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Atmospheric Reaction Equations

Matthew Tierney, Robert O’Brien, Chemistry PSU,

email: obrienr@pdx.edu .

January 14

Fairly complicated sets of chemical reactions equations are studied. The equations have constant,
linear, and quadratics terms only, somewhat reminiscent of systems describing spread of infectious
diseases. The simplest non-trivial case they studied is given by

ẋ1 = −k2x1x5 + a1

ẋ2 = −k1x2 − k3x6x2 − k4x3x2 + k5x4 + a2

ẋ3 = −k4x3x2 + k5x4 − k6x6x3 + a3

ẋ4 = k4x3x2 − k5x4 + k6x6x3 − k7x5x4

ẋ5 = 2k1x2 − k2x5x1 + k3x6x2 + k6x3 − k7x5x6

ẋ6 = −k2x5x1 − k3x6x2 − k6x6x3

The variables are: x1 = CO, x2 = O3, x3 = NO, x4 = NO2, x5 = HO, x6 = HO2.
Parameters: a1, a2, a3, roughly between 103 and 106. The reaction speeds are on the order of:
k1 = 7 · 10−8, k2 = 2 · 10−13, k3 = 1.5 · 10−15, k4 = 8 · 10−15, k5 = 4 · 10−3, k6 = 10−11, k7 = 1.3 · 10−11.

Units were not given. The main problem here is: what are the stable equilibria of this system?
In general, this means that one has to solve right hand side equals zero (to find the stable and
unstable equilibria). This gives a system of coupled quadratic equations. In this case these equations
can be fairly analytically easily solved and a stable equilibrium can be determined (though it is
unclear if all equilibria in the positive orthant are determined this way). But in general (for more
complicated systems), this is a hard non-linear problem. Tierney cited the paper Basic Principles
of Mechanical Theorem Proving by W. T. Wu (J. Syst. Sc. and Math. Sc., Vol 4, No 3, 207-235,
1984) as using Gröbner bases to reduce the problem to a sort of ‘triangular’ form. Other suggestions
that came up were to use ‘monotonocity’ à la Hirsch, and an argument recently devised by JJPV
to address a similar problem that came up in connection with differential equations describing the
growth of certain archaea.

Problems in Public Health

Jan Semenza, Public Health Program, PSU.

email: semenzaj@pdx.edu .
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January 21

Genetic susceptibility to Kidney and Breast Cancers.
Semenza assessed the gene-environment interactions between the two types of cancers and expo-
sure to dietary carcinogens or medications in individuals, stratified by polymorphic variations in the
NAT2 genotype for kidney cancer, and estrogen and tobacco smoke metabolism for breast cancer. In
both cases, logistic regression and Mantel-Haeszel tests will be employed to assess main effects from
environmental exposures and genetic background.

Determinants of the Spatial Distribution of Leukemia in Oregon.
Geocode and GIS are used to process demographic and geographic information, including socio-
economic status, toxic waste dumps, pesticide use by county, and superfund sites. The goal is to
identify proximity of Leukemia cases to pollution sources. Spatial and temporal patterns will be
explored to investigate disease clustering. Semenza uses the software package ClusterSeer which
estimates exposure strength using the inverse of distance to the focus.

Public Health Implications of Coastal Water Pollution in California.
A study is underway to relate the density of Enterococcus bacteria in the coastal waters of Los
Angles to GI illness. The difficulty resides in the question of how to factor in a wide range of possible
other variables (coastal residents or tourists, industry, military, watershed characteristics, and so on).
The purpose is to determine the risk to individual bathers from exposure to sewage and storm drain
runoff. The modeling was done using Vensim software based on a health risk model developed by
Cabeli (Swimming Associated Gastroenteritis and Water Quality Am. J. Epidemiol. 115(4): 606-
616, 1982.) and/or Fleischer et al (Water and Non-Water Related Risk Factors for Gastroenteritis
among Bathers Exposed to Sewage Contaminated Waters Int. J. Epidemiol. 22(4):298-708 1993).

Gröbner bases and solutions of systems of polynomial

equations

Joyce O’Halloran, Math PSU.

email: joyce@pdx.edu .

January 28

Given a basis (generating set) for an ideal of a polynomial ring, we try to find a “nicer” basis for
the ideal which may, for example, be minimal or might have polynomials of lesser degrees or in less
indeterminates. O’halloran discussed the algebraic formalism needed to work with Gröbner bases.
The bases will be investigated in more detail in a follow up seminar on February 18.
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Given any algebraically closed field F , F [X] = F [x1, x2, ..., xn] is the ring of polynomials over F in n
indeterminates x1 through xn. The variety defined by f1, f2, ..., fk ∈ F [X] is the set of of common
zeros. It is a subset of F n and is defined as V(f1, f2, ..., fk) = {α ∈ F n : fi(α) = 0, ∀i = 1, ..k}.
For a subset S of F n, the ideal of S is the set of polynomials that annihilate S: I(S) = {f ∈
F [X] : f(α) = 0,∀α ∈ S}. The smallest ideal of F [X] containing the set {f1, f2, ..., fk} — or the
ideal generated by {f1, f2, ..., fk} — is defined as 〈f1, f2, ..., fk〉 = {∑k

i=1 hifi : hi ∈ F [X]}.
The set {f1, f2, ..., fk} is called a basis of the ideal 〈f1, f2, ..., fk〉. For an ideal I of F [X], the radical
of I is defined as

√
I = {f ∈ F [X] : f r ∈ I for some non-negative integer r}.

It turns out that

V (f1, f2, ..., fk) = V (
√
〈f1, f2, ..., fk〉 and I(V (f1, f2, ..., fk)) =

√
〈f1, f2, ..., fk〉) ,

and that there is a one to one correspondence between varieties in F n and radical ideals in F [X].
The consequence of this fact is that given two sets {f1, f2, ..., fk} and {g1, g2, ..., gt},

V (f1, f2, ..., fk) = V (g1, g2, ..., gt) ⇐⇒
√
〈f1, f2, ..., fk〉 =

√
〈g1, g2, ..., gt〉 .

Hence, solutions of equations in one basis will be the same in another satisfying the condition above
on the radical ideals. One can go from a given basis to another using the division algorithm, or
lexicographical or some other form of total ordering. This can be done using the Euclidean Algorithm:
Let f , g, q, r in F [X] such that f = gq + r. Then V (f, g) = V (g, r). Thus, since

xy2 = x(y2 − y) + xy ,

we can replace 〈xy2, y2 − y〉 by 〈xy, y2 − y〉.

Viral Infections

Klaus Früh, Vaccine and Gene Therapy Inst, OHSU.

email: fruehk@ohsu.edu .

February 3

T-cells are highly specialized cells that can detect pathogens when they enter the bloodstream and
then attack it. (Their name derives from the small organ behind the sternum that produces them:
the thymus.) Any single cell is essentially sensitive to a single pathogen. Thus there are a limited
number sensitive to any given pathogen. Once infection occurs and the T-cell comes in contact with
the pathogen, they first multiply fast (essentially by cell-division) to create sufficient numbers to
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combat the pathogen. Its number increases greatly and then after the infection subsides, decreases,
though now with a more substantial permanent presence than before. Another change occurs after
contact with the pathogen, namely the T-cell is “promoted” and becomes a “memory” cell instead of
a “naive” cell. A memory cell is much more aggressive and effective in combating the infection than
a naive cell. However, the organ that produces the T-cells, the thymus (hence the name T-cells),
can produce only naive T-cells. The central question is: how does the body regulate the number of
T-cells present (on the order of 1010 in the human body)?

Experiments are often done on mice. After the mouse reaches puberty, there is a 10-fold drop
in the production of naive cells by its thymus. But other than that, the production of T-cells is
not influenced by any factor such as disease (neither does it appear to favor T-cells sensitive to a
particular pathogen when the body needs them). The total production is about 2 · 106 cells per day.
And the total number of T-cells in a mouse is about 108 at any given time.

Memory cells are reported to divide in vitro once every 6 to 8 days. There are theoretical limits
on the number of divisions a cell populations can go. Again one has reported 25 to 30 generations as
the limit in vitro in the literature. This would imply that the memory cells die out in time (unless
the pathogen is present) over time. However, once the individual is exposed to the pathogen the
number of memory cells sensitive to that pathogen, remains constant. Früh and his colleagues are
interested in modeling the dynamics of a cell population subject to division. It may be necessary
to use more parameters which include the influences the naive cells and memory cells have on each
other, and the organic surroundings on the T-cells .

Two papers were specifically mentioned: The rescaling method for the turnover of cell populations
by S. S. Pilyugin et al. J. Theor. Biol., 225, 275-283, 2003 (also available at www.sciencedirect.com),
and Estimating average cellular turnover from ... by R. J. De Boer et al, Proc. R. Soc. Lond. B,
270, 849-858, 2003.

Analysis of Brain Signals

Randy Zelick, Biology, PSU.

email: zelickr@pdx.edu .

February 11

Frogs and toads have an essentially completely permeable skin. When they spend a substantial
amount of time on dry land they can lose up to 30 or 40 percent of their weight from dehydration,
whereas about 10 percent would be lethal to mammals. Dehydration of the body causes the salt
concentration of the bodily fluids to go up drastically (salt does not evaporate with water). If the
concentration of particles in the neurons of the frogs would stay the same, these cells would lose water
to their surroundings (the ”plasma”) due the osmosis (the tendency to equalize particle concentration
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on both sides of the cell-membrane would drive water out of the cell). The interstice between between
two successive neurons — very long cells —, which ideally is on the order of nanometers would
thus grow substantially. Signals that travel through the nerve system are of electrical nature while
travelling within the neuron, but of chemical nature — and thus much slower — while bridging the
interstice between two successive neurons. In the absence of a compensating mechanism, the salted
(dehydrated frog) would process signals much slower than his sweet (wet) counterpart.

This compensating mechanism consists of some cellular machinery inside the neuron that,
when the outside salt concentration rises, breaks certain proteins available within the cell into much
smaller parts, thereby increasing the particle concentration inside the neuron. Thus the osmotic
pressure is essentially reduced to zero. It is possible, for example, to measure the time delay between
a “click” sound and the onset of the response of the auditory neuronal cells. This is done by putting
electrodes on the skin of the frog, so that the response must have travelled through the nerve system
before reaching the electrode. It turns out that the performance of the auditory system is maintained
under conditions of high plasma salt concentration (as normally occurs when a frog ventures away
from water for a day or two). Thus the effectiveness of this mechanism is generally excellent but for
unknown reasons slightly different in distinct species of frogs, and in distinct individuals of the same
species.

To understand these differences, the time-delays between the (very short) click and the first
relevant valley of the auditory response signal is measured with great precision under experimental
conditions that control the saltiness of the frog. The outstanding challenge is to design an algorithm
that automatically detects the first valley of the response (and thus the delay). It turns out that
in the the ideal case this may easily be done, but in general, due to the bad signal to noise ratio,
especially in very salty frogs, this can be very hard, and sometimes relies on eye-balling the signals
and extensive experience with them. Several methods are currently under investigation. They vary
from naive peak detection algorithms, to Fourier Transform, to integrating the signal (and thereby
smoothing it), and statistical analysis on a large number of signals where in each successive signal
the frog is a little saltier. Currently no single method seems to stand out as universally reliable.

Gröbner bases and solutions of systems of polynomial

equations II

Joyce O’Halloran, Mathematics, PSU.

email: joyce@pdx.edu .

February 18

Given a basis (generating set) for an ideal of a polynomial ring, we try to find a “nicer” basis for
the ideal which may, for example, be minimal or might have polynomials of lesser degrees or in less

6



indeterminates. This seminar is a sequel to the one given on January 28 (see above).
A graded lexicographical ordering on a set of polynomials is defined as follows: xs1

1 xs2
2 ...xsn

n <
xt1

1 xt2
2 ...xtn

n if
∑

si <
∑

ti or if
∑

si =
∑

ti and si = ti, i = 1, 2, ..., r and sr < tr for some r between
1 and n inclusive. (Order by total degree, and within polynomials of the same degree apply the
dictionary ordering.)

A set of polynomials {g1, g2, ..., gr} in F [X] is a Gröbner Basis for an ideal I of F [X] if for
each nonzero f ∈ I, ∃i such that the leading term (monomial term highest in the ordering) of gi,
LT (gi), divides the leading term, LT (f), of f .

A Gröbner Bases is reduced if: i) The leading coefficient of gi = 1 for all i. ii) For each gi, no
monomial of gi is in the ideal 〈LT (g1), ..., LT (gi−1), LT (gi+1), · · · , LT (gr)〉.

The main theorem is this area states that given an ideal and an ordering, there is a unique
reduced Gröbner basis. This basis can in principle be calculated in finitely many steps. These
calculations are done for two main reasons, namely to identify when two ideals are identical or not,
and to simplify the calculation of the set of common zeros of an ideal (the variety).

For example, consider I = 〈x3− 2xy, x2y− 2y2 +x〉 ⊂ R[X]. The set {x3− 2xy, x2y− 2y2 +x}
is not a Gröbner basis of I relative to the graded lexicographical ordering since x(x2y − 2y2 + x)−
y(x3 − 2xy) = x2 is in I, but the leading term of the two polynomials, namely x2y and x3, do not
divide (the leading term of) x2. So we may add x2 to the basis. However, since we are interested in
radical ideals (see January 28), we add x instead. By considering combinations of the first polynomial
and x we see that we can add y to the basis as well. All these polynomials can be generated by
the ‘smaller’ elements x and y, and so we get {x, y} as a basis for I after excluding the redundant
elements. It can be checked that this last set is in fact a reduced Gröbner basis for I. Note that the
variety consists of the point (x, y) = (0, 0), something that was not initially obvious.

In general, it is difficult to figure out how a a given basis may be “beefed up” so that the
resulting set at the end is indeed a Gröbner or a reduced Gröbner basis. However, the effort is
worthwhile since given an ideal I and an ordering on monomials, there exist a unique Gröbner basis
for I. O’Halloran mentioned the book Ideals, varieties, and algorithms by Cox, Little, and O’Shea
as a good reference for algorithms that construct Gröbner bases.

Iterated Function Systems

Robert L. Devaney, Mathematics, Boston University,

email: bob@bu.edu .

February 25

An Iterated Function System is a (finite) collection F of affine contracting maps {fi : IRd → IRd}n
i=1.

For simplicity just assume that d = 2. Clearly F itself is not a function from IR2 to itself. However,
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it is not hard to see that F maps a compact set in IR2 to another compact set. So we can consider
F as a map from the space of compact sets in IR2 to itself. The Hausdorff distance between two sets
S1 and S2 is the infimum of the numbers ε such that the ε neighborhood of S1 contains S2 and vice
versa. The collection of compact sets with this notion of distance becomes a metric space. And F is
a contraction in that space. The Contracting Mapping Theorem implies that F has a unique fixed
point, that is: there is a unique set S such that S = ∪i fiS.

A very well-known Iterated Function System is given by the collection of contractions in IR2:

{ f1(x) =
x

2
, f2(z) =

z

2
+

1

2
, f3(x) =

x

2
+

1

2
eiπ/3 } ,

in complex notation. Starting with any initial point x0 in IR2 (the ‘seed’), and apply fi1 to it to
get x1, then fi2 to x1 to get x2 and so on. The previous paragraph now implies that after very few
iterates the points of the sequence will lie very close to the fixed points set. This fixed point set is
the well-known Sierpinski gasket. If we chose {ij}N

j=1 to be a random sequence in {1, 2, 3}N then the
sequence {xj}N

j=1 will sample random regions of the gasket (after it converges to it). The points of
this sequence (except the first) thus trace out a picture of the gasket.

Devaney presented this Iterated Function System in the form of a game known as the chaos
game. The computer chooses an initial point x0 and a region of the fractal. The player is supposed
to give a sequence of N contractions such that xN lies in the interior of the specified region. The
player that can do that in the smallest number of moves, wins. Similar games can be played for
more complicated Iterated Function Systems consisting of 4 or 5 , or more contractions, and the
contractions themselves may involve rotations, or may not be conformal. The shapes of the invariant
set get more and more complicated (the famous ‘fern’ for example) and the corresponding chaos
game will be harder to play.

(As an amusing note we remark that another way to create the Sierpinski gasket is to write
the binomial coefficients as a Pascal triangle. If an entry in the triangle is odd then it is part of the
gasket otherwise it is not.)

Dynamics of Accumulation of Chemicals in Living Systems

Karen Watanabe, Environmental and Biomolecular Systems, OHSU

email: watanabe@ebs.ogi.edu .

March 04

The majority of the advisories regarding pollutants in the United States are issued for Mercury,
PCB’s, Chlorodane, Dioxins, and DDT metabolites. These pollutants accumulate in living organisms
through breathing, diet and other interactions of an organism with the environment. This process
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is known as bio-accumulation. For example, methyl-mercury enters lakes and rivers by way of
industrial waste disposal. It contaminates organisms that live in this environment. The fish that
eat these organisms (and also live in the environment) are thus contaminated from two sources. In
this way the offending material works it self through the food web and may accumulate in certain
organism more than others. Thus in a given environment certain organisms may be very hazardous
to humans while others are less so.

The model discussed is a “food web bio-accumulation model”. These models are compartmen-
tal, that is: they assume that the distribution of a chemical in any single compartment is uniform.
Depending on how many details the model contains, the individual compartments could be the differ-
ent species in a certain food chain, or the different individuals present in the area, or even the different
organs in one fish. An example of a model where each compartment is a species, was presented. It is
based on: F. A. P. C. Gobas, “A Model for Predicting the Bio-accumulation of Hydrophobic Organic
Chemicals in Aquatic Food-Webs: Application to Lake Ontario”, Ecological Modelling 69, 1-17, 1993.
The species taken into account are several types of Aquatic Macrophytes (aquatic plants), and several
types of Benthic (bottom dwelling) Invertebrates, and Fish (the Spotted Gar). This results in a set
(five) of linear first order ordinary differential equations of the following type.

ẋ = Ax + b

where A is a five by five matrix and b is a constant vector, and the components of x are the
concentration of the chemical in each of the species. The desired information is the value and
stability type of the equilibrium (which is (I − A)−1b if (I − A) is invertible).

What complicates the analysis is that the model contains many parameters. Most of these
are evaluated as composites of yet other parameters. Actual data on values of these last parameters
are in most cases scarce and sometimes non-existent (and very hard to measure). Furthermore it
is not unreasonable to suppose that many of these parameters vary from place to place (distance
to the sewer etcetera) and even from time to time. In these cases one can use a statistical model
to determine error bars on the value of the equilibrium that reflect our current knowledge. The
suggestion also came up to run the the naive model based on the above differential equation for all
the measured parameter values and determine error bars hat way (the simulation takes a fraction of
a millisecond and there are relatively few data-points).

Monotone Dynamical Systems

Gerardo Lafferriere, Mathematics, Portland State University ,

email: gerardo@pdx.edu

March 11
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Monotone systems are common in biology, chemistry, control theory, and other fields. Such systems
have in common that there is a field of ‘positive cones’ that is mapped into itself by the forward
time map. This forces the ω-limit sets of the dynamics to be (geometrically) simple sets. This holds
for maps, ordinary differential equations, as well as partial differential equations (hence the Banach
space formulation below).

A semiflow is a map Φ from X ×R+ → X with

Φ0 = idX and Φs ◦ Φt(X) = Φst(X) .

The notation Φt(x) simply means the position after time t of the orbit that started at x at time
0. The orbit of a point x is defined as O(x) = {Φt(x) : t ≥ 0}. The set of equilibria is the set
E = {x : O(x) = {x}}.The ω-limit set of x is ω(x) =

⋂
t≥0 ∪s≥tΦs(x).

For a given Banach Space X (a complete normed linear space), define the positive cone K as
a set which is non-empty and closed, and

R+K ⊂ K

K + K ⊂ K

K ∩ (−K) = {0} .

For example, in IR2, the positive quadrant R2
+ is a positive cone. For partial differential equations,

a more appropriate example of a Banach space is L2(X, µ), the space of square integrable functions,
or C0(X), the space of continuous functions. In the latter, the set of functions f so that f(x) ≥ 0
almost everywhere is a positive cone. With respect to this cone a partial order in the Banach space
can be defined:

x ≥ y ⇐⇒ x− y ∈ K .

Thus, in the first example, x ≥ y if and only if x1 ≥ y1 and x2 ≥ y2.
A Monotone System satisfies the condition that

x ≥ y =⇒ Φt ≥ Φy .

Here is one of the main results:
Convergence criterion: If O(x) is compact and if ΦT (x) ≥ x for some T > 0, then ω(x) consists of a
T-periodic orbit. It follows that if Φt(x) ≥ x for some t in some non-empty open subset of (0,∞),
then Φt(x) → p ∈ E (an equilibrium point) as t goes to ∞.
Slightly sharper version maybe obtained when one assumes a little more: strict monotonicity, or
strong monotonicity.

Traditional applications of this theory are cooperative systems and competitive systems. These
are systems of ordinary differential equations ẋi = Fi(x) where ∂

∂xj
Fi(x) is always positive (in the

first case) or always negative (in the latter case). For example the competitive system

ẋ1 = x1(1− x1 − a1x2)

ẋ2 = x2(1− x2 − a2x1) ,
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where the parameters are positive, is monotone in the positive quadrant. Unfortunately, while
monotonicity with respect to one the standard orthants can be checked via combinatorial argument,
there is no simple criterion to check in general whether a system is monotone. In the case of the
deceptively simple competitive system in IR2, the lines 1− x1 − a1x2 = 0 and 1− x2 − a2x1 cut the
positive quadrant in 4 components. In each of these components the positivity cone is different!
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