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Navigating Around Convex Sets
J. J. P. Veerman

Abstract We review some basic results of convex analysis and geometry in Rn in the context of
formulating a differential equation to track the distance between an observer flying outside a convex
set K and K itself.

1. INTRODUCTION. Suppose you fly by a convex body in Rn. A fundamental
problem in convex analysis is to determine your distance r(t) to that body as you
are flying. To the best of our knowledge, all standard algorithms to do this determine
the point in the convex set nearest to you by optimization, at every point in time when
needed or possible. In this exposition, we propose to solve the optimization problem
only once, at t = 0, say, and then track r(t) by solving a differential equation for
it. The study of this problem allows us to review some of the basic tenets of convex
analysis.

LetK be a closed (solid) convex body in Rn and denote by Rn\K by Ω. The fly-by
curve in Ω is given by the trajectory c(t), which we will always assume to be smooth.
To find r(t), we need to know the point in K nearest to c(t). This point is called the
projection of c(t) onto K and will be denoted by Π(c(t)) or Π(t) for short. If we
hope to write down a differential equation for r(t), we will at least have to know the
one-sided derivative of Π(c(t)) with respect to time:

Π′+(t0) ≡ lim
t↘0

Π(t)−Π(0)

t
. (1)

In Section 2 we give an elementary proof that if in R2, the boundary ∂K of K is
twice differentiable, then this one-sided derivative exists. In Section 3, we will see
that this derivative exists for any piecewise linear polygon. Then we will outline the
construction from [3] of a convex body in R2 whose boundary is C1,1 (C1 with a
Lipschitz derivative) but for which Π′+ does not exist (Theorem 1).

In Sections 4 and 5, the differential equations are constructed that allow us to con-
tinually monitor the distance r(t) to a convex body as we navigate around it. The
general case is not much different from R3, so for ease of exposition we stick to R3.
The construction is straightforward and employs the Weingarten equations (or Ricci
curvature) from differential geometry. To the best of our knowledge, the final form of
these equations (Theorem 2) is new. We invoke the existence and uniqueness theorems
for the solutions of differential equations to show that if the boundary of K is C2,1,
then the system of differential equations has a unique solution. In Section 7, we give
two examples of these equations and their solutions.

To the careful reader it will be clear that all we really need to formulate these dif-
ferential equations are one-sided time derivatives (as in equation (1)). Thus if you fly
near a convex body, you can change your course to another differentiable one, all the
while continuing to monitor the distance. Thus the equations of Sections 4 and 5 can
be used to avoid collision with a convex set. Hence our title. Even if K is not convex,
one could use these equations to avoid the convex hull of K.

Finally, in Section 6, we discuss the classical, but still remarkable, fact that the
function r : Ω→ R giving the distance of a point to the convex set is always differ-
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entiable (Theorem 3)! There is no regularity requirement at all on the convex set. Our
exposition of this fact is inspired by [8].

The subject of distance to convex sets is much too rich to do justice to in this short
introduction. But we do wish to point out a few directions in which considerable further
research has been done. Our own interest (beside [3]) ultimately derives from a closely
related problem, namely: Given a Riemannian manifold and two disjoint compact sub-
setsA andB, what are the topological [4, 18] and geometric [11] characteristics of the
set of points whose distance to A equals their distance to B? Beside their intrinsic in-
terest, these sets have many applications among others in the study of Brillouin zones
in quantum mechanics [19].

The distance function to ∂K is not differentiable at ∂K. Indeed, at a point of ∂K,
it behaves like the function x→ |x| near 0. For this reason one is also interested [1]
in the smoothness of the signed distance, which is negative on one side of the surface
and positive on the other. This obviously only works for embedded codimension one
surfaces. Thus for more generality, one also studies the properties of r2. This is not
formally a distance, but still closely related, and is differentiable at ∂K (see [1]).

There are many generalizations of the regularity of the distance function. In a
smooth Riemannian manifold, or Alexandrov space, the notion of convexity may not
be well-defined. So, instead of the derivative of the distance r(t) to a closed subset
K, one looks instead at its one-sided derivative along a geodesic c(t) with initial point
x0 ∈ Ω:

r′+(0) ≡ lim
t↘0

r(c(t))− r(c(0))

t
. (2)

The generalization of Theorem 3 holds and states that this one-sided derivative always
exists (see [15] and [5, Exercise 4.5.11]). Further differentiability beyond that depends
on the smoothness of the subset K (for example, [13, 14]). Other generalizations con-
sider the distance to convex sets in Hilbert spaces (see [7, 17]).

2. TWICE DIFFERENTIABLE SETS IN C. It is convenient to use complex co-
ordinates in R2. So, we identify R2 with C. We will assume that the boundary ∂K is
a twice differentiable curve z(s). We also assume that z : R → C is a unit speed
parametrization, that is, |z′(s)| = 1. We orient the boundary z(s) of K counter-
clockwise (see Figure 1).

The trajectory of a point outside the body K depends on time and is given by

c = z − irz′ or c(t) = z(s(t))− ir(t)z′(s(t)), (3)

so that in Ω (outside the convex body), r is positive. Note that we indicate differentia-
tion with respect to time t with a dot (for example, ċ(t)), whereas differentiation with
respect to the parameter of the convex body is indicated by an accent (for example,
z′(s)).

ċ = (z′ − irz′′)ṡ− i ṙz′. (4)

Now denote by ċ‖ and ċ⊥ the components of ċ parallel and orthogonal, respectively, to
z′ (derivative with respect to s). Since |z′(s)| = 1, we have that z′′(s) is orthogonal
to z′(s), and thus iz′′(s) is parallel to z′. Thus, equation (4) quite naturally splits into
two components as described in the following lemma:
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Lemma 1. Suppose z is twice differentiable and c is a differentiable trajectory outside
K. We have 

ṡ =
ċ‖

z′ − irz′′
= Re

(
ċ

z′ − irz′′

)
ṙ =

iċ⊥
z′

= Re
(
iċ

z′

) . (5)

K

z(s)

c(t)

r(t)

z’(s)

c(t)

Kz’’(s)

z(s)

Figure 1. In the left figure, K has a nondifferentiable boundary, but the one-sided derivative of the projection
still exists. In the right figure, K has a twice differentiable boundary. The tangent vector z′(s) and the curvature
vector z′′(s) are orthogonal, because z is a unit speed parametrization.

Equation (3) implies that in the orientation of the parametrization sketched in Fig-
ure 1, r(t) is positive. Thus irz′′ is parallel to z′, but actually points in the opposite
direction. Because z′(s)ṡ is the derivative of the projection, equation (5) proves the
following lemma. This result generalizes to higher dimension (see Corollary 1).

Lemma 2. If ∂K is twice differentiable, then |Π′+(0)| =
|ċ‖|

1 + r |z′′|
(r > 0 in Ω).

3. A C1,1 COUNTEREXAMPLE. If we drop the requirement that z(s) is twice
differentiable, a set can be constructed where Π′+(0) does not exist. We now give that
construction, and outline the reason it works. Our treatment is loosely based on [3],
which contains the full details.

One might be tempted to say that, of course, z must be differentiable for Π′+ to
exist. But that would be wrong! Consider the set up on the left side of Figure 1, where
c(t) is a straight line (c′(t) is constant). Consider the (shaded) cone in Ω formed by
the perpendiculars to the tangents of the surface at the nondifferentiable point. Before
reaching the cone, Π′+(t) is a constant determined by the angle between c′(t) and
the left flank of ∂K. As soon as c hits the left boundary of the cone, Π′+(t) = 0
because we are looking at the one-sided derivative (see equation (1)). Again, when
c hits the right boundary of the cone, the one-sided derivative is a nonzero constant.
Clearly, the one-sided derivative exists for every piecewise linear polygon. In the light
of this, it becomes nontrivial to find a counterexample to the existence of the one-
sided derivative of the projection. A beautiful and surprisingly simple example of a
nonempty closed continuous convex set for which the directional derivative of the
metric projection mapping fails to exist was constructed by Shapiro in [16] and fine-
tuned in [3] to become C1,1.
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For some λ ∈ (0, 1), define a sequence of real numbers {αn}n∈N ⊂ (0, π] by

αn = Cλn and set An = eiαn . (6)

(C is any positive real so that αn ∈ (0, π] for all n.) This set in [16] is the convex hull
of the collection of points 0, 1, and {An}n∈N. See the left part of Figure 2.

The right part of Figure 2 shows the figure modified by the techniques of [3], which
is nowC1,1. The construction is as follows. Let Tn be the midpoint of the line segment
AnAn+1 and let Sn be the point in the line segment An−1An such that

length(TnAn) = length(AnSn).

Replace the two line segments TnAn and AnSn by a circular arc Cn tangent to both
segments. Define the convex set K as the convex hull of all arcs Cn and the arc of the
unit circle in the lower half-plane connecting 1 and A1. Clearly, the boundary of K is
differentiable, except at A1. This is easily remedied, but, since it is irrelevant for the
remainder, we omit the details.

A

n

n+1

n−1

A

A

Tn

S n

Origin

A

n+1

n−1

A

nA

Tn

S n

C nO n

Origin

rn

Figure 2. On the left, the C0 counterexample given by Shapiro, and on the right its modification into a C1,1

set. For clarity, the drawing is not on a realistic scale.

To continue, we first mention a curious result. The radius of curvature of the arcsCn
is denoted by rn (see Figure 2). The radius of curvature by definition equals 1/|z′′(s)|.
The following lemma can be shown by any persistent reader, since it uses only elemen-
tary planar geometry. We omit the proof.

Lemma 3. In the modified construction, limn→∞ rn exists and is equal to r∞ =
2λ

1 + λ
.

Let c(t) = 2eit/2, the unit speed curve along the radius 2 circle centered at the
origin. Near t = 0, we see that |ċ‖| = 1 and |ċ⊥| = 0. On the curve c, mark the times
where Π(t) = Π(c(t)) equals Tn by tn, and times where Π(t) equals Sn by sn (see
Figure 3). Again, using elementary planar geometry, the avid reader can prove the
following lemma.

Lemma 4. In the modified construction, the following limits exist:

p∞ := lim
n→∞

tn−1 − sn
tn−1

and q∞ := lim
n→∞

sn − tn
sn

,
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Figure 3. The unit speed orbit c(t) winds around the radius 2 circle. At times tn, its projection is Tn, and at
times sn, its projection is Sn.

and both are in (0, 1).

Theorem 1. The modified construction just described yields a differentiable curve
z(s) for the boundary of K and z′(s) is uniformly Lipschitz. The projection Π onto
this set does not have a directional derivative at z = 1.

The remainder of this section is a sketch of the proof of Theorem 1.

Proof. We first establish that the curve is differentiable and its derivative is uniformly
Lipschitz. By construction, ∂K consists of circular arcs Cn (and a part of the unit
circle), and straight segments Tn−1Sn. So it is clear that ∂K is C1 and C2 almost
everywhere. Where a segment and an arc are glued together, the derivative of z is a
continuous function which is constant on one side and has constant slope on the other.
By Lemma 3, this slope is bounded, and so the derivative is uniformly Lipschitz.

The only problematic point is z = 1 where the arcs Cn accumulate. On the one
hand, the line ` = {1 + it | t ∈ R} intersects ∂K only at z = 1. The points 1 and
Tn are contained in K. By convexity, the chords from 1 to Tn are contained in K.
The slope of these chords accumulate to the slope of `. Hence, ` is the tangent line at
z = 1. This establishes differentiability. With a little extra effort, the argument in the
previous paragraph also applies to z = 1, establishing the Lipschitz condition there.

We next establish that the directional derivative of equation (1) does not exist near
z = 1. If t ∈ (tn, sn+1), then Π(t) is part of a segment, and if t ∈ (sn, tn), then by
Π(t) is in Cn. Lemma 2 and Lemma 3 imply that for n large (or t near 0)

if t ∈ (tn−1, sn) then |Π′(t)| = 1 and

if t ∈ (sn, tn) then |Π′(t)| = rn
1 + rn

→ 2λ

1 + 3λ
<

2

3
.

(7)

This leads to the following equality:

Π(tn−1)−Π(0)

tn−1
=

Π(tn−1)−Π(sn)

tn−1 − sn
tn−1 − sn
tn−1

+
Π(sn)−Π(0)

sn

sn
tn−1

. (8)

Now if we assume that the one-sided directional derivative exists and insert equation
(7) and p∞ defined in Lemma 4 into the previous equation, then, as n tends to infinity,
we obtain

Π′+(0) = 1 · p∞ + Π′+(0)(1− p∞) or (Π′+(0)− 1)p∞ = 0.
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It follows that Π′+(0) = 1 or that p∞ = 0. The latter is impossible by Lemma 4.
Similarly, the equality

Π(sn)−Π(0)

sn
=

Π(sn)−Π(tn)

sn − tn
sn − tn
sn

+
Π(tn)−Π(0)

tn

tn
sn
, (9)

under the hypothesis that Π′+(0) exists, leads to the conclusion that Π′+(0) < 2
3
. Thus

we have a contradiction and, hence, Π′+(0) cannot exist.

There are two open questions related to this construction that are perhaps worth
mentioning. The first is: Can this construction be modified to obtain a curve z(s)
so that the quantity Π′+ fails to exist in a set of points that is dense in some open
subset of Ω? The second question is: Is there a C2 curve σ(u) in R2 for which the
solution of equation (14) is not unique? For such a curve, the one-sided derivative of
the projection does exist by Lemma 1. But the solution of the differential equation
would not be unique.

4. TWICE DIFFERENTIABLE SETS IN R2. For the next two sections, we return
to the smooth (at least C2) case. It is interesting to translate the considerations in
Section 2 to the vector space Rn. For simplicity, we start with R2.

Recall that z : R→ R2 given byσ(u) is the unit speed anti-clockwise parametriza-
tion of the boundary of the convex body. Denote its unit tangent vector by σ′, and n is
the unit vector normal to it, pointed into the body (to get a right-handed coordinate sys-
tem (σ′,n)). Note that iz′ in the complex notation becomes n, and that the complex
z′′ becomes κn. The sign of κ — nonnegative here — is determined by the convexity
of the body. We now give the translations of equations (3) through (5) to R2.

The position c of a point outside the body is given by

c = σ(u)− rn. (10)

(Note that r is positive in Ω.) Now let c(t) be a smooth curve. Differentiating with
respect to t while noting that ṅ = −κσ′, gives

ċ = σ′(1 + rκ)u̇− nṙ. (11)

To write this in matrix form, define the matrix Σ as having its first column equal to σ′

and its second equal to n. Then

ċ = Σ

(
1 + rκ 0

0 −1

)(
u̇
ṙ

)
. (12)

Now Σ is a unitary matrix (in fact, orthogonal) and so(
u̇
ṙ

)
=

(
(1 + rκ)−1 0

0 −1

)
ΣT ċ. (13)

Inverting the matrices gives us the next lemma.

Lemma 5. Supposeσ is twice differentiable and c is a differentiable trajectory outside
K. We have  u̇ =

σ′(u) · ċ
1 + rκ(u)

ṙ = −n(u) · ċ
, (14)
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where x · y refers to the standard inner product in R2.

In practice, the unit speed parametrization is not so useful, since for most curves
(including ellipses) explicit forms of such parametrizations are difficult or impossible
find [10]. The method we use in Section 5 will avoid this problem altogether. For now,
as a very simple illustration, consider the case where K is the unit disk. Its circum-
ference is parametrized by σ(u) = (cosu, sinu). The radius of curvature equals 1.
Suppose c = (x(t), y(t); then in this case the equations become u̇ =

−ẋ sinu+ ẏ cosu

1 + r

ṙ = ẋ cosu+ ẏ sinu

. (15)

We will look at more complicated examples in Section 7.
The assumption that σ(u) is C2 is essential here. The example of Section 3 shows

that u̇ may not exist if the boundary is C1,1. The same holds in higher dimension (see
Section 5), though we will not repeat this observation.

5. TWICE DIFFERENTIABLE SETS IN R3. In three dimensions, these equations
become much more interesting. The generalization from there to Rn is easy to guess;
one needs to replace the matrix W below with the n − 1 by n − 1 Ricci curvature
tensor of the hypersurface. We will stick to R3 for simplicity.

Let σ(u, v) be a smooth (at leastC2) parametrization of a surface in R3 bounding a
convex body K. Denote ∂uσ by σu and ∂vσ by σv. To get a right-handed coordinate
system (σu,σv,n), we define the unit normal n:

n =
σu × σv
|σu × σv|

.

To connect with the earlier sections, we will set things up in such a way that n points
into the convex bodyK. Let Σ be the invertible 3× 3 matrix whose first column isσu,
whose second column is σv, and whose third is n. Note that the above assumptions
imply that the determinant of this matrix is positive. Furthermore, let W be the 2× 2
Weingarten matrix, that is (see [6]),

nu = aσu + bσv

nv = cσu + dσv
where

(
a c
b d

)
= W. (16)

The eigenvalues of −W are the principal curvatures of the surface (see [6]). By con-
vexity — recall that n points away from Ω — these eigenvalues are nonnegative.

Theorem 2. Suppose the parametrization σ of the boundary of K is twice differen-
tiable and c is a differentiable trajectory outsideK. Let I be the 2× 2 identity matrix.
We have u̇v̇

ṙ

 =

(
(I − rW )−1 0

0 −1

)
Σ−1 ċ. (17)
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Proof. Coordinatize Ω, the space outside the convex body, as follows (see equation
(10)):

P := (u, v, r)→ σ(u, v)− rn,

where r > 0 in Ω. Let c(t) := (u(t), v(t), r(t)) be a smooth curve in Ω, then

ċ = σuu̇+ σvv̇ − nṙ − rnuu̇− rnvv̇
= σu((1− ra)u̇− rcv̇) + σv(−rbu̇+ (1− rd)v̇)− nṙ,

where we have used equation (16). In matrix form, this gives

ċ = Σ

(
I − rW 0

0 −1

)u̇v̇
ṙ

 .

Since the eigenvalues of −W are nonnegative and r is positive in Ω, this relation can
be inverted to yield the theorem.

Given the vector ċ of the trajectory of the observer, the derivative of the projection
is given by σuu̇+ σvv̇. Thus equation (17) implies the following.

Corollary 1. If the surface in R3 is twice differentiable, then the directional derivative
exists.

For existence and uniqueness of the solution of this differential equation, the con-
ditions of Theorem 2 are insufficient. We need to require that the right-hand side is
Lipschitz in (u, v, r) and continuous in t (see [12]).

Corollary 2. (Local) existence and uniqueness of the solution of differential equation
(17) is guaranteed if W is Lipschitz and c is continuously differentiable.

Proof. The continuity in t of the right-hand side of equation (17) is guaranteed by the
smoothness of c. We now check the Lipschitz condition in (u, v, r). Lipschitz in r is
straightforward. Since σ is C2, Σ is differentiable and invertible, and therefore so is
Σ−1. Hence, Σ−1 is certainly Lipschitz. The question then is whether (I − rW )−1 is
Lipschitz. The following computation shows that if W is Lipschitz, then so is (I −
rW )−1.

From the previous discussion, we are allowed to hold r constant. Let us denote the
operator norm by ‖ · ‖ and set x = (u, v). Then

‖(I − rW (x2))
−1 − (I − rW (x1))

−1‖
= |(I − rW (x2))

−1 [r(W (x2)−W (x1)] (I − rW (x1))
−1|

≤ r‖(I − rW (x2))
−1‖‖W (x2)−W (x1)‖‖(I − rW (x1))

−1‖.

The first and last term are at most 1 by convexity (the eigenvalues of W are nonposi-
tive). The middle term is Lipschitz by assumption.

If we want the solution of equation (17) to depend differentiably on time and initial
conditions, we need to require even more.

Proposition 1. Let φ(t, u0, v0, r0) be the solution of equation (17) with initial condi-
tion (u0, v0, r0) at t = 0. Let p ≥ 1 an integer. If c(t) is Cp+1 and σ(u, v) is Cp+2,
then φ is Cp in (t, u0, v0, r0).
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Proof. In [2, Chapter 32], it is proved that if ẋ = f(t, x) and f is Cp for some integer
p ≥ 1, then the initial value problem is also Cp. Inspection of equation (17) shows
that the conditions of the proposition are sufficient to guarantee that its right-hand side
is Cp.

6. DIFFERENTIABILITY OF THE DISTANCE FUNCTION. If we restrict our-
selves to the distance function, we can do much better for its regularity than the results
in Section 5. In this section, we assume that K is closed and convex, but make no
further regularity assumption.

Lemma 6. Suppose that xi is in Ω and limxi = x∞. Let yi ∈ Π(xi). Then any
convergent subsequence of {yi} converges to a point y∞ in Π(x∞).

Proof. Suppose the opposite; then pick a subsequence of the i so that {yi} is conver-
gent to a point y∞ that is not in Π(x∞). Let y ∈ Π(x∞); then for some positive ∆,
we have d(x∞, y∞) = d(x∞, y) + ∆. Now take ε arbitrarily small. Using the triangle
inequality, we see that for n large enough d(x∞, xn) + d(xn, yn) + d(yn, y∞) ≥
d(x∞, y∞), and so

d(xn, yn) ≥ d(x∞, y∞)− d(x∞, xn)− d(yn, y∞) ≥ d(x∞, y) + ∆− 2ε.

On the other hand, using the triangle inequality for large n again,

d(xn, y) ≤ d(x∞, y) + d(xn, x∞) < d(x∞, y) + ε.

Taking the two together, we get that d(xn, yn) > d(xn, y), which contradicts the fact
that yn minimizes the distance from xn to K.

IfK is convex, then Π(x∞) is a single point y. Thus every convergent subsequence
of {yi} in the Lemma 6 must converge to that point. Since the {yi} are confined to a
bounded portion of a closed set, they always have a convergent subsequence. Thus we
have proved a nice corollary:

Corollary 3. The projection Π : Ω→ K is continuous.

For the remainder of this section, denote by θ the unit vector in the direction of
x−Π(x).

Lemma 7. For any x ∈ Ω and any vector v, we have

d(x+ tv,Π(x))− d(x,Π(x)) = tθ · v + o(t).

Proof. The difference between the squares of the distances can be written using the
standard inner product of Rn:

d(x+ tv,Π(x))2 − d(x,Π(x))2 = 2t[x−Π(x)] · v + t2|v|2.

The left-hand side factors, so that we can divide by d(x+ tv,Π(x)) + d(x,Π(x)) ∼
2|x−Π(x)|, from which the lemma follows easily.
Lemma 8. For any x ∈ Ω and any vector v, we have

d(x+ tv,Π(x+ tv))− d(x,Π(x+ tv))

= tθ · v + t
[Π(x)−Π(x+ tv)]

|x−Π(x)|
· v + o(t).
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Proof. The computation is essentially the same as that in the proof of Lemma 7.

d(x+ tv,Π(x+ tv))2 − d(x,Π(x+ tv))2

= 2t[x−Π(x+ tv)] · v + t2|v|2

= 2t[x−Π(x)] · v + 2t[Π(x)−Π(x+ tv)] · v + t2|v|2.
(18)

As before, we divide by d(x+ tv,Π(x)) + d(x,Π(x)) ∼ 2|x−Π(x)|.

In our case where K is convex, Corollary 3 implies the second term in the right-
hand side of the statement of Lemma 8 is also o(t). This is important in the following
theorem. (An altogether different proof of Theorem 3 can be found in [9, Chapter 2].)

Theorem 3. For any x ∈ Ω and any vector v, we have

d(x+ tv,Π(x+ tv))− d(x,Π(x)) = tθ · v + o(t).

In other words, the distance function to a convex set in Rn is differentiable on Ω.

Proof. We note that by definition of the projection Π, we have

d(x+ tv,Π(x+ tv))− d(x,Π(x)) ≤ d(x+ tv,Π(x))− d(x,Π(x)).

And thus by Lemma 7,

d(x+ tv,Π(x+ tv))− d(x,Π(x)) ≤ tθ · v + o(t).

Similarly, if we use Lemma 8 and Corollary 3 to make sure that t|Π(x) − Π(x +
tv)| = o(t), we obtain the reverse inequality

d(x,Π(x)) ≤ d(x,Π(x+ tv)) = d(x+ tv,Π(x+ tv))− tθ · v + o(t).

It turns out Lemma 7 actually holds not just in Rn but in any Riemannian manifold
(see [15]). The proof we gave of Lemma 8 is valid only in Rn. The proof of Theorem 3
is a modified version of the proof that appeared in [8]. However, Theorem 3 also holds
for Alexandrov spaces (a generalization of Riemannian manifolds) with nonpositive
or nonnegative curvature, according to [5, Exercise 4.5.11].

7. EXAMPLES. We close with a simple illustration of the equations discussed in
Section 5. The situation is sketched in Figure 4. This example also illustrates the fact
that straight lines in Ω do not generally project to geodesics on the surface.

Let σ be the embedding of the cylinder of radius κ−1 in R3. We choose a
parametrization so that its orientation is consistent with that of the previous sections.

σ : (u, v)→ (κ−1 cos v, κ−1 sin v, u).

For positive constants a and b let the trajectory c(t) be given by

c(t) = (t, b+ κ−1, at).
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C n
v

c(t)

x

y

C

c(t)

u

x

z

n

Figure 4. On the left, the projection onto the xy-plane of the cylinder C and the path c. On the right, the
projection onto the xz-plane.

In the notation of Section 5, we calculate the matrix Σ (whose first column is σu,
the second, σv, and the third, n).

Σ =

0 −κ−1 sin v − cos v
0 κ−1 cos v − sin v
1 0 0

 =⇒ Σ−1 =

 0 0 1
−κ sin v κ cos v 0
− cos v − sin v 0

 .

The Weingarten matrix W is computed as in equation (16):

W =

(
0 0
0 −κ

)
=⇒ (I − rW )−1 =

(
1 0
0 (1 + κr)−1

)
.

The projection of c(t) onto the cylinder together with its distance to the cylinder is
thus given by the solution of equation (17), together with initial conditions. Noting
that ċ = (1, 0, a), these equations simplify to

u̇ = a

v̇ =
−κ sin v

1 + κr
ṙ = cos v

where
u(0) = 0

v(0) = π
2

r(0) = b

.

This somewhat obscure-looking nonlinear system nonetheless has a simple solu-
tion. Due to the translational symmetry, the segment from c(t) to its projection lies in
the plane parallel to the xy-plane. Thus the distance r(t) and the angle v(t) can be
found by inspection of Figure 4 on the left. We get

u(t) = at

v(t) = arccos
t√

`2 + t2

r(t) =
√
`2 + t2 − κ−1

,

where we have set ` ≡ κ−1 + b. By inverting the second of these, we obtain its inverse
t(v) = `(tan v)−1 = −` tan(v + π

2
). In the vu-plane, this solution is therefore a

reparametrization of the curve (v,−a` tan(v + π
2
)). We have drawn this curve and

the curve (t, r(t)) for t ∈ [−20, 20] in Figure 5.
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Figure 5. On the left, the projection of the trajectory C : t → (t, 2, t) onto the cylinder C : (u, v) →
(cos v, sin v, u). Horizontal is v, vertical is u. On the right, the distance r(t) between c(t) and its projec-
tion onto the cylinder C. Horizontal is t, vertical is r.

We now turn to a slightly more challenging example. This time σ is the embedding
of the ellipsoid of revolution in R3. We choose a parametrization so that its orientation
is consistent with that of the previous sections. This includes making sure that the
normal is pointing into the surface.

σ : (u, v)→ (cosu sin v, sinu sin v, κ−1/2 cos v).

Thus when κ ∈ (0, 1), the ellipsoid looks a little like a cigar, as in Figure 6, and when
κ ∈ (1,∞), the ellipsoid is a flattened one.

x

y

z

u

v

Figure 6. An ellipsoid of revolution in spherical coordinates. Here, u is the angle with the axis of the “north
pole” and v is the angle in the xy plane with the positive x axis.

With the same conventions as before, and following exactly the same procedure, we
compute the matrix S of tangent vectors and the Weingarten matrix W :

Σ =



− sinu sin v cosu cos v
− cosu sin v√

1 + (κ− 1) cos2 v

cosu sin v sinu cos v
− sinu sin v√

1 + (κ− 1) cos2 v

0
− sin v√

κ

−
√
κ cos v√

1 + (κ− 1) cos2 v


;
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W =


−1

(1 + (κ− 1) cos2 v)
1/2

0

0
−κ

(1 + (κ− 1) cos2 v)
3/2

 .

After setting

q1 =
√

1 + (κ− 1) cos2 v ,

and some algebra, the equations of motion (17) become:

u̇ =
q1

(r + q1) sin v
(−ẋ sinu+ ẏ cosu)

v̇ =
q1 κ

rκ+ q31
(ẋ cosu cos v + ẏ sinu cos v − ż κ−1/2 sin v)

ṙ =
1

q1
(ẋ cosu sin v + ẏ sinu sin v + ż

√
κ cos v)

. (19)

Here c(t) = (x(t), y(t), z(t)) is the a priori given trajectory.
As an example, we set κ = 1/9 and c(t) = (2, t, t) and numerically solved equa-

tion (19) setting the initial condition (u(0), v(0), r(0)) = (0, π/2, 1) and (ẋ, ẏ, ż) =
(0, 1, 1). The results are displayed in Figure 7. The figure on the left shows the orbit of
the projection Π(c(t)) for t ∈ [0, 100] (the continuous curve) and the orbit c(t) (the
dashed curve). We display only the (u, v) coordinates; the radial coordinate is v, so
that the circles show where v is constant (namely 0, π

6
, 2π

6
, and 3π

6
) and the angular

coordinate is u (u equals the angle with the positive x-axis indicated in the figure).
The figure on the right shows the function r(t). For clarity, we only show the function
for t ∈ [0, 6]. These figures were produced with the Matlab routine ode45 with AbsTol

−pi/2 −pi/3 −pi/6 0 pi/6 pi/3 pi/2

−pi/2

−pi/3

−pi/6

0

pi/6

pi/3

pi/2

 

 

v

u

Proj
C(t)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

Figure 7. In the figure on the left, the projection Π(c(t)) (continuous curve) and the trajectory c(t) (dashed
curve) are displayed for t ∈ [0, 100]. We use (u, v) coordinates (see text). In the figure on the right, r(t) is
displayed for t ∈ [0, 6] (r is vertical, time is horizontal).

and RelTol set to 10−9.
To be absolutely certain that the result is reliable, we recall that we should be able

to recover c(t) = (2, t, t) from the solution of equation (19) as follows (see Section
5).

c(t) = σ(u(t), v(t))− r(t)n(t).
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For the displayed curve we found

max
t∈[0,100]

|σ(u(t), v(t))− r(t)n(t)− c(t)| ≤ 3 · 10−7.

ACKNOWLEDGMENT. I am indebted to John Milnor for a very useful conversation which led to equation
4, and to Robert Lyons for the numerical results presented in Figure 7.
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