Soliton stability in a Z(2) field theory
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Abstract

We investigate the stability of the coupled soliton solutions of a
two-component Z(2) vector field model, in contraposition to similar
solutions of a Z(2)xZ(2) model recently introduced. We demonstrate
that the coupled soliton solutions of the Z(2) model are classically
unstable.



Z(2) field theoretical models play a very important role in condensed mat-
ter physics. They have been used to describe a wide range of physical systems
exhibiting phase transitions involving break of Z(2) symmetry. Examples [1]
of such systems are uniaxial antiferromagnets like RboNiF; or KoMnkFy,
systems presenting order-disorder transitions on bipartite lattices like in (-
brass, or liquid-gas transitions, etc. On the other hand, topological defects
may be generated in phase transitions involving broken symmetry. They
are low-energy, spatially localized, solutions of the field equations, which
are topologically stable. They are of fundamental importance for a variety
of physical phenomena in the systems where they appear. As an example
of their importance, we mention the quasi-one-dimensional organic system
trans-polyacetylene. The relevant topological defect here, the soliton, is re-
sponsible for a tremendous increase in the conductivity to almost metallic
levels of this insulator when charged solitons are introduced by doping [2].

In this work we are interested in double soliton solutions for coupled
scalar fields in two-dimensional spacetime. Such solutions have been recently
investigated in a class of systems defined by a very specific potential [3, 4, 5].
These works have shown that there are solutions of the second order equations
of motion that are also solutions of some first order differential equations.
Also, the important issue of the stability of the soliton solutions has been
addressed [4]: it was found that the soliton solutions of those systems, if they
exist, are intrinsically stable when they also satisfy the first order equations.
This is also important for condensed matter systems. For instance, there is
evidence that solitons in coupled scalar field theories may be important to
describe ferroelectric crystals [5] and hydrogen-bonded chains [6]. And it is
known that stable solutions play relevant role at the quantum level.

Other issues concerning stability of the soliton solutions for coupled scalar
fields have recently been considered in [7], for the class of systems introduced
in [3, 4, 5]. As we know, however, in the past a Z(2) coupled scalar field

model was shown to present very similar coupled soliton solutions [8]. Fur-



thermore, the motivations presented in that work are closely related to the
basic motivations introduced in the more recent works [3, 4, 5]. For this rea-
son, because that Z(2) model and its soliton solutions are closely related to
the models introduced in [3, 4, 5], it seems important to investigate the clas-
sical or linear stability of the soliton solutions found in [8] in order to identify
possible distinctions in these two approaches. This is our main motivation,
and here we present a detailed analysis of the stability of the coupled soliton
solitons found in [8] showing that these solutions are always unstable.

We start with the Lagrangian density [8]
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L= 50000 + 50ax0"X — U9, x), (1)
where the potential is
Ulg,x) = A" + A" + 200X — (n+1)¢" — (n—v)xX* =7 (2)

The gradient of the potential with respect to the fields is given by

V..U — —2(p+ V) + 4Apx2 + 4Ng? 3)

#x —=2(p — V)X + A2 + 4N
The potential has stationary points at (¢, x) = (£4/(p+v)/2X,0). These
points are (non-degenerate) minima when the Hessian of the potential is

definite positive. The Hessian is given by:

[ 1207 + 4N = 2(pu+v) 8ApY
Hess U = ( 8y 12002 +4XAp2 — 2(u—v) ) (4)
Substituting the value of the stationary points, we see that
[ Ap+v) O
Hess U = ( 0 Ay ) . (5)
Thus, in order for the stationary points above to be minima of the potential,
we require
v>0
n > —v. (6)
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The equations of motion corresponding to the Lagrangian are obtained
as the Euler-Lagrange equations of the functional [ £. We are looking for

static soliton solutions, and may thus neglect time. The functional becomes:

ox

()2 + 06,0} (7

1

Blon] = [det5 (507 + 5

The Euler-Lagrange equations are (we write A, for %22)
A (%) _
Dol V)= Voali=0. (8)

The soliton solutions connect the two minima of the potential at (¢, x) =
(£4/(+1)/2X,0). There are two sets of static soliton solutions:

éziglﬂg\ytanh\/u—l—uﬂv 9)

X =0, (10)

which together with equation (6) requires that

v>0
p+v >0 (11)
A > 0.

The second set of solutions is given by

b=+ ,u2—|;\1/ tanh v4v x (12)
_ = 3v
X== o sech Vv x| (13)

implying in this case (with equation (6))

v>0
A>0 (14)
pw—3v>0.
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The first pair of solutions can be investigated easily: The calculations follow
the same steps already introduced in [3] for the related pair of solutions.
Therefore, here we will focus attention on the stability analysis of the coupled
solitons of the second solution set.

Classical stability may be discussed in the following way: If we are to
have stable solitons, the second variation of E.[¢, x| evaluated at the solution

should be a positive differential operator. We obtain thus

Hess(E.[¢, x]) = ( (;A‘T (iA:c ) + Hess U (15)

as can be most easily seen from equation (8) and noting that A is linear. We
will call this operator S. Its lowest eigenvalue will be denoted by Ey(u, v, A).
We will show that

Eo(p,v,A) <0 . (16)

This way we establish that the soliton solutions are always unstable.
For the second solution pair we get the Hessian
1207 AN - 2(p+ V) 8APY
Hess(Eel¢, X)) = ( 8AGY 1207 + 4AG2 — 2(p — v)
(17)
In order to decouple the corresponding eigenvalue equations we need to di-

agonalize the above matrix. After some algebra we find for its eigenvalues

Vi = 2u— 120+ 160f £ 2\/1602f2 + dv(u — 5v) f + (1 — 2v)?
= 20{0—6+8f £/16f2+4(0 —5)f + (6 —2)*}, (18)

where f = f(z) stands for tanh?(v/4vx) and § = p/v. Notice that f(z)
varies in [0,1), and » > 0 and ¢ > 3 are parameters (see equation (14)). The

operator S is now

v D+ 0
S‘( 0 SAYE S ) (19)



Notice that V. now only depends on ¢ and v. To eliminate the dependence

on v, write
Vi(x) =4wUy(Vive)

and in the operator subsitute x = y/v4v. It is easy to see that S now

i N 0
5241/( JB () _Ay+U(y)>. (20)

Now restrict attention to U_ and drop the subscript. We write

becomes

U(;:%6—3+4f—%\/16f2+4(6—5)f+(6—2)2 (21)

where f = tanh®(y) and § > 3.
We wish to derive an upper estimate for the lowest eigenvalue of the
equation
(=8y +Us(y)Y(y) = e(0)¥(y) - (22)
Notice that Us(—o0) = Us(oo) = 1 and that Uy is well-shaped. It is known
that in the one-dimensional case there is always at least a bound eigenstate
[9]. That is, there is an eigenfunction 1) with associated eigenvalue less than
1, and with the property that [¢*i®dy = 1. Our estimate relies on the
following observation. Let U; and U; be two potentials as above, but with
the property that for all y: U;(y) < Us(y). The associated eigenvalues, \;
and Ay then satisfy the same relation, A\; < .
For § > 3, the potential Us(y) is a (weakly) decreasing function of ¢:
oUs
o =

It then follows that if we denote by As the lowest eigenvalue associated with
Us

)\5 S )\3 ) (23)
where A3 stands for the case 6 = 3. It is an easy calculation to show that
2
U. =1-——. 24
3(y) COSh2 (y) ( )



The corresponding eigenvalue equation

(=8y + Us(y)d(y) = £(3)¥(y) (25)

is easily solvable — see [3] and [10]. The calculations lead to only one bound
state at £¢(3) = 0 and a continuous spectrum &.(3) > 1. Therefore A3 = 0
and by (23)

As <0 (26)

In fact, we can show that we have here a strict inequality. Notice that
Hs; = —A, + U; implies that Hy = H3 + (U; — Us). Now take 1 to be the
groundstate eigenfunction of Hj. It follows that

[ vty = [ i) Havo(o)dy +

/J:o Yo (W)Us(y) — Us(y)]vo(y)dy -

Since (Us(y)—Us(y)) < 0 for y € (—00, +00), we have that [72° ¢ (y)[Us(y) —
Us(y)]vo(y)dy < 0. Also, since vy is not the groundstate of Hs for 0 > 3,
then [T2°4¢ (y)Hswo(y)dy > As. With [T (y) Hstbo(y)dy = 0 it follows
that

A5 < 0. (27)

Alternatively, we see that the limit 6 — 3 transforms the second pair of
solutions (12) and (13) back to the first pair (9) and (10), for which we have
A3 = 0. Thus, unicity of the ground state allows writing A\s < 0 for ¢ > 3,
or better \s; < 0 for 6 > 3, which is the region in parameter space where
the second pair of solutions appears. This concludes our demonstration that
Ey(p, v, A) < 0 for all parameter values that respect equation (14), and thus

that the soliton solutions discussed here are always unstable.
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