}; = {p,/n}; -

Proof. The continued fractions g,/Q, have the following basic property®). The
numbers g, and Q, are those numbers for which

|Q.p-4,/<l0p-4], Yq,QeN|Q<Q, 4.2)
and
0,0 -q,/<1/0,.

According to the definition of p, in (2.1) and (2.3) (figs. 2 and 3), if we choose N
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so that

Oy>1/d and Qy>1/(1-d)
{q,/Q,}~ will be a subsequence of {p,/n}]. ]

Note that (4.2) provides us with an excellent and fast criterion for finding
q,/Q, numerically while constructing s. From that one can deduce the
coefficients «;.

Consider a sequence s with index d and shift this sequence Q, places. The
new sequence s’ = o ?"s has index

d=(d+Qp)ymodl=d+Q,p—q,,

which is closer to d than the index of any other o%s with Q < Q,. The sequence s’
could therefore be very close to s and start out with many digits the same as in s.
The greater Q,, the more digits might be indentical. This insight leads us to
construct a semi-infinite sequence by repeating larger and larger pieces and
putting them together in one sequence. The sequence resulting from the following
construction will be called the scaling sequence.

First we define some operations in order to be able to do symbolic manipu-
lation with sequences. Define - as repeating and “@’’ as concatenation. So:

3-0106p 111 = 010010010111 .

Note that we can multiply a sequence only by a positive integer and that the
operations are not commutative. The truncation #(s) is the subsequence of s
consisting of its first N digits.

Example. t,(3-010& 111) = .0100

The construction of the scaling sequence draws on a complete analogy with
the definition of continued fractions in (4.1), where now g, stands for the
number of ones in the first Q; digits. The zeroth digit, or ¢, s (left of the binary
point), is defined to be “0” (step 0). The construction of step 1 is: write down a
subsequence of length a, (= Q,) with one (= ¢q,) “1”. If a,>1 there is nore
than one possibility of doing this. The convention (“initial condition”) is that
the “1” always comes as the last (a,st) digit. We have constructed the first Q,
digits of s or ¢, 5. The other steps are given by (compare with (4.1))
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We give three examples; the bars indicate the digit Q, with the numbers g,
and Q, written above resp. below it:

1123 5 8 13
p=[1,1,1,...): 0-1]0]1|10|101]10110|10110101] .. .,
1235 8 13 21
11 3 4 11
p=[2,1,2,1,2,1,...J: 0-01]0]01001|010|0100100101001001001] . ..,
23 8 11 30
1 2 3
p=[5): 0 - 00001 | 0000100001 | ... .
5 10 15

Note that if p is rational, there is a finite number of coefficients but to obtain
the sequence we keep repeating to finally get a periodic sequence.
The main theorem of this section is

Theorem. The scaling sequence belongs to E_p, in fact, they have index p.

The proof is a generalization of the integer decomposition as described by
Kadanoff’). The reader may profit from checking the statements in the proof
against the examples of scaling sequences given above.

Proof. We will consider the k-truncation s of the scaling sequence s and prove
that the number of ones p, in s satisfies relation (2.1) with @ equal to p. In
order to be able to do this for every k €N we have to “decompose” ts into
terms like £, s. First decompose s as follows:

6,s=258,t, s “‘rest”,

where Q, is the greatest continued fraction denominator smaller than or equal
to k. By construction §, <, ,,. Then repeat this step for “rest”, and so on:

n-1

ts=s, ;- to"_'ﬂa ts,
i=0

where 8, ;<a,_,,, and r<a, and if §,_ ;= a,_;,, then §,_, ;=0 (Recall that
Ay iy to,  SBty , S=1o, ) We can now evaluate kp — p, as follows:

n—1

kp - pk = Z an—i(pon—i - qn—i) + (pr - Pr) .

i=0
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The problem reduces to finding an upper- and lower-bound for this last
expression. In the rest-term r < a, and therefore p, =0 (number of ones). The
smallest value of pt— p, is 0 and its greatest value is p(a, — 1).

Recall the property of continued fraction”') that for n —i odd pQ,_; — q,_; is
greater than zero and for n—i even it is smaller than zero. For k < Q,,,, we
can calculate the maximum of pk — p, by simply adding up all the possible
positive contributions and likewise we calculate the minimum:

min {pk — Pk} = 2 ay, (pQy — qzi) + (o, — Dp,

k<Qzn+1 1

max {pk - p,}= E a0 (pPQyiy— Gyi) + 0.
k<Qqp+t 1

Using definition (4.1) we can rewrite these expressions; for instance:

Z 3Gy = E G2 ~ 922~ G2 -
1 1

This yields:

min {pk —p} = p(Qppe1— D= (G201~ 1,
k<02n+l

max {pk —p,}=p(Q,,— 1)~ q,,.
k<02n+l

This tells us that the minimum occurs at digit Q,,, — 1 and the maximum at digit
Q,, — 1. Taking the limit for n -« and noting that all contributions have the same
sign, we find

—p<pk-p,<l-p.

Thus the scaling sequence satisfies (2.1) with index p. (Note that inequality is
not attained here because we consider only k >0.) u

The question now arises how we can change the first steps of the con-
struction of the scaling sequence and still end up in fp. Suppose first that a, is
greater than 1. The first step in assembling the scaling sequence is to place the “1”
at digit number «,. Suppose we put it at digit number a, — 1. In carrying out the
recursive recipe (4.3) to piece the whole sequence together, it is clear that every
“1” now moves ahead precisely one digit. This means that we have built o3, the
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shifted scaling sequence (compare with our second example!). One can continue
shifting like this until the “1” is at digit number one. For further shifting if “1”isat
digit number one, remove the first bar, permute the first Q, digits cyclically (one
step) to the left and then pick up the construction as in (4.3). One can see this by
explicitly doing this for the examples given!

It should be obvious that if we change the total number of “1’s” at any step
of the construction the resulting sequence is certainly not in Z_p. (By adding one
“1” for instance, we would obtain (g, + 1)/Q, as continued fractions of p.)

To find analogous recursive relations for sequences in E_p with d & [ p] seems
a harder problem, although, of course, we can approximate every sequence in
fp arbitrarily well by the shifts of the scaling sequence.

In the last part of this section we prove that the scaling sequence for
quadratic irrational numbers p is an attracting fixed point of a very simple
linear operator T defined on the space of semi-infinite sequences.

Consider the subset of quadratic irrational rotation-numbers p with p=
[(a,...)7]. (All quadratic irrationals have continued fraction coefficients
which are eventually periodic®).) The construction of the scaling sequence with
such a rotation number is k-periodic; after performing k steps with (4.3) we
have the same coefficients for the construction. If one could perform k steps at
one time the coefficients of the construction would again be constant. One
would construct #,s, t,, S, - - ., lg,S, - - - €tc. An interesting way of doing this is
described in Feigenbaum and Hasslacher®).

To construct the scaling sequence s define a linear operator T so that:
T: 15515,

Proposition. If T satisfies the above equation for the scaling sequence s with p
quadratic irrational, then for all n > 0:

T:‘o,.,,s"t s

Q(n+ 1)k

This proposition tells us that if T constructs ¢, s from f, s then we can
construct ¢, s and on. For p=[2,1,2,1,.. .] as in the second example we
write down T.

0-010
1- 01001

In the proof we will assume k to be 2 for simplicity. This proof can be
generalized easily to k> 2.

Proof. By induction. Suppose that the proposition holds for n=1,2,3,..., N,
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then for n = N + 1 we have by applying (4.3) twice and relying on the linearity
of T:

T(tQ(N“)zs) = Tloyy., (@ t

o’ s Qyn- 1S)®t02 ]
= @y [y, T(toms)@ T(tom_,s)] SY T(toms)

= tnpt (Ggnyy tozmz@ towﬁs)@ tozmzs .

And by the 2-periodicity of a, this expression equals ! o,n.S- The proposition
then holds for n = N +1 as well. By definition of 7, the proposmon holds for

n=1. ||

Remark. The fact the sequence constructed in this fashion is invariant under
the inverse of T which decreases the number of digits, makes these sequences
apt for the decimation procedure for path integrals®).

5. The piecewise linear circle map

The fact that fp is invariant under the shift means that the real numbers «
associated with the one-sided version of 3, (see section 3) are invariant under

f:a—>2amodl.

Recall that to the semi-infinite sequences s ={0,}>_, in 5, we assign real
numbers as follows:

© . N

i . 1
a= =, p=lm—D i
12"’ N—»mN

The set of numbers x corresponding to s in E is also called 2 and p assumes
one value only, the rotation number assomated with 2‘ The results for optimal
sequences will lead us to construct a modification qSB of 0. For the family ¢,
(piecewise linear) we shall calculate exactly the width of the p/q resonance
interval. (A p/q-resonance interval is the interval of values for a such that ¢,
has a stable g-periodic orbit with rotation-number p/q.) In the last part of this
section we generalize our result to a slightly wider class of piecewise linear
circle-maps.

In section 3 we found that the real numbers aEE_p form a Cantor set
contained in [ap/2, a,+ 1/2], for some @,, and in no smaller interval. This
observation leads to the following construction, similar in spirit to the con-

struction
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struction described by Boyland®) and Kadanoff’). Replace the map 8 by ¢, (fig.
12) B€10,1]

( [ B
X=>p0, € Oa_>a
B x %2
b5 1 x—>2xmodl, x€& —E,B—-'-—l>,
127 2
rB+1
x= B, x e 3—2——,1>.

For every B ¢, is a continuous degree one critical circle map. If 8 = a, then
restricted to 3, the map ¢, is the map 2x mod 1. The invariant set 3, can then
be constructed on the circle by taking out {(a, + 1)/2, ap/2) and all its inverse
iterates under @, (see fig. 13). Note that a,/2 and (a,+1)/2 correspond to
sequences with index 0 and 1 resp. and the difference between their inverse
images correspond exactly to the “gaps” in the Cantor set from lemma 3.4 and
theorem 2 in section 3.

We are going to study the rotation-number of ¢, as a function of B. The
rotation-number is defined in terms of the lift &, of ¢, h,

. Phi(x)—x

rotation-number = lim —L()—— .
n—»co n

We have:

/

<

mlw |-
Sk

-
L/

~

Fig. 12. The map ¢p with its lift @p.
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Fig. 13. 3 steps in the construction of the Cantor-set 3, by inverse images.

Lemma 5.1. Let a correspond to sefp and i; the digits of the binary
expansion of @. Then

D" (a)— «a
lim —2——— = lim — 2 .
n n—-w n 1

n—-o

Proof. Restricted to ¢ 1s just the shift. The integer part of @, (a)
increases by one if « mod 1=} 3, in other words if the first digit is a one. [ |

To proceed we quote some important results for circle-maps. These state-
ments and their proofs can be found in Boyland®) or Newhouse, Palis,
Takens'') and Ito). Let End(S") be the set of all continuous degree one circle
maps with C’-topology. Let h and g be maps in End(S") such that their lifts H
and G are non-decreasing. The following results then hold:

Lemma 5.2. Every map f€End(S') has a closed rotation-interval

[p,(f), p,(f)), i.e.: for every p in this interval there is an orbit of f with rotation

number p and no orbit has rotation-number not in this interval,

Lemma 5.3. The map p that assigns to f the endpoints of its rotation-interval:
p: End(S")~>R?

is continuous.

Lemma 5.4. p(h)=1lim _, (H"(x)— x)/n exists and is independent of x. (h has
a single well-defined rotation-number.)

Lemma 5.5. Let G(x)<H(x) for all x. Then if p(g) or p(h) irrational
p(g) <p(h). If p(g) and p(h) are rational, equality is allowed: p(g) < p(h).
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SYMBOLIC DYNAMICS AND ROTATION NUMBERS
Lemma 5.6. If p(g)= plg, a rational number <> g has a p/q periodic orbit.

From all this it follows that there is a well-defined continuous mapping that
assigns to ¢, a single rotation-number. The ¢, form a one-parameter family of
mappings for which the topology carries nicely over to the parameter space
BE€[0,1]: B, and B, are close if and only if ¢ 8, and ¢, are C’-close. So we
define a continuous mapping R that assigns to B the rotation number of ¢,.

R: B-p(d,).

According to lemma 5.5 R is non-decreasing and strictly increasing on those
values of B where p(¢,) is irrational. It follows that R may have plateaus
where p(¢,) is rational, say p/q and where (lemma 5.6) ¢, has a p/q periodic
orbit. The parameter values for which we find these p/q plateaus are denoted
by I, (p/q-resonance intervals).

The idea of the construction is that to some extent we already know what the

map R is (namely on the points where it assumes irrational values).

Lemma 5.7. Let a,/2 be the element in fp with index d =0, then d:ap has
rotation number p (p irrational).

Proof. ¢, restricted to [a,/2, (a,+1)/2] in just 2x mod 1. There is an invariant
set 3 in [a,/2,(a,+1)/2] and orbits in that set have rotation-number p.
Therefore (lemma 5.4) all orbits have rotation-number p. ||

On the other hand we can construct a,: since it has index p (because a,/2
has index zero and lemma 2.2), its binary sequence is just the scaling sequence
defined in section 4. In addition we know that R is strictly increasing at a,
(lemma 5.5). We thus know the map R for all values of 8 where R(B) is
irrational.

Lemma 5.8. The set I of values B for which R(B) = p(¢,) is irrational, has zero
(Lebesque) measure.

Proof. I consists of the numbers a, for p irrational and a, corresponds to the
scaling sequence in X,. Therefore [ is a subset of U ;. 3, on the real line. For
each irrational p, 6 (see beginning of section) maps the set of real numbers X,
to itself and is a bijection restricted to X, (in 3, sequences with indices 0 and 1
get mapped to the sequence with index p). So 8 restricted to U, 5, is a
bijection. But 6 is expanding (derivative 2) so u(U,; 3,) = p(0(U 3 )E
{0, 1}. No number whose binary expansion begins with .0011 or with .1100 can
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be an element of U 3, (compare eq. 2.8)). So we also have:

pirr

,u(U E;)s%.

pirr
Therefore u(I)<p(U,,, %,)=0. [ |

Note that in the same way we can prove that U i = has measure zero and
therefore U, 3 has measure zero. It follows from this lemma that the
complement of I (or the union of all I, ) has measure 1.

We can think of the interval I, as being squeezed in between values a,
where R(a,) is irrational (see fig. 14). Because R(B) is continuous and

increasing we can find the length of I, by
L,.Cla, ,a,l],

p.=—=¢ (e irrational).

R

and taking the limit £ ->0. The sequences a,” can be easily constructed (being
scaling sequences). In this manner we prove:

Theorem 1. The length of I, is 1/(2°—1). The reader may profit from
comparing the statements in the proof with the table below.

Proof. Let p, = p/q * ¢ with ¢ irrational. For small enough &, p, will be very
well approximated by p/q and so p/q will be a continued fraction of p,. In fact
let p/q=[a,,...,a], the «; are not unique, then £—>0 implies @),
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Knowing the coefficients we can now construct the sequences a,,. Both will
have p ones in the first q digits. This group of ¢ digits will then be repeated
a,,, times (see (4.3)) in the next step of the construction:

p

apﬁ:*****I*****---*****---]--- .

1 9 2 A1

Obviously, for £ >0, @,. will be a periodic sequence as its limit. The rotation-
number in the limit sequence will be p/q. The difference between a,, and a,_
depends only on the first g digits.

To construct a,, and @, let 0<n<gq At digit 4—n we have p,_, ones
where p,_, satisfies (2.2):

0<(g-n)p-p,_,+d<1

and

SO

n
O0=sp+ p—pq_"is(q—n+1)<1.

In this last equation (1— n)p/q is fractional for n # 1. So, for n # 1 and & small
enough, p,_, does not depend on the sign of the e-term. However, for n =1 it
does. For the digits i,_,=p, ,—p,.,and i, =p,— p,, We have:

o+
We take the limit as £ >0 and the sequences become periodic and
a,=a, +279+2%+. - =q,_+1/2°-1).
Thus I, =[a, ,a, +1/(2"-1)]. ]
We note that this proves the relation

1 —_—
29-1

b
(p.q)EU




-

PUYCICAL SCIENCES LIBRARY

-
-

ey

..

THoF TEo T

Y o

572

P. VEERMAN

where U is the set of pairs (p, q) such that p and q are relative prime, p <gq
and g = 2. Note that a;, . can be calulated easily using the fact that a,, is the
scaling sequence for p = p/q.

Table I which we give below was made as follows. For a given p we calculated
the scaling sequence by (2.2), setting d = p. The bars that indicate continued
fraction denominators were found numerically by criterion (4.2). The continued
fraction coefficient can then easily be deduced through (4.1). One can check that

the resonance intervals have length a, —a_= 5.

1

Consider again the space of sequences S. To generalize the foregoing we

TABLE 1

1

p=.19900... 00001|00001...00001 0f... a.=1/31 p=15239,..]
52 39
1

p=.20100... 0001(0]00010...00010 0001]... a, =2/31 p=1[4,1,39,..]
5 2 39
2

=.39900... 01/0|01/01001...01001 010]. .. o =9/31 p=1[2,1,1,39,..]
5 2 39
2

p=.40100... 01/010]/01010...01010 o1}... a, = 10/31 p=102,2,39,..]
52 39
3

p=.590... 1/0{101]10101...10101 10]... a_=21/31 p=01,1,2,39,...]
5 2 39
3 .

p=.60100...1|0{1]10}10110...10110 1014... o, =22/31 p=[1,1,1,1,39,.. ]
5 2 39
4

p=.79900... 1]110/1]11101...11101 11101]... a. =29/31 p=11,3,1,39,..]
5 2 39
4

p=.80100... 1/1110|11110...11110 1]... a, = 30/31 p=1[1,4,39,..]
52 39
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=15,39,...]

=[4,1,39,...]

=[2,1,1,39,..]

=[2,2,39,...]

p=01,1,2,39,..]

p=[1,1,1,1,39...]

p=1[1,3,1,39,...]

=[1,4,39,...]
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regard them now as numbers on the base 7 where 7> 1. As in section 3 we
associate numbers x and y with each sequence as follows:

s=“.i-2i—li0'ili2“"
oo -]
‘£=2in/’rn’ )‘;zzi—n/fn’
1 0
but now

x=xmodl, y=ymodr.

Note that this mapping from S to the rectangle R a bijection only for 7= 2.1t
is onto for 1< 7=2 and it is one-to-one for 7=2.

The set of optimal sequences E is invariant under the shift. The set of
numbers a € 2 corresponding to one-sided sequences in E is now invariant
under multlphcatlon by 7 and so is the set {a}={& mod 1} Furthermore the
ordering of the projections & is (almost) the same as the ordering with respect
to the index: lemmas 3.3 and 3.4 still hold if « is replaced by &. This implies
that the smallest number & in E_p has index 0 and the biggest has index 1. They
differ only in the first digit, i.e.: their difference is 1/7. This enables us to do a
similar construction as before. B

We construct a degree one continuous circle map which now has two
parameters 7 and B: ¢, ,. The construction is similar to the previous one, 8 is a
cut-off parameter, 7 is the slope of the slanted part of the map (figs. 15 and 16).
It can be seen from the figure that for 8 =0 and for 8 = 1/(7— 1) the map ¢, ,
has a fixed point. The parameter range of B that we are interested in is

selo5).

We expect the map ¢, , to attain all rotation-numbers in (0, 1) for some B in
the specified interval.
Let @ € 3, have digits i, and

p=lim— 21

nsx N 1

As before, if B has the value a, where a,, is constructed with index d = p, then
restricted to E the map ¢, a is just multlphcatlon by 7. The rotation-number
of the orbits of the invariant set 2 is the average number of ones, p. Therefore we
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Fig. 15. Construction of the truncated map ¢, for 7= 12 Fixed point when 8=0 or B=
2# 1/(12 1).

can associate the rotation-number p with (every orbit of) the mapping ¢ ay"
(Note that a, depends on 7.)
Let 7> 1. Theorem 1 generalizes to

Theorem 2. The resonance interval I of the family ¢, 4, 7 fixed, has length
(r—1)/(r? — 1). The union of all I, has full measure.

Proof. The p/q resonance intervals are constructed exactly as before. The
particular we have that in the binary expansions of @, and a,,, the digits i,
and i, interchange (in the limit & > 0 see proof of theorem 1).

1

Bi f

ol :

b8 B *
T T

Fig. 16. Construction of ¢, g for 7=4. Fixed point when 8 =0or 8 =1/3= 1/(4-1).
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Therefore

a, =a, + (r T =D+ (7 )

=a, +(7-1(r7+ Tt

+’T—1
=a, _ .
[ 74_1

To prove the union of I, has the full measure we can try and prove that the
complement I of U1, has zero measure. For 7=2 the proof of lemma 5.8
applies. However, for all 7> 1, we can also prove directly the equality:

r—1 1

q_ _
waeu T 1 -1

where U is the set of pairs (p, ) such that p and q are relative prime, p <g and
g =2. By definition of Euler’s ¢ function this can be written as

(see Hardy and Wright'?)). Expanding the expressions as power-series in 1/7
and using the properties of ¢ 1) one proves the equality for all 7> 1. u

We want to stress the importance of lemma 5.3 in connection with this
treatment of the function R: 8= p(¢, ;). This lemma asserts that if we study
maps ¢, such that

hm "dln - ¢T,B” = 0
in the C° topology, then ¢, has rotation interval [p,,, p,,] such that

lim p,, = lim p,, = p(d, 5) -
o0 n—w

n—>

In other words, we have a tool to estimate the rotation interval of an arbitrary
mapping ¢ if it is close to ¢ , for some 7 and some B.

In recent papers the metric properties of the invariant set 3, have been
studied in a more general context”™). For our piecewise linear mapping, lemma
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3.3 and 3.4 assert that the ordering of points of one orbit in 2-,, is exactly the
same as the ordering of points under rigid rotation (d+ kp)mod 1. The
distances between a point and its iterates, however, are not preserved. In
particular Kadanoff’) and Sarkar™) give expressions for the distance between
a,/7 and its Q,,th iterate under the map ¢, , with irrational rotation number
p (p has continued fractions g,/Q,). Since in this paper we developed an
explicit representation for the attracting set fp, the conclusions of these two
authors might be proven in the piecewise linear case.

In fact, for the two-parameter family ¢, , and 7 given we have constructed
the function R: B—p(¢, ;) explicitly. Let p(¢, ;) = p for some given values of
7 and B; for q_, we have constructed the invariant attracting set: it is the set of
optimal sequences with rotation number p (as numbers on the base r and
modulo 1).
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