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Z(2) �eld theoretical models play a very important role in condensed mat-ter physics. They have been used to describe a wide range of physical systemsexhibiting phase transitions involving break of Z(2) symmetry. Examples [1]of such systems are uniaxial antiferromagnets like Rb2NiF4 or K2MnF4,systems presenting order-disorder transitions on bipartite lattices like in �-brass, or liquid-gas transitions, etc. On the other hand, topological defectsmay be generated in phase transitions involving broken symmetry. Theyare low-energy, spatially localized, solutions of the �eld equations, whichare topologically stable. They are of fundamental importance for a varietyof physical phenomena in the systems where they appear. As an exampleof their importance, we mention the quasi-one-dimensional organic systemtrans-polyacetylene. The relevant topological defect here, the soliton, is re-sponsible for a tremendous increase in the conductivity to almost metalliclevels of this insulator when charged solitons are introduced by doping [2].In this work we are interested in double soliton solutions for coupledscalar �elds in two-dimensional spacetime. Such solutions have been recentlyinvestigated in a class of systems de�ned by a very speci�c potential [3, 4, 5].These works have shown that there are solutions of the second order equationsof motion that are also solutions of some �rst order di�erential equations.Also, the important issue of the stability of the soliton solutions has beenaddressed [4]: it was found that the soliton solutions of those systems, if theyexist, are intrinsically stable when they also satisfy the �rst order equations.This is also important for condensed matter systems. For instance, there isevidence that solitons in coupled scalar �eld theories may be important todescribe ferroelectric crystals [5] and hydrogen-bonded chains [6]. And it isknown that stable solutions play relevant role at the quantum level.Other issues concerning stability of the soliton solutions for coupled scalar�elds have recently been considered in [7], for the class of systems introducedin [3, 4, 5]. As we know, however, in the past a Z(2) coupled scalar �eldmodel was shown to present very similar coupled soliton solutions [8]. Fur-1



thermore, the motivations presented in that work are closely related to thebasic motivations introduced in the more recent works [3, 4, 5]. For this rea-son, because that Z(2) model and its soliton solutions are closely related tothe models introduced in [3, 4, 5], it seems important to investigate the clas-sical or linear stability of the soliton solutions found in [8] in order to identifypossible distinctions in these two approaches. This is our main motivation,and here we present a detailed analysis of the stability of the coupled solitonsolitons found in [8] showing that these solutions are always unstable.We start with the Lagrangian density [8]L = 12@��@��+ 12@��@��� U(�; �); (1)where the potential isU(�; �) = ��4 + ��4 + 2��2�2 � (�+ �)�2 � (�� �)�2 � 
: (2)The gradient of the potential with respect to the �elds is given byr�;�U =  �2(�+ �)�+ 4���2 + 4��3�2(�� �)�+ 4��2� + 4��3 ! : (3)The potential has stationary points at (�; �) = (�q(�+ �)=2�; 0). Thesepoints are (non-degenerate) minima when the Hessian of the potential isde�nite positive. The Hessian is given by:HessU =  12��2 + 4��2 � 2(�+ �) 8���8��� 12��2 + 4��2 � 2(�� �) ! : (4)Substituting the value of the stationary points, we see thatHessU =  4(�+ �) 00 4� ! : (5)Thus, in order for the stationary points above to be minima of the potential,we require � > 0� > ��: (6)2



The equations of motion corresponding to the Lagrangian are obtainedas the Euler-Lagrange equations of the functional R L. We are looking forstatic soliton solutions, and may thus neglect time. The functional becomes:Ec[�; �] = Z dxf12(@�@x )2 + 12(@�@x )2 + U(�; �)g : (7)The Euler-Lagrange equations are (we write 4x for d2dx2 )�4x  �� !�r�;�U = 0 : (8)The soliton solutions connect the two minima of the potential at (�; �) =(�q(�+ �)=2�; 0). There are two sets of static soliton solutions:�� = �s�+ �2� tanhp�+ � x (9)�� = 0; (10)which together with equation (6) requires that� > 0�+ � > 0� > 0: (11)The second set of solutions is given by�� = �s�+ �2� tanhp4� x (12)�� = �s�� 3�2� sechp4� x ; (13)implying in this case (with equation (6))� > 0� > 0�� 3� > 0 : (14)3



The �rst pair of solutions can be investigated easily: The calculations followthe same steps already introduced in [3] for the related pair of solutions.Therefore, here we will focus attention on the stability analysis of the coupledsolitons of the second solution set.Classical stability may be discussed in the following way: If we are tohave stable solitons, the second variation of Ec[�; �] evaluated at the solutionshould be a positive di�erential operator. We obtain thusHess(Ec[�; �]) =  �4x 00 �4x !+HessU ; (15)as can be most easily seen from equation (8) and noting that 4 is linear. Wewill call this operator Ŝ. Its lowest eigenvalue will be denoted by E0(�; �; �).We will show that E0(�; �; �) < 0 : (16)This way we establish that the soliton solutions are always unstable.For the second solution pair we get the HessianHess(Ec[�; �]) =  12���2 + 4���2 � 2(�+ �) 8�����8����� 12���2 + 4���2 � 2(�� �) !(17)In order to decouple the corresponding eigenvalue equations we need to di-agonalize the above matrix. After some algebra we �nd for its eigenvaluesV� = 2�� 12� + 16�f � 2q16�2f 2 + 4�(�� 5�)f + (�� 2�)2= 2�f� � 6 + 8f �q16f 2 + 4(� � 5)f + (� � 2)2 g ; (18)where f = f(x) stands for tanh2(p4�x) and � = �=�. Notice that f(x)varies in [0; 1), and � > 0 and � > 3 are parameters (see equation (14)). Theoperator Ŝ is now Ŝ =  �4x + V+ 00 �4x + V� ! : (19)4



Notice that V� now only depends on � and �. To eliminate the dependenceon �, write V�(x) = 4�U�(p4�x) ;and in the operator subsitute x = y=p4�. It is easy to see that Ŝ nowbecomes Ŝ = 4�  �4y + U+(y) 00 �4y + U�(y) ! : (20)Now restrict attention to U� and drop the subscript. We writeU� = 12� � 3 + 4f � 12q16f 2 + 4(� � 5)f + (� � 2)2 (21)where f = tanh2(y) and � > 3.We wish to derive an upper estimate for the lowest eigenvalue of theequation (�4y + U�(y)) (y) = "(�) (y) : (22)Notice that U�(�1) = U�(1) = 1 and that U� is well-shaped. It is knownthat in the one-dimensional case there is always at least a bound eigenstate[9]. That is, there is an eigenfunction  with associated eigenvalue less than1, and with the property that R  � dy = 1. Our estimate relies on thefollowing observation. Let U1 and U2 be two potentials as above, but withthe property that for all y: U1(y) � U2(y). The associated eigenvalues, �1and �2 then satisfy the same relation, �1 � �2.For � > 3, the potential U�(y) is a (weakly) decreasing function of �:@U�@� � 0 :It then follows that if we denote by �� the lowest eigenvalue associated withU� �� � �3 ; (23)where �3 stands for the case � = 3. It is an easy calculation to show thatU3(y) = 1� 2cosh2(y) : (24)5



The corresponding eigenvalue equation(�4y + U3(y)) (y) = "(3) (y) (25)is easily solvable { see [3] and [10]. The calculations lead to only one boundstate at "0(3) = 0 and a continuous spectrum "c(3) > 1. Therefore �3 = 0and by (23) �� � 0 : (26)In fact, we can show that we have here a strict inequality. Notice thatH� = ��y + U� implies that H� = H3 + (U� � U3). Now take  0 to be thegroundstate eigenfunction of H3. It follows thatZ +1�1  �0(y)H� 0(y)dy = Z +1�1  �0(y)H3 0(y)dy +Z +1�1  �0(y)[U�(y)� U3(y)] 0(y)dy :Since (U�(y)�U3(y)) � 0 for y 2 (�1;+1), we have that R+1�1  �0(y)[U�(y)�U3(y)] 0(y)dy < 0. Also, since  0 is not the groundstate of H� for � > 3,then R +1�1  �0(y)H� 0(y)dy > ��. With R+1�1  �0(y)H3 0(y)dy = 0 it followsthat �� < 0 : (27)Alternatively, we see that the limit � ! 3 transforms the second pair ofsolutions (12) and (13) back to the �rst pair (9) and (10), for which we have�3 = 0. Thus, unicity of the ground state allows writing �� � 0 for � � 3,or better �� < 0 for � > 3, which is the region in parameter space wherethe second pair of solutions appears. This concludes our demonstration thatE0(�; �; �) < 0 for all parameter values that respect equation (14), and thusthat the soliton solutions discussed here are always unstable.AcknowledgmentThis work is supported in part by funds provided by the U. S. Depart-6



ment of Energy (D.O.E.) under cooperative research agreement DE-FC02-94ER40818, and by CNPq and FINEP, Brazil.References[1] Chaikin P M and Lubensky T C 1995 Principles of condensed matterphysics (Cambridge: Cambridge University Press) ch. 3[2] Chung T-C, Moraes F, Flood J D, and Heeger A J 1984 Phys. Rev. B29 2341[3] Bazeia D, dos Santos M J, and Ribeiro R F 1995 Phys. Lett. A 208 84[4] Bazeia D and Santos M M 1996 Phys. Lett. A 217 28[5] Bazeia D, Ribeiro R F, and Santos M M 1996 Phys. Rev. E 54 2943[6] Bazeia D, Nascimento J R S, and Toledo D 1997 Phys. Lett. A 228 357[7] Bazeia D, Nascimento J R S, Ribeiro R F, and Toledo D 1997 J. Phys.A 30 8157[8] Ruck H M 1980 Nucl. Phys. B 167 320[9] Morse P M and Feshbach H 1953 Methods of theoretical physics Part II(New York: McGraw-Hill) p. 1654[10] Landau L and Lifchitz E 1977 Quantum mechanics (Oxford: Pergamon)p. 73
7


