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In perturbations of integrable two degree of freedom Hamiltonian systems, the invariant (KAM) tori are typically separated
by zones of instability or resonance bands inhabited by elliptic and hyperbolic periodic orbits and homoclinic orbits. We
indicate how the Melnikov method or the method of averaging can asymptotically predict the widths of these bands in specific

1. Introduction

When an integrable two degree of freedom Hamiltonian system is subject to perturbation, the continuous
families of invariant tori characteristic of the integrable limit typically break into Cantor sets of (KAM-)
tori, which carry irrational flow, and ‘resonance bands,’ ‘stochastic layers,” or ‘zones of instability’
(Birkhoff (1932) [1]). The former are the subject of the Kolmogorov—-Armold—Moser (KAM) theory [2],
while the latter evolve from ‘resonant’ tori which carry orbits with rational frequency ratios (rotation

and Lichtenberg and Lieberman [4].

In Veerman and Holmes [5] we computed Melnikov functions for the linearly coupled pendula with
Hamiltonian

2 2
p €
Hig.p) =5 +(1-coswq) + B+ (1-cosg,) + £(g, - g,)%, (1.1)
and proved that, in the case =1 and for each relatively prime pair (m, n) of odd integers and £+ 0
sufficiently small (depending on m and n), there exists exactly one elliptic and one hyperbolic periodic

orbit with frequency ratio m/n. In that paper we remarked that the Melnikov functions can be used to
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predict the widths of each (m, n)-resonance band in the limit ¢ = 0. In the present paper we perform the
necessary computations and compare the results with numerical integrations for several (m, n), € and o
values. We remark that the Melnikov method as used here is essentially a variant of the method of
averaging (Hale [6]).

Resonance bandwidth results are important for several reasons, not least of which is their use in
‘resonance overlap’ calculations to predict the destruction of KAM tori (Walker and Ford [7], Chirikov 8],
Lichtenberg and Lieberman [4]). Our results indicate that, while the predictions are asymptotically correct,
nonetheless, for some low order resonances (4, ) they are significantly in error for coupling strengths as
low as € = 10~4, long before the bands in question overlap.

In section 2 we review the relevant analytical methods: reduction and Melnikov’s method, and then in
section 3 we use the results of Veerman and Holmes [5], slightly generalized to w # 1, to compute resonance
bandwidths to leading order. Since the expressions invoive sums of infinite series, we estimate them by
truncation after the leading term, obtaining a relative error of <0.1%. Finally, in section 4 we present
numerical results and compare them with the asymptotic formulae.

For general background on the methods of this paper, see Melnikov [3], Greenspan and Holmes [9),
Holmes and Marsden [10] and Guckenheimer and Holmes [11, chap. 4]. Related work has recently been
done on the Volterra-Lotka equations of population dynamics by Blaine [12], who has also computed
asymptotic formulae for resonance bandwidths. Lichtenberg and Lieberman [4, chap. 4] discuss the
resonance overlap criterion of Chirikov and give examples of calculations for specific mappings. Walker
and Ford [7] and Chirikov [8] also discuss some model problems in which bandwidths can be computed
analytically in an integrable limit.

2. Reduction, resonance bands and Melnikov’s method

The methods outlined in this section apply to two degree of freedom Hamiltonians of the form

H(q, p) = F(q,, p,) + F,(q,, p,) +eH(q, p),0<e <1, (2.1)

and, suitably generalized, to n degree of freedom systems (Holmes and Marsden [13, 14]). A canonical
change of coordinates (g;, p,) = (I,, §;) permits us to rewrite (2.1) in action-angle coordinates (Goldstein
[15)) in regions where the unperturbed (e = 0) phase space is foliated by families of invariant tori:

H*(1,8)=F,(1,) + F,(1,) +eH(I,0). (22

Thus, a typical unperturbed solution is characterized by actions I, I, and frequency ratio w,/w,, where
w; = (dF,/9I,)(1).

The method of reduction (Whittaker [16], chap. 12, Birkhoff [17], chap. VI §3) allows us to restrict the
flow of Hamilton’s equations corresponding to (2.2) to a three-dimensional (I, 8,, 6,) constant energy
surface H¢(1, @) = h by inverting this equality to obtain

I,=L°(I; h) +eL(1,,0,,0,; h) + O(?). (2.3)
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the After a short computation one obtains the reduced system:
d o ol
i of | I{=ea—01(11,01,02;h)
‘ ! L0 . + 0(e?), (2.4)
e in ' , .
'[8], 0_1=791—1(11;h)—£_‘m(11’01’02’h)
rect,
def .
S as where d( )/dé, = ()" and 8, has replaced 1, the variable conjugate to H® = h. The functions L° and L!
nin are expressed in terms of F, H as :
ance 0
—H(I1,0,,L°(1;h),6 ‘
1 by Lo(I;; h)=FyY(h—F(L)); L'= U — (4, 2), (2.5) ;
sent |
[9] (cf. Holmes and Marsden [10], Proposition 2.1) and thus we have i
9], :
yeen ?
aL® def |
uted L= =@ (1) /0, (LO(I; h)) = — 2,(1,). (2.6)
the
ker We next make the transformation
uted
11=11m.n+¢;‘]’ |
b, = Qh(llm'")oz —¢y= 72— v,
where I™" is a resonant action level on which 2,(I{""y=n/m for n, m relatively prime positive integers. :
We remark that the sign convention of (2.7) differs from that of Veerman and Holmes [5] and 3
Guckenheimer and Holmes [11). Using (2.7), (2.4) becomes |
[
: , (?L1 m.n n02 i
21) J =¢;a_01(11. ’7—4/,02;}1)
920 +0(e), (2.8)
ical ¥ =ve —5(I"" h)J
) ol
tein
to which we may apply the averaging theorem [6, 11] to obtain )
22) 1
,_ 1 2am gL
J _ﬁmf() 70 (---)d6,
here 9210 + 0(e). (2.9)
v =ve 77 (...)J
the 1
ergy
The averaging theorem guarantees that solutions of the truncated A ) system corresponding to (2.9)
lying in the stable manifolds of hyperbolic fixed points remain O(Ve) close for all times ¢ > 0 to those of
2.3) the full system, while solutions in unstable manifolds of such fixed points remain @(Vz ) close for all ¢ < 0.




PRl T

UNIVERS

PFii

~»

iTY LIBRARIES

416 P. Veerman and Ph. Holmes / Two degree of freedom hamiltonian system

Hence, via (2.7), we can approximate solutions of the original problem which are asymptotic to hyperbolic
periodic orbits.

Defining
mon _ 1 2mm aLl m.n n02 .
M () = —mf(; m(h it 213 h)d02,
am,n azLO m,n
h U= 8112 (11 * ;h)’ (2.10)

we see that the O(Ve) truncation of (2.9) is a single degree of freedom, autonomous (8,-independent)
Hamiltonian system with energy

2
#(1,9) = Ve lap g+ V(4. (2.11)
where
v ~
—(;'T‘(¢)=M;§"’"(‘P)- (2.12)

" Since L! is 27-periodic in 8;, V™" is 27-periodic in ¢ and thus the phase portrait of (2.11) is similar to

that of the simple pendulum. Elliptic and hyperbolic fixed points alternate on J =0 (I, = I eq. (2.7)) at
zeros of M;™ "({), with the Hessian of Ve "IM™" /3y >0 and < 0 respectively, and the separatrices
of the latter have maximum separation

AI(m,n; h) =2,/§( )1/2, (2.13)

2
5_;‘71,7(Vmax - Vmin)

where V, . denotes the value of a maximum of V;"(¢) and Vi, the value of a minimum (such values
correspond to fixed points of (2.11)). Thus (2.13) provides an estimate, accurate to 0(¢), of the (m, n)
resonance bandwidth of (2.9) on the energy surface H*=h. Moreover, via the averaging theorem, (2.13)
also provides an estimate to O(e) of the maximum separation of orbits asymptotic to the hyperbolic
periodic orbit of (2.4) as 8, = + . This is the resonance bandwidth.

Finally we show how the expression M;™"(y) is related to the Melnikov functions of Holmes and
Marsden [10] or Veerman and Holmes [5]. In the latter paper we defined the function

2am
M(oo;m,n,h>=f0 (L°, LY} (1,(6,),8,(6,), 8, + bp; h) A6,

= w%fomrz{Fl, H}(ql(t),pl(t),qz(t+ g%),pz(t+ %))dr, | (2.14)

where w, = (3F,/dL) (LI " h))=2n/T, is the unperturbed frequency of the second (F, —) oscillator

and {.,.} denotes the Poisson bracket [2, 15]. Using the fact that (LY, L'} = —(9L°/dI,) x(8L'/48y),
since LC is 6,-independent, we have from (2.10), (2.6) and (2.14)

MEn () = = o~ ) (- M(—gimon ) = = M=y mon ). (1)
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We remark that an expression for the resonance bandwidth involving the averaged Poisson bracket (2.14)
can be derived directly without appealing to reduction [18].

3. Linearly coupled pendula

Veerman and Holmes [5] computed the Melnikov function M(ty; m, n, h) of eq. (2.14) for the coupled
pendula of eq. (1.1) in the case w = 1. A slight extension of those calculations shows that the unperturbed
periods and actions of the (uncoupled) oscillators with energies 4, and h,=h — h, are

T1=4K(%)/w, T2=4K(%), (3.1)

where K(-) and E(-) (to be used below) are the complete elliptic integrals of the first and second kinds,
respectively. The resonance relationship w,/w,=T,/T, = n/m leads to

nK(-}-lzi)=me(h_2hl), (3.2)

and, from (2.15) and eq. (3.26) of Veerman and Holmes [5] we have

M) = s & s°°h(”("+%)’;’;;)jef;‘(”(“%)"*z) sin (2 + 1)m). (33)

where

T=K(1—_2i)/K(h7) i=1,2, (3.4)

and we have used the fact that = w2, =271,/T,.

In Veerman and Holmes [5], we showed that M has simple zeros at t,=kT,/2m, and hence M;>" has
simple zeros at Yy =kw/m, k=0,1,...,2m — 1 in each interval 0 <y < 2#. We now need to compute Vinax
and V,, over that interval, where V_, and V,, are the values of the maxima and minima of
V= [M™"dy. From (3.3) we have

8T, i": sech (7(p+ 4)mr )sech(7(p+ 3)nr,)

Viax = Vain = J— = Qp+1) (3.5)
We also require
Gy = %2%; = 3 (1) /(121 1))
From Veerman and Holmes [5, eq. (3.4)), including w # 1, we have
o5 _eK((h=h)/2) (3.6)
w, T K(h,/2)
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Using the derivative of K:

3_{5(‘,) =2a(11—_a) (E(a) ~ (1 - a)K(a))

(cf. Tef. 19), we compute from (3.1) and (3.6):

(3.7)

The general expression for bandwidth AI(m, n; h) can now be obtained from (3.5), (3.7) and (2.13). For

our specific case we shall further simplify the expression by choosing 4 = 2, so that we can use Legendre’s
identity

E(1-a)K(a)+E(a)K(1—a)—-K(1-a)K(a)=m/2, (3.8)
(Byrd and Friedman (1971)). Also, for & =2, we have
n=n/eom,t,=wm/n, (3.9)

from (3.2) and (3.4), so that (3.5), (3.7), (3.8-3.9) and (2.13) give

h
64\/e_K2(—1—)
Ay 2 1(h hy
almnws h=2)= —— 22 F)(1- 3
1/2
o sech(m(p+ 1) 2 )sech(m(p+ L)wm
g seh(rler D) (st Hom) 610
p=0 (2}L+1)
Finally we estimate the infinite sum of (3.10) by taking only the first term, the error being
o sech('rr(p.+ %)%)sech(w(p,+ )wm)
R(m,n,w2)=Y , (3.11)

a— (2p+1)°
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which we can bound using (2p + 1)2> 9 for p > 1 and sech(x) <2e™* to obtain
o2} o0
R(m, n, w’z) < % Z e—vr(u+§)(n/w+wm)= % Z e—ﬂ(n/w+wm)(%+u)
p=1 v=0
= %e—%'ir(n/u+wm)/(l _ e—-n(n/w+¢.:m)). (312)

The relative error is therefore bounded above by

R, S%e—gw(n/w+wm)((1 - e—"r(n/“’+“"”))(sech(%)SeCh(‘mg—m)))_l’

or

e 2"(n/w+ wm)
(1 - e—‘ir(n/w+wm)) ’ (313)

4
R <3

using sech(x) > e for x > 0. Then using the inequality n/w + wm > 2ynm we obtain

R <% e—ZW(nm)l/z((l _ e—zw(nm)‘/z))"1 <0.1%, forallm,n>1. (3.14)

Then our final estimate for bandwidth for arbitrary (m, n) and h=2is

h
64\/EK2(—1-) 172
h h
AI(m,n,w;2) = —-—%{ﬁ(l - %)sech(%—)sech(%n-)} + 0(e), (3.15)

™Tmw

with a maximum possible error of 0.05% in the O(Ve ) term (the square root effectively halves the relative
error). Recall that h, = h,(m, n; h = 2) is given by eq. (3.2).

4. Numerical computation

Using a fourth order Runge-Kutta scheme, we integrated Hamilton’s equations corresponding to (1.1) in
the original p,, g, coordinates and plotted Poincaré sections by the standard technique of recording values
of py,q, each time g, =0 with p,>0. We checked conservation of total energy and, using a step size
varying between 0.02 and 0.06 found that it remained within 0.05% of its starting value (4 = 2) over 10* to
5 X 10° steps. We estimate the maximum error in our bandwidth measurements to be of the order of 1%.

Since the bandwidths are measured in the (gq,, p,)-Poincaré section, it is necessary to convert the width
(3.15) in action space back to (gq,, p,) space. As the Melnikov function indicates, a hyperbolic periodic
point for each resonance band lies on the positive P, axis in the section, and since only odd resonances are
excited to first order (M;™"(y) =0 of m and/or n even), the maximum bandwidths occur on or near the
negative p, axis (cf. fig. 2, below). Thus we compute A P, using

D

dh
AP1=L —L . A=

w 4.1
h, (4.1)

a=0 90 2k, 2K(hy/2) T
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Fig. 1. Comparison of eq. (4.2) (- -) and numerical computation (F) of resonance bandwidths: a) w =1, m=n=1;b) w=1, m=3,
n=1¢)w=1,m=5n=3;d) w=05 m=n=1;¢) @=0.225, m=1, n=3.

so that we have

h
16¢§K(71

Ap,(m,n,w;2)= —){—1-(1 - —h—l) sech(%)sech(m)}lﬂ, (4.2)

mw T 2 2 2

to first order. In figs. 1(a—e), we plot Ap,(m, n, w;2)/ Ve for several low (m, n) and three values of » and
in fig. 2 we show a typical Poincaré section to illustrate the resonance bands. The widths were estimated by
finding points (initial conditions) on ¢, = 0, p, < 0 whose orbits pass above and below the hyperbolic point
on g, =0, p, > 0 (see fig. 2). Computations were all performed in double precision FORTRAN on a VAX
11,/750 using an AED 767 color graphics monitor in an interactive mode.

From this (rather limited) sample of computations, we conclude that, while the asymptotic formula (4.2)
does provide a good estimate of resonance bandwidths as & = 0, it can be very poor for relatively small
even for the low order resonances investigated here (see fig. 1b, for example, in which (4.2) is 50% in error
for & =4 x 10~*). Note that the asymptotics depend on n and m, i.e.: for a given value of ¢ we cannot
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T T | E— T I T T T T
root eps  0.05
L omega 1 |
2.0 stepsize  0.05
init. ham
worst ham 2.0004
1.5 -
1.0 —
0.5+ ~
(0] —
-0.5— —
1.0 -
1.5 -
-2.0F —
1 | 1 L | 1 t ! 1
-2.8 -24 -1.4 -0.7 0 0.7 1.4 24 2.8
-0.5460 T T T T I T oot epls 0.05' T
.t omega 1 .
o . stepsize 0.03 . E
. init. ham 2 "
worst ham 2.0000
- ‘ ‘ -
-0.5480 -
-0.5500 1 1 1 1 | 1 1 L 1
-005 -004 -003 -002 -0.04 0 0.01 0.02 0.03 0.04 0.05

Fig. 2. Numerical computation of the ( p,, ¢;) Poincaré section, showing (1,/1) and (5/3) resonance bands. (5/3) picture (below) is
an enlargement of the small boxed region on (1/1) picture (above).




PSRN
M4

. 3

UNIVERSITY LIBRA rerES

IR

N
e
W
N
“~
B

422 P. Veerman and Ph. Holmes / Two degree of freedom hamiltonian system

calculate the bandwidths for all resonances. Perhaps more significant than the numerical values of ¢,
however, is the fact that such errors occur long before low order, neighboring, resonance bands appear to
overlap. Thus, while in fig. 2 large sets of smooth invariant tori appear to exist between the resonant bands,
the widths of the latter are already far from the O(Ve) estimates of simple perturbation theory. This
suggests that, in addition to taking higher order ‘intermediate’ resonances into account, as in Lichtenberg
and Lieberman [4, §4.2], higher order (0(e), etc.) terms should also be included in the estimates of
individual bandwidths. Note in this connection that in figs. 1a, 1c and 1d, after the behavior 4 p ~ Ve, there
seems to be an indication of A p ~ & behavior which is the next order of the perturbation theory.
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