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Parsimonious Cleavage and Homology I

Rudy Beyl, Mathematics, PSU,

email: beylf@pdx.edu.

January 20

A surface is a compact 2-dimensional manifold without a boundary. There is a well known classification of surfaces
based on genus (number of holes) and orientability (due to H. R. Brahana in 1921). Homology theory is an algebraic
tool to rigorously study those concepts and stems from a later date than the classification itself.

There are several different versions of homology. The simplest and most intuitive version is known as simplicial
homology mod 2, and is defined for simplicial complexes. Informally, a simplicial complex is a collection of vertices
in, say, IRn, edges between the vertices, and faces bounded by edges, and so on for higher dimensions, subject to the
condition that any two vertices determine at most one edge and three vertices determine at most one face (and so on).
More formally, let C be a collection of finite subsets (of points) of some finite reference set R. Then C is a simplicial
complex if for any set A ∈ C, every subset of A also belongs to C. An element of C containing exactly p + 1 points
from R is called a p–simplex. Each simplicial complex is also considered a topological space. (It is common to replace
simplicial complexes by simpler CW complexes, essentially by replacing simplices by a smaller number of cells.)

Take one basis element for each p-simplex and let Vp the vector space generated by the linear combinations with
coefficients in ZZ/2 (no relations between the generators are allowed). The elements of Vp are essentially unions of
p-simplexes and are called p-chains. V0, for example, is the space generated by all the 1-element sets belonging to C;
i.e., the vertices of C. The boundary map ∂p : Vp → Vp−1 sends a p-simplex to its boundary, that is: the sum of its
(p− 1)-dimensional faces.

For a given “nice” space S there may be many possible simplicial complexes realizing it, called triangulations,
but the quantity known as the Euler characteristic, and defined as

χ(S) =
∑

(−1)i dim Vi ,

depends only on the space S and not any particular triangulation. For a triangulation of a compact surface of genus
g this of course corresponds to the well-known formulas

χ(S) = F − E + V = 2(1− g) (orientable); χ(S) = F − E + V = 2− g (non− orientable),

where g is the numbers of handles (orientable) or the number of cross-caps (non-orientable).
One can show that homology is invariant under subdivision of the simplices. Thus Tietze formulated around 1905

his “Hauptvermutung” (or Main Conjecture) according to which any two triangulations of homeomorphic manifolds
have a common refinement. While this is true in many cases, in 1961 J. Milnor showed this to be false in general.
Nonetheless, in the late 1920’s it was established without using the Hauptvermutung that simplicial homology mod
2 and simplicial homology with integer coefficients are true topological invariants.

Parsimonious Cleavage and Homology II

Rudy Beyl, Mathematics, PSU,

email: beylf@pdx.edu.

January 27
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The construction of the homology groups depends on the coefficients used in the p-chains. The coefficients
ZZ2 = ZZ/2 are convenient, since they have the advantage of ignoring orientation and being easier to compute. The
Universal Coefficient Theorem says that from a homology formulated with coefficients in ZZ (or integral homology)
the homologies with other coefficients can be computed.

An example of this principle can be found when calculating the homology of the real projective plane represented
by the unit disk with antipodal points on the boundary identified. As a CW-complex, this space can be considered
as having a single 2-cell, the face f . Denote the “northern” half-circle bounding this disk by e (the edge). Then, by
identification, the boundary of f equals twice the edge e. Thus 2e is homologous to zero, expressing that this surface is
not orientable. It turns out that the integral homology for non-orientable surfaces has a finite subgroup (the torsion)
of order 2. Using rational homology (with coefficients in IQ) one loses this information. Here is a table of homology
groups of the projective plane, the Klein Bottle, and the torus:

Projective Plane: Klein Bottle: Torus:
Coeff. H0 H1 H2

ZZ: ZZ ZZ2 0
IQ: IQ 0 0

ZZ2: ZZ2 ZZ2 ZZ2

Coeff. H0 H1 H2

ZZ: ZZ ZZ⊕ ZZ2 0
IQ: IQ IQ 0

ZZ2: ZZ2 ZZ2 ⊕ ZZ2 ZZ2

Coeff. H0 H1 H2

ZZ: ZZ ZZ⊕ ZZ ZZ
IQ: IQ IQ⊕ IQ IQ

ZZ2: ZZ2 ZZ2 ⊕ ZZ2 ZZ2

Note that ZZ2 homology does not distinguish the Klein Bottle from the torus. Integral homology is a fine enough
invariant to distinguish all the compact, connected 2-manifolds from one another.

Relative homology is a technique used to relate the homology of a simplicial complex X and the homology of a
subcomplex Y of X. The relative homology groups are defined as the homology of the chain-complex Cm(X, Y ) =
Cm(X)/Cm(Y ). Since Y is a subcomplex of X, the inclusion map i : Cm(Y ) → Cm(X) induces a map between
homology groups i∗ : Hm(Y ) → Hm(X). Likewise, the natural projection p : Cm(X) → Cm(X)/Cm(Y ) induces
another map p∗ : Hm(X) → Hm(X, Y ). Finally, the boundary operator ∂m : Cm(X) → Cm−1(X) also induces a map
between homology groups of adjacent dimensions ∂∗m : Hm(X, Y ) → Hm−1(Y ). Putting these operators together
yields the long exact sequence

...
∂∗m+1−→ Hm(Y ) i∗−→ Hm(X)

p∗−→ Hm(X, Y ) ∂∗m−→ Hm−1(Y )...

Since the sequence is exact, by definition the kernel of each map is equal to the image of the preceding map. However,
it is important to note that i∗ is not necessarily an epimorphism and p∗ is not necessarily a monomorphism. Besides
being a useful tool, relative homology is used for characterizing homology by axioms (the Eilenberg - Steenrod axioms).

On Parsimonious Cleavages

Cameron Gordon, Univ of Texas at Austin

email: gordon@math.utexas.edu.

February 3

Suppose that M is a compact surface. A subset L ⊂ M is called a minimally separating set (or a parsimonious
cleavage) if M − L has exactly two components, and if for any proper L̃ ⊂ L, M − L̃ is connected. If M is the unit
sphere, the Jordan Curve Theorem states that up to homeomorphism, there is exactly one minimally separating set:
the circle. However, on compact connected surfaces of higher genus the classification of minimally separating sets (up
to homemorphisms of the surface M) is an open problem. Assume that M is triangulable and that L is a subcomplex
of that triangulation.
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Now let M− and M+ denote the closure of the two components of M − L, and N(L) a so-called regular
neighborhood of L (a collar around L, cut out of the manifold M). Then

χ(M) = χ(M+) + χ(M−) + χ(N(L)).

Since the Euler characteristic is invariant under homotopy, χ(N(L)) = χ(L) = V − E, where E and V denote the
number of edges and vertices of L. Suppose that g is the genus of M , and that g± are the genera of M±. For the
sake of simplicity, assume furthermore that M is orientable. After we cut N(L) out of M , we obtain two surfaces
M± with (respectively) n± holes. After we sew n+ disks into M+ and n− disks into M−, we obtain surfaces of Euler
characteristic 2−2g± (respectively). Thus we see that χ(M±) = 2−2g−n±. Since χ(M) = 2−2g, the main equation
boils down to

(2 + 2g) + (V − E) = 2
∑

g± +
∑

n± .

Now note that n± ≥ 1 and g± ≥ 0, and use this to classify the possibilities.
There may be multiple possibilities for the regular neighborhood of L, depending on how it is embedded in M .

For example, if M is the torus, and L is the graph with two edges and one vertex, i.e. the figure “8”, then N(L) is
a thickened figure “8”. Now one can obtain a torus by sewing either 1 disk — if one considers the two cycles in L
as homologically distinct in M — or a disk and twice punctured torus — if one considers the two cycles “parallel”
in M . Thus, depending on the embedding of L in M , N(L) may be homemorphic (in M) to either a “pair of pants”
(three-punctured disk) or a once-punctured torus. A conjecture enumerates the possible regular neighborhoods:

Conjecture 0.1 Suppose that L is a graph. Then for any surface F such that ∂F 6= ∅ and χ(F ) = χ(L), there exists
a regular neighborhood N(L) such that F is homeomorphic to N(L).

(NOTE: This was an ad-lib performance by the speaker based on suggestions from the audience, notably: the formu-
lation of the problem (JJPV) and the conjecture (Steve Bleiler). The two main equations had been independently
suggested by S. Anisov in a personal communication to JJPV. The conjecture turns out to be false as stated.)

Parsimonious Cleavage and Homology III

Rudy Beyl, Mathematics, PSU,

email: beylf@pdx.edu.

February 10

Given a compact triangulable complex S, let Cp denote the p-th chain group of S with coefficients from a field
F . The Euler characteristic χ(S) =

∑P
i=1(−1)i dim Ci of S is an invariant and is independent of the triangulation

of S. To see this, let dp : Cp → Cp−1 be the boundary operator, and define Zp = ker dp and Bp = im dp+1. These
quantities are related by a short exact sequence:

0 → Zp ↪→ Cp → Bp−1 → 0.

Since the coefficients form a field (which allows division, as opposed to, say, ZZ), this sequence splits, that is: Cp
∼=

Zp ⊕Bp−1 and Zp
∼= Bp ⊕Hp, where Hp is the p-th homology group of S with coefficients in the field). Therefore,

dim Cp = dim Zp + dim Bp−1 and dim Zp = dim Bp + dim Hp

Combining these two equations yields dim Cp − dim Hp = dim Bp + dim Bp−1. We now calculate:

P∑

i=1

(−1)i(dimCi − dim Hi) =
P∑

i=1

(−1)i(dimBi + dim Bi−1) = 0.
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Therefore,

χ(S) =
P∑

i=1

(−1)iHi(S).

Since the homology groups Hi(S) are invariant under different triangulations of S, this formula shows that χ(S) shares
this invariance. Note that in the special case where F = ZZ2, the ck = dim Hk(C) are referred to as the connectivity
numbers.

One of the main tools used in homology is the Mayer-Vietoris sequence. Suppose that K is a simplicial complex,
and that K1 and K2 are subcomplexes of K such that K = K1 ∪ K2 and K0 = K1 ∩ K2 6= ∅. The inclusion maps
jn : K0 ↪→ Kn, in : Kn ↪→ K, n ∈ {1, 2} induce the following relationship on the p-chain groups:

Cp(K1)
(i1)∗−−−−→ Cp(K)

(j1)∗

x
x(i2)∗

Cp(K0)
(j2)∗−−−−→ Cp(K2)

Now, define the chain complex C(K) as the set of all p-chain groups C(K) together with all boundary operators on
those p-chain groups (C(K) = {(Cp, dp)}). A chain map between two chain complexes C(K) and C(S) is a collection
of maps between the respective p-chain groups. Following these definitions, the diagram above induces a short exact
sequence of chain complexes

0 → C(K0)
((J1)∗,−(J2)∗)−−−−−−−−−→ C(K1)⊕ C(K2)

(I1)∗+(I2)∗−−−−−−−→ C(K) → 0

where (Jn)∗ is induced by (jn)∗, and so on. This short exact sequence of chain complexes can be used to construct
the following long exact sequence of homology groups, which is known as the Mayer-Vietoris sequence:

... → Hp+1(K) δ→ Hp(K0) → Hp(K1)⊕Hp(K2)

→ Hp(K) δ→ Hp−1(K0) → ...

The δ operators in this sequence are known as connecting homomorphisms; they are not the same as the boundary
operators dp of the p-chain groups, and are often quite complicated to compute.

Induction on Parsimonious Cleavages

Pedro Ontaneda, Mathematics, SUNY Binghamton,

email: pedro@math.binghamton.edu.

February 17

Suppose that M is a compact surface. A minimally separating set L of M was defined in the lecture on February
3, and the problem of classifying all minimally separating sets of M was raised. Ontaneda proposed an interesting
possibility for approaching this problem: induction on the number of edges of a non-separating graph L′ embedded in
M . The inductive algorithm is as follows: suppose that L′ is a non-separating graph embedded in M . Define L′ ∪ e to
be L′ with two (not necessarily distinct) vertices of L′ with a new edge e, such that e is not homotopic to a point. If
L′ ∪ e is separating, it must be minimally separating, since neither L′ nor e is separating. If L′ ∪ e is not separating,
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simply repeat the edge addition on L′ ∪ e. This inductive algorithm will eventually terminate, since there is only a
finite number of ways to add edges that are not homotopic to a point.
(NOTE: This was an ad-lib performance by the speaker based on suggestions from the audience.)

Mandelgraphs I

Louis Kaskowitz, PSU,

email: kaskowit@pdx.edu

February 24

An undirected graph G is a finite collection V (G) of vertices together with a symmetric subset of V × V coding
the edges of the graph. A graph isomorphism between two graphs G1 and G2 is a bijection f : V (G1) → V (G2) that
preserves the edge relation (and its inverse does too). The minimal number of colors needed to color the vertices such
that no two adjacent vertices have the same color (the vertex chromatic number) is an isomorphism invariant as is
the edge chromatic number. In what follows ‘loops’ are disallowed (edges whose endpoint equals the initial point.
Furthermore, adjacency of two vertices v1 and v2 is expressed by v1 ∼ v2.

An independent set in a graph G is a subset of the vertices such that no two of them are adjacent. The cardinality
of the largest independent set is called its independence number α(G). The independence polynomial

iG(x) =
α(G)∑

k=0

ikxk

encodes the number ik of independent sets of cardinality k. Contrary to convention the empty set is not counted as
an independent set, so i0 = 0 for any graph. Additionally, because of the no-loop condition one-element vertex sets
are always independent. So i1 equals the cardinality of the vertex set. The lexicographic product G[H] of graphs G
and H is the graph with vertex set V (G) × V (H), where the vertices {g, h} and {g′, h′} are adjacent if g ∼ g′ or if
g = g′ and h ∼ h′.

The following result connects these concepts. If G and H are graphs, then the independence polynomial of G[H]
is iG[H](x) = iG(iH(x)). This relationship between lexicographic products and independence polynomials means that
taking a lexicographic power Gk corresponds to iterating the independence polynomial fk

G(x) = fG ◦ fG ◦ ... ◦ fG(x)
(k times).

In turn this can be related to dynamics in the complex variable. Think of z → f(z) as a (conformal) dynamical
system in the complex plane IC. Denote by K(f) the set of points z in IC such that fk(z) does not tend to infinity. For
polynomials of degree greater than 1, this is clearly a bounded set. Its boundary is called the Julia Set J(f).

Mandelgraphs II

Louis Kaskowitz, PSU

email: kaskowit@pdx.edu

March 3
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The Julia Set J(f) of z → f(z) either is connected (and bounds a set K(f) of positive measure in the complex
plane), or else it is totally disconnected (and so has empty interior). In the first case K(f) contains an attractor for
the dynamics and the complement of K(f) is attracted to ∞. In the second case J(f) and all points in its complement
iterate to ∞. Either way it is a repelling set (nearby orbits iterate away from the set) with periodic orbits forming a
dense subset. One can distinguish between these cases by iterating the critical points (z0 such f ′(z0) = 0). J(f) is
connected if and only if all orbits {fn(z0)}n are bounded.

This gives us two methods to calculate the Julia Set of an independence polynomial f(z) = iG(z). The naive
one is to calculate high-periodic orbits — the roots of fn(z)− z = 0 — and eliminate orbits that are attracting. The
second one is to iterate backwards any point z0 not in the attractor, so that it will be attracted to the Julia Set. Thus
the set Rn(z0) ≡ i−n

G (z0) of points that map to z0 under inG(z) will approximate J(f).
In our case we can even do slightly better: since i0 = 0, iG(z) has a factor z. Thus iG(0) = 0. However, 0 is not

an attracting fixed point since i′G(0) = i1 which equals the number of vertices in the graph (and which is greater than
1). Thus 0 ∈ J(iG). Because the Julia Set is backward invariant, this implies that the set Rn(0) not only approximates
J(iG) but that in addition Rn(0) ⊆ J(iG).

The central question in all of this is whether there is any non-trivial natural relation between the Julia Set of a
polynomial and the graph it was derived from. The answer appears to be negative. In particular one can show that
there are connected graphs whose Julia Set is connected, and others whose Julia Set is disconnected. The same holds
for graphs that are not connected. If G′ is obtained from G by subdividing a single edge, there also appears to be no
relation between J(iG) and J(iG′). However there are some positive results, of which we will mention a few in what
follows.

Recall that if Gk denotes the k-fold lexicographical product of the graph G, we have: iGk(z) = ikG(z), so that
J(G) (the Julia Set associated with G) is the same as J(Gk). Slightly more exciting is the fact that one can show that

J(Kp[G]) = p · J(G[Kp]) ,

where Kp[G] denotes the lexicographical product of the complete graph of p vertices (Kp) with a graph G and p·
denotes multiplication (rescaling) in the complex plane. Together withe observation that a Julia Set of a polynomial
is bounded, this implies (just set G = Kp, p > 1) that the Julia Set of Kp must be point. This in turn says that
iKp(z) = nz for some n > 1. It is easily checked from the definition of the independence polynomial (February 24)
that, in fact, iKp(z) = pz.

Graphs with no independent sets of order 3 or higher give rise to quadratic polynomials iG(z) = mz2 +nz, where
m is the number of edges needed to make the graph complete (“non-edges”), and n is the number of vertices. These
polynomials can be conjugated by a Möbius transform to z2 − n(2− n)/4. Thus their Julia Sets are also conjugates.

Note: These two talks comprise the speaker’s Master’s Thesis, based on The Independence Fractal of a Graph, by J.
I. Brown, C. A. Hickman, and R. J. Nowakowski, J. of Comb. Th. Series B 87 (2003) 209-230.

Parsimonious Cleavages in Orientable Surfaces

Isaac Erskine, PSU

email: beerax@gmail.com

March 10

Given a closed orientable surface M we want to classify all minimally separating subsets L ⊂ M up to some sort of
equivalence. Three possible equivalences are homotopy in M , homeomorphism of M , and graph isomorphism of L.
As before we assume that M is triangulable and that L is a 1-dimensional subcomplex of that triangulation. Thus it
seems easiest to classify L up to graph homeomorphism.
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Let us examine the local characteristics of L. If e is an edge of L, then e must bound both components of M −L
(otherwise L is not minimally separating). It follows that if v is a vertex of L, it must have an even number of incident
edges. One can show that L must contain at least one cycle. Either C is a connected component of L or there exists
1 ≤ i ≤ n such that deg(vi) > 2. Suppose that C has v1, ..vn as vertices of even degree greater than 2. One is allowed
to perform certain ‘moves’ that change L into a different set L′ which however is still minimally separating. It turns
out that these ‘moves’ allow us to reduce the number of incident edges in the vertices of C to 2. This implies that
a new minimally separating set L′ in which C is topologically a circle and is an isolated component of L′. Assume
without loss of generality that L′ 6= C.

Now cut M along C. We obtain a surface with two holes. Fill these holes with disks to obtain another closed
surface M ′. Furthermore the set L′ − C is minimally separating in M ′. It is easy to that χ(M ′) = χ(M) + 2, where
χ is the Euler characteristic. This implies that the genus g(M ′) of M ′ equals g(M)− 1.

This argument shows that any (simplicial) minimally separating set in a surface of genus g can be obtained from
a minimally separating set in a surface of genus g− 1. The procedure is as follows. Start with a minimally separating
set L′ in M ′ of genus g − 1. Glue a handlebar into M ′ that connects the two components of M ′ and call the new
surface M . Draw a cycle C on the handlebar so that L′ ∪ C separates M . Perform the reverse of the ‘moves’ alluded
to earlier.

Here is an example. Since the surface of genus 0 the sphere has only one minimally separating set, it is fairly
easy to generate the minimally separating sets of the surface of genus 1, the torus. There are five, and they are the
circle, two disjoint circles, the figure-eight (a circle glued to another circle in one place), the bouquet of three circles (a
circle glued to another circle twice in the same place), and the graph with two vertices and four edges between them
(a circle glued to another circle in two different places).

Stochastic Loewner Evolution

Leo Kadanoff, University of Chicago

email: l-kadanoff@uchicago.edu

April 7

Motivated by the possible solution of the Bierberbach Conjecture, Karel Löwner (a Czech who later adopted the
amercanized name Charles Loewner) in 1923 was led to study the singularities of conformal maps by consideration of
the differential equation

d

dt
ft(z) =

2
ft(z)− ξ(t)

f0(z) = z

where z ∈ IC, t ∈ IR and ξ(t) is a real function called the forcing. The evolution of ft(z) in time t is called Loewner
Evolution. With certain basic assumptions about the asymptotic behavior of f , this equation defines a family of
conformal mappings of domains Dt ⊂ H (the upper half plane) to H itself that map the boundary of Dt onto the real
line. The domains Dt have the additional property that Dt ⊂ Ds for s < t so that as time evolves the domains Dt

shrink.
For example if ξ(t) ≡ 0, we find an explicit solution ft(z) =

√
z2 + 4t. There is a branch point for this solution

at z = 2i
√

t, so Dt is H with the segment from z = 0 to z = 2i
√

t removed (the branch cut). It is evident in this
example that as t evolves, the region of singularity traces out the curve γ(t) = 2i

√
t in H, fittingly called the trace.

The situation may be shown to be similar for general forcing ξ(t), and thus we may view Loewner evolution as taking
a forcing function ξ(t) to a trace γ(t) in H.

The function ξ(t) is called β-Hölder continuous (with constant A) if |ξ(t)− ξ(s)| ≤ A|t− s|β . We may then state
some amazing results relating the forcing ξ to its trace γ:

• if ξ is smooth (β = 1), γ is an arc and intersects the real axis only in γ(0).
• if in addition ξ(t) is periodic, γ(t) is self-similar
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• if ξ is 1/2-Hölder with constant at least 4 (or if β < 1/2), γ is a self-intersecting curve.
In the late 90’s, Oded Schramm considered a particular forcing function: ξ(t) =

√
κB(t) where B(t) is normalized

1-dimensional Brownian motion. It is a classical result that B(t) is 1/2-Hölder in the following sense: < (B(t) −
B(s))2 >= |t− s|. He and others discovered a remarkable and useful relationship between κ and the trace:

• if 0 ≤ κ ≤ 4, γ(t) is an arc.
• if 4 < κ < 8, γ(t) intersects itself (with probability 1).
• if κ ≥ 8, γ(t) fills a region of H.
This particularly type of Loewner Evolution is called Schramm-Loewner Evolution or SLE (sometimes also called

Stochastic Loewner Equation). SLE has proved a useful geometrical tool for physicists. For example, when κ = 2,
SLE will transform a random walk in one dimension into a non-self intersecting random walk in two dimensions. When
κ = 6, SLE is related to critical cluster boundaries for percolation in statistical mechanics. Finally, when κ = 8, SLE
is related to space-filling curves winding along uniform spanning trees.

Note: The Riemann Mapping Theorem says that for any simply connected open domain there is a injective conformal
map onto the open unit ball. The Bieberbach Conjecture: The n-th coefficient in the power series of an injective
analytic function from the unit disk to any domain should be no greater than n. (The latter was finally proved by
Louis de Branges in 1985.)

Non-Orientable Surfaces and Double Covers

Rudy Beyl, Mathematics, PSU,

email: beylf@pdx.edu.

April 14

Let M1,M2 be (closed, compact, connected) surfaces. Define an operation on these surfaces, called the connected
sum, as follows: let Di ⊂ Mi be embedded disks; remove these disks to form two surfaces M ′

1,M
′
2 with “holes”. Form

the new surface M1#M2 by gluing (identifying via homeomorphism) the boundaries ∂D1 and ∂D2. It may be verified
that every surface is homeomorphic to exactly one of the following g ≥ 0 or k ≥ 1 and all possibilities occur:

• if M is orientable, there is a g such that M is homeomorphic to T 2# . . . #T 2 (g times).
• if M is non-orientable, there is a k such that M is homeomorphic to P 2# . . . #P 2 (k times).

The numbers g and k are the orientable genus and the non-orientable genus, respectively. The case g = 0 is taken by
convention to be S2.

On the other hand it is not true that connected sums of distinct manifolds are distinct. For example: P 2#K
(where K is the Klein bottle) is homeomorphic to P 2#T 2. But K ≈ P 2#P 2 is not homeomorphic to the torus. (The
connected sum operation does not have an inverse.)

For every surface we have that H0(M ; ZZ2) ≈ H2(M ; ZZ2) ≈ ZZ2. Each torus in the connected sum results in two
generators in H1 and each projective plane results in one. Using that χ(M) =

∑
(−1)i dim Hi, we get that

H1(M, ZZ2) =

{
ZZ2g

2 for orientable
ZZk

2 for non-orientable
so that χ(M) =

{
2− 2g for orientable
2− k for non-orientable

Every non-orientable surface M has associated to it an orientable surface M̃ called the orientable double cover.
This surface is unique up to homeomorphism, and may be constructed via its fundamental group as follows: every
“loop” in π1(M) is either orientable or non-orientable, a property unchanged under homotopy. Replace each non-
orientable loop downstairs with half of a loop upstairs in such a way that going around the non-orientable loop twice
downstairs amounts to traversing both segments of the loop upstairs. After this fundamental group is constructed,
build the surface corresponding to it. It is also possible to recognize the orientable double cover as the covering space
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corresponding to the subgroup of π1 of index two that is the kernel of the homomorphism π1(M) → {±1} that sends
non-orientable (orientable) to −1 (1), respectively.

Consider a triangulation K of M . This triangulation can be lifted to a triangulation K̃ of the double cover M̃ .
Every simplex “downstairs” (in M) lifts to exactly two simplices “upstairs” (in M̃). So (with the definition of the
characteristic from January 20) χ(M̃) = 2χ(M).

An Odd Dynamical System

Dorothy Wallace, Mathematics, Dartmouth,

email: dorothy.wallace@dartmouth.edu.

April 21

The upper half plane IH2 = {(x, y) ∈ IR2|y > 0} together with the Riemannian metric g = dx2+dy2

y2 is a model for
hyperbolic space known as the Poincare upper half plane. SL(2, ZZ) is the set of 2×2 integer matrices with determinant
1. It acts on IH2 by associating a fractional linear transformation fA to a matrix A:

A =
(

a b
c d

)
, fA : z 7→ az + b

cz + d
.

The resulting group of transformations (identifying the actions of any matrix A and its negative −A) is called the
modular group. Their composition satisfies fA ◦ fB = fAB . It is then easy to see that a transformation fA maps IH2

to itself, has inverse fA−1 , and preserves the metric (is an isometry) of IH2. The quotient manifold M ≡ IH2/SL(2,ZZ)
consists of a fundamental domain for the groups with an identification of its sides. This fundamental region is usually
taken to be the region {z ∈ IH2 | |z| < 1/2, |z| > 1}. The projection π : IH2 → IH2/SL(2,ZZ) is a local isometry and maps
geodesics to geodesics. The dynamical system is the geodesic flow in the quotient manifold M .

It is easily checked that γ0(t) = iet is a geodesic. All other geodesics in IH2 can be obtained by applying the
collection of all isometries of IH2 to γ(t). Thus the set of geodesics in IH2 is given by

{ γ(t) = fM ({γ0(t)}) | M ∈ SL(2, IR) } .

These geodesics are either vertical lines or semi-circles intersecting the boundary =z = 0 orthogonally. Their pro-
jections, the geodesics on M , are closed, or they fill M , or one end fills M while the other end spirals into infinity.
Consider the family of (unit speed) geodesics emanating from the point z0 ≡ (x0, 0). The distance d(γ1(t), γ2(t))
between two geodesics with slightly different tangent vector will increase exponentially (a hallmark of chaotic be-
havior). Nonetheless, the collection of curves (called horocyles) orthogonal to this family of geodesics to a family of
geodesics maintain a constant distance from each other. (It can be shown that the horocycles themselves are circles
whose “southpole” is located in z0 and that there is an isometry, namely circle-inversion, which maps them to parallel
horizontal lines.)

If V is a vector field on a manifold M , then for a given f : M → IR, then (V, M, f) is observable if for any
distinct integral curves γ1, γ2 of V , f |γ1 6= f |γ2 . Informally, f distinguishes every two distinct integral curves of V .
The pair (V, M) is said to be universally observable (another hallmark of chaotic behavior) if for every non-constant
f : M → IR, (V, M, f) is observable. It was proved by Doug McMahon that the family of geodesics of IH2/SL(2, ZZ) is
universally observable. The behavior of this system is in general not very well understood. For example, the Laplacian
of the quotient IH2/SL(2,ZZ) has two types of eigenvalues: discrete and continuous. The discrete ones are still quite
mysterious, since unlike in other similar situations the lengths of closed geodesics have not yet been found to be related
directly to the discrete spectrum.
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Unconstrained and Constrained Aging in Rods

Serge Preston, Mathematics, PSU,

email: serge@pdx.edu.

April 28

Consider a homogeneous rod of a certain material, say plastic or metal. We wish to study the changes in the
material when the rod is subjected to forces of the following types: unconstrained aging, in which the rod is simply
allowed to grow old; stress relaxation, in which the rod is deformed quickly to a certain length, held there for a given
amount of time, and released; and creep, in which the rod is slowly pulled with a constant force. In practice empirical
relations between the strain and the stress (force per unit cross-sectional area) are often used for modeling. We present
here an outline of a dynamical system for modeling these forces.

The changing metric properties of the rod over time are described by specifying a metric on the rod and its
evolution in time. Much as one might make even marks on the rod and then measure these marks after the experiment
to detect changes. This metric is given in the ordered basis induced by cylindrical coordinates (t, R, z, θ) via




s2 0 0 0
0 λ2

vλ−1
d 0 0

0 0 λ2
vλ2

d

0 0 0 R2λ2
vλ−1

d




where λv is related to uniform stretching??? and λd is related to constant volume expansion??? and s is rescaled time.
Let x = log λv and y = log λd.

Given certain physical considerations, one can define an action

A(x, y, s) =
∫ T

0

[F (x, y, s) + sχ(s−1xt, s
−1yt)]dt x(t), y(t), s(t) ∈ IR

where F is a function related to the structural strength (cohesiveness) of the material, the work done by the load
and the strain energy and χ is related to the dissipative potential. Interpreted as a classical mechanical system, F
is like a potential, and χ plays the role of kinetic energy. (With a little work this system can also be written as a
two-degree-of-freedom Hamiltonian system.) The problem now is to solve the Euler-Lagrange equations of the action
A.

With some simplifying assumptions one can do a qualitative analysis of this problem. In the case of unconstrained
aging, this reveals that trajectories of solutions in the s, x plane begin at s(0) > 0 on the s-axis and progress in the
negative x direction and positive s direction, tending at infinity toward the curve Fs = 0, not exceeding the maximum
s value s∞. In the case of stress relaxation, we have a qualitatively similar dynamical system involving now only the s
and y variables: solutions begin at s(0) on the s-axis and progress in the positive y direction and positive s direction,
tending toward the curve Fs = 0 at infinity. For creep, there is a dramatic change; y values for solution curves now
become unbounded in finite time, corresponding to the fact that the material under consideration will break after
finite time.

Minimal Separating Sets in Non-Orientable Surfaces

Rob Thompson, Isaac Erskine, Mathematics, PSU,

emails: rob@skylab.org and beerax@gmail.com.

April 28
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Some minimally separating sets in P#P#P , the non-orientable surface of (non-orientable) genus 3. The moves
are also illustrated. Some of the graphs may be graph isomorphic, but there is no homeomorphism that also preserves
the surface.

The Octonion Projective 2-Space.

Iva Stavrov, Mathematics, Lewis and Clark,

email: istavrov@lclark.edu.

April 28
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It is commonly known that one may construct topological real projective space IRPn by identifying antipodal
points in the sphere Sn. Because antipodal identification is geometric, it is easy to miss the underlying algebraic
process, which becomes more evident in the construction of complex projective space. ICPn is the set of all equivalence
classes of unit length (n+1)-tuples of complex numbers where two vectors are equivalent if they are unit length scalar
multiples of one another:

[z1, . . . , zn+1] ∼ [w1, . . . , wn+1] if (z1, . . . , zn+1) = λ(w1, . . . , wn+1) where λ ∈ IC and |λ| = 1.

In the real case, the only length 1 scalars are 1 and −1, and thus the equivalence relation boils down to antipodal
identification. Similarly, we may construct HPn through equivalence classes of quaternion vectors under multiplication
by norm 1 quaternions.

These constructions yield fiber bundles fiber → total space → base space, all locally trivializable (that is: the
preimage (in the total space) of a small enough neighborhood of any point in the base space is a direct product of the
base-space and the fiber):

S0 → Sn → IRPn in the real case with Sn ∼= IRPn × S0

S1 → S2n+1 → ICPn in the complex case with S2n+1 ∼= ICPn × S1 and

S3 → S4n+3 → HPn in the quaternion case with S4n+3 ∼= HPn × S3.

This notation means that, for example, Sn → IRPn is a covering map where each inverse image (fiber) looks like S0.
The “local trivialization” of Sn through this map looks like two copies of IRn, hence the pairing with S0 = {−1, 1}.

It is natural to attempt the same construction for the octonions O. This will fail however as the octonions are
not associative and multiplication by unit length octonions will not be a group action on octonion (n + 1)-tuples and
therefore will not define an equivalence relation: If α and β are unit octonions, and x ∈ S8·2+7, then it is not always
true that α(βx) = (αβ)x. Thus if y = βx and z = αy, it is not clear that z is equivalent to x. Thus it is impossible
to define in this way an identification map S16+7 → OP 2.

However OP 2 can be constructed by other means. For example, via Lie group theory, OP 2 = F2/Spin(9), but
this characterization is completely algebraic and obscures many geometrical properties. Happily, a simpler process is
given by the following

Theorem: Let V = {(o1, o2, o3) : oi ∈ O, (o1o2)o3 = o1(o2o3), [o1, o2, o3] 6= 0}. Then OP 2 is homeomorphic to
V/ ∼ where (o1, o2, o3) ∼ (p1, p2, p3) if there is a k in the subalgebra generated by o1, o2, o3 such that (p1, p2, p3) =
k(o1, o2, o3).

Since OP 2 is a Riemannian manifold, the above theorem will perhaps afford a way to calculate the metric and
curvature tensor.

Combinatorial Quandaries

J. J. P. Veerman, PSU, moderated by Ronald Graham, UCSD.

emails: veerman@pdx.edu and graham@ucsd.edu.

April 28

A fundamental result in combinatorics states that for any set S with n (distinct) elements there are
(
n
k

)
ways

of choosing a k-element subset from S, where
(·
·
)

is the binomial coefficient, and that, on the other hand, the total
number of distinct subsets is 2n (the cardinality of the power-set). This then gives the following relation:

n∑

k=0

(
n

k

)
= 2n.
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There is another situation in which a judicious choice of notation produces a similar relation. Suppose that
L(n1, n2) is an n1 by n2 2-dimensional lattice of integer-points (from (1, 1) to (n1, n2)), and define a partial ordering
on the elements a = (a1, a2) and b = (b1, b2) of L by

a ≤ b ⇔ a1 ≤ b1 and a2 ≤ b2 ,

and a strict inequality is said to hold when at least one of these last two relations is also strict. A chain in L is a subset
C ⊂ L such that for any two elements x, y ∈ C either x < y or y < x. In other words, a chain is a (strictly) ordered
subset of L. In direct analogy with the above, define

(
n1,n2

k

)
to be the number of k-element chains in L, and 2(n1,n2) to

be the total number of chains in L(n1, n2). This time these definitions lead to relation characterizing ordered subsets
of the lattice, namely:

n1+n2∑

k=0

(
n1, n2

k

)
= 2(n1,n2) where 2(n,1) = 2(1,n) = 2n .

At this point several interesting things happen. First of all, computationally explicit expressions for both the
LHS and the RHS of the principal equation above are available and therefore have to be equal (see the paper in
the note below). Second, previous proofs of this equality have been extremely long-winded and indirect. Again, the
referred paper shows a direct combinatorial proof, which, though somewhat tricky, is short, intuitive, and elementary.
Third, there are a few unexpected applications made easy by this notation. Fourth, there seem to be no real world,
readily available application for some sort of continuum limit of this, the statistics of which could easily be developed;
it would be akin to deriving the Poisson distribution from the binomial distribution and the calculational effort would
be similar. Finally, there is a most curious thing which ended up calling our attention to this train of thought and
which will be described next.

A path in which only the moves right (p, q) → (p+1, q), up (p, q) → (p, q+1), and diagonal (p, q) → (p+1, q+1)
are present is called a king’s path. The number of paths that contain exactly d diagonal moves is given by the
multinomial (again, see reference below)

(
n1+n2−2−d

d,n1−d−1,n2−d−1

)
. Summing this number over d yields the total number of

possible king’s paths in the lattice L(n1, n2) (from (1, 1) to (n1, n2)). These numbers,

D(n1, n2) =
min{n1,n2}−1∑

d=0

(
n1 + n2 − 2− d

d, n1 − d− 1, n2 − d− 1

)
.

are referred to as Delannoy numbers.
Clearly, this relation can be stated in any d-dimensional lattice L. So we have the following conjecture:

For any dimension d, we have: 2nD(n, · · ·n) = 2(n,···n) .

In dimension 1, this is trivial as there is only one king’s path. In dimension 2 there are complicated algebraic proofs
in the literature, however a simple conceptual proof appeared in the reference below. In dimension 3 and higher
numerical results indicate that this relation holds. However, so far no proofs have been found.

Note: The above appeared in the preprint: J. S. Caughman, C. R. Haithcock, J. J. P. Veerman, Lattice Chains and
Delannoy Numbers. The notation there is a little different from the one here; in particular here we denote the lower
left point of the lattice by (1, 1) (not (0, 0)) to emphasize the naturality of the conjecture.

Fractional Graph Colorings.

Tony Jacobs, PSU.

email: gtjacobs@hotmail.com

June 2
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A (proper) vertex coloring of a graph X is an assignment of one color to each of the vertices of X such that no
two adjacent vertices are assigned the same color.

�

�

��

�

�

��

The chromatic number χ(X) of a graph X is the least number of colors required to color X. It is clear that 3 is
the chromatic number of the above graphs (Red, Blue, and Green). One of the reasons graph colorings are important
is they specify certain graph homomorphisms in the following sense: a graph X is n-colorable if and only if there is a
graph homomorphism from X to Kn (the complete graph on n vertices).

But a three coloring of the pentagon still seems a little “loose”; this can be tightened with the concept of
fractional colorings. An n

k -coloring is a vertex coloring using n colors with k colors assigned to each vertex such that
no two adjacent vertices share any colors. The 3-coloring of the pentagon above trivially produces a 6

2 -coloring, but
a little thought can actually reduce this to a 5

2 -coloring as shown below. A 6
2 -coloring will not necessarily produce a

3-coloring: take the graph with vertices given by all 2-element subsets of 6 elements. Join two vertices with an edge
if their corresponding subsets are disjoint. This graph is 6

2 -colorable but not 3-colorable.
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The fractional chromatic number χF (X) of a graph X is the infimum of n
k over all n

k -colorings of X. We describe
an algorithm to compute this number. Notice first that, given a coloring, the subset of vertices corresponding to a
single color C is an independent set, called the color class of C. Now, given a graph X, construct a matrix AX with a
column for every independent set of X and a row for every vertex. Enter a 1 in the matrix if the vertex of the row is
in the independence set of the column and a zero otherwise. We then apply this matrix to a vector v = (v1, . . . , vl)T

whose rows correspond again to the independence sets. This vector is given as follows: for an n
k -coloring, we put an

entry of 1
k in the row if it corresponds to an independence set that is a color class, and a 0 if not. One can verify that∑

vi = n
k , and that AXv equals the vector of all 1’s. Finding χF (G) then becomes a linear programming problem:

minimize
∑

vi subject to the constraints (AXv)i ≥ 1. It is a theorem in linear programming that solutions exist and
are rational.

The final consideration is the location of χF (X) in the inequality ω(X) ≤ χF (X) ≤ χ(X), where ω(X) is
the clique number of X (the size of the maximal clique). For example, can difference between two terms in this
inequality be arbitrarily large? The answer is yes, as is demonstrated by the following sequence of graphs, due to
Mycielski: given a graph X with V (X) = {v1, . . . , vl} form a new graph µ(X) By taking a new vertex set V (µ(X)) =
{x1, . . . , xl, y1, . . . , yl, z} and connecting vertices by the rules

xi ∼ xj ⇐⇒ vi ∼ vj , xi ∼ yj ⇐⇒ vi ∼ vj , yi 6∼ yj and yi ∼ z.

Let G1 = K2, and let Gn+1 = µ(Gn). One can then prove that ω(Gn) = 2, χ(Gn) = χ(Gn−1) + 1 and χF (Gn) =
χF (Gn−1) + 1/χF (Gn−1). Thus ω is constant, χ is linear, and (as can be verified) χF grows like

√
2n. Thus the

differences χF (Gn)− ω(Gn) and χ(Gn)− χF (Gn) grow arbitrarily large.

Note: The information in this summary is based on the article The fractional chromatic number of a graph and a
construction of Mycielski, M. Larsen, J. Propp, D. Ullman, J. Graph Th. 19, 411-416, 1995.

15


