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Melnikov’s method is used to prove the existence of arbitrarily many elliptic and hyperbolic periodic orbits in the
neighborhood of an elliptic orbit of a two degree of freedom Hamiltonian system which is ‘almost integrable’. The existence of
such orbits precludes the existence of analytic second integrals of a certain type. The methods used permit a detailed analysis of
the way in which resonant tori break up between the KAM irrational tori which are preserved for weak coupling of two
independent noulinear oscillators.

1. Introduction: coupled pendula

In earlier work [1, 2], adaptations of Melnikov’s [3] method were used to study the perturbations of
homoclinic manifolds in 2 and n degree of freedom Hamiltonian systems of the form

H(q,p)=H4q,p)+eH'(q,p), (1.1)

where for e =0 the H° system is completely integrable. The simplest nontrivial case occurs for a two
degree of freedom system with a direct product structure:

H*(q,, p1. 492, P2) = F\(qy, p1) + Fy(q,, p,) +eH(4qy, p1, 43, P2)- (1.2)

In this case, if the F, are positive definite near ¢;,=p,=0, then each (compact) energy surface
(H®)~'(h)~ S3 for the unperturbed problem is foliated by a smooth family of invariant two-dimensional
tori given by F; !(h,) (h, + h, = h). Such a torus is called resonant if it is filled with periodic orbits and
non-resonant if the flow on it is irrational.

In the papers cited above we showed that, if a certain Melnikov function had simple zeros, then stable
and unstable manifolds which, for € = 0, coincide as a smooth homoclinic manifold, intersect transversely
for €+ 0, small. In that situation the Smale—Birkhoff homoclinic theorem allows one to establish the
existence of a complicated invariant set—a Smale horseshoe—for the Poincaré map defined on each
constant energy hypersurface in some energy interval [4-6]. This in turn implies that no analytic integral of
motion exists for the perturbed problem, other than the total energy H*. The proof of non-integrability uses

tPartially supported by NSF grant CME 80-17570.

0167-2789,/85/%03.30 © Elsevier Science Publishers B.V.
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the fact that the nonwandering Cantor set of the horseshoe map has a dense orbit, and the existence of the
‘large’ unperturbed homoclinic manifold is an essential starting point.

In the present paper we establish results which are somewhat weaker, but without appealing to
perturbations of homoclinic orbits. Specifically, we take the example of a pair of coupled pendula with
Hamiltonian

pi P e 2
H'="+(1-cosq) +5 +(1 - cosq,) +5(q: — q2)

def
= F\(q,,p,) + F(q,, p,) +eH' (41, 4,), (1.3)

and consider the flow in a neighborhood of the elliptic periodic orbit (0,0, g,(¢), p,(¢)) on the energy
surfaces H® = ¢ for ¢ € (0,2). (For ¢ = 2(q,(t), p,(2)) becomes a homoclinic orbit and we essentially have
the situation considered earlier.) We use the method of reduction [4, 7, 1] to restrict the motion to an
energy surface and thus recast the problem as a periodically forced single degree of freedom system,
Melnikov’s method is then used to study the bifurcation of smooth, resonant tori for ¢ =0 into discrete
periodic motions for & # 0 as described by Greenspan and Holmes {8] (cf. Guckenheimer and Holmes [6}).
We obtain the following main theorem:

Theorem A. For any integer N < oo, there exists e(N)> 0 such that, for 0 <e<e(N), on each energy
surface H*® = c € (0,2) of (1.3), and in any neighborhood of an invariant torus for the unperturbed system,
there are at least N distinct periodic orbits. Moreover, there are only a finite number of each period. Half
of these orbits are hyperbolic and (for possibly smaller ¢) half are elliptic.

Corollary. For sufficiently small ¢ there are arbitrarily many distinct periodic orbits in any neighborhood
of the unperturbed elliptic periodic orbit (0,0, g,(¢), p,()).

Remark. We can make N arbitrarily large at the cost of taking e(N) arbitrarily small.

Sections 2 and 3 of this paper are devoted to an outline of the Melnikov method and the proof of the
theorem. In section 4 we conclude with some comments on the relation of this result to
Kolmogorov—-Arnold-Moser (KAM) theory. In fact the result we obtain is slightly stronger: we are able to
compute the number of orbits of each period m in a neighborhood of each “m/n” resonant torus, which
for the unperturbed system is filled with a continuous family of m-periodic orbits.

The present result is similar in spirit to that of a paper by Moser [9] in which he proved existence of
infinitely many periodic points near an elliptic fixed point of a polynomial area preserving planar map. He
also demonstrated that there were only a finite number of periodic points of each period n, and hence that
no invariant circles of periodic motions could exist. This in turn implies that no analytic change of
coordinates exists by which the map can be transformed into a twist map, and hence that the system i
non-integrable in the sense of Poincaré and Birkhoff {4]. We note that the existence of a finite set of elliptic
and hyperbolic periodic motions, as proved in the present paper, also precludes the existence of such an
analytic coordinate change, but that it does not preclude the existence of continuous families of smooth
invariant surfaces (for this one needs an infinite set of such periodic orbits). See fig. 2 in Section 4, below.
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nce of the 2. Melnikov’s method
pealing to In this section we provide a brief review of the Melnikov method for finding periodic orbits in
1dula with perturbations of integrable two degree of freedom Hamiltonian systems. For details see Holmes and ‘

Marsden [1] and Guckenheimer and Holmes [6, §§ 4.5-8). For simplicity, we assume that the unperturbed -
system has the direct product structure of (1.2), although this is not necessary ([1]); moreover, we assume é’ )
that the second (2-) system can be put into action angle variables by a symplectic change of coordinates ; 3
LI
L=5,(9:, P2), 9:=2,(1,,6,), L
(1.3) 0,=0,(q;, p;), P,=P,(1,,6,), (2.1) ‘ :
in a compact region 2 of the (g,, p,)-plane. Letting F,(I,) denote F,(#,(q,, p,)) the system may then be
written
the energy
lt?ally have HE(‘IUPlyIz,az)=F1(‘11,P1)+F2(12)+€H1(‘11,P1,02’12)- (2-2)
tion to an
m system. We make the following assumptions on the functions F,, F, and H": _
to discrete i
(olmes [6]). (H1) F,, F, and H! are analytic in all variables (including ¢) and the F; are positive definite for small
U P i; def
(H2) Q(1,) = F/(1,)> 0 for I,> 0; ,
ach energy (H3) F, has a non-degenerate minimum at (g,, p;)=(0,0) and the unperturbed F,, F, system is
ed system, isoenergetically nondegenerate (Arnold [10, appendix 8]).
riod. Half
Remark. Using action angle variables I;, = #,(q,, p), 8, = ©,(q,, p,) the F, energy can be written F;(1,).
Isoenergetic nondegeneracy implies that
shborhood
7 ’ 2 7 ’ 2
Fr(L)(F(1L)) + F(L)(F(1)) #0, (2.3)
i.e. the frequency ratio of the two oscillators changes as we move transversely across the 1-parameter family
‘ th of tori in a fixed total energy surface F, + F, = h. (This guarantees that the unperturbed Poincaré map of
roof of the the reduced system, discussed below, in a twist map; cf. Moser [9].)
result to
are abl;i tﬁ The analysis proceeds in two stages. First we use reduction to restrict to a three-dimensional constant
Tus, Whic energy surface. Since H = h is constant for the flow and F, is invertible by assumption H2, for small ¢ we
] can invert H = h and solve for 7, in the form ,
xistence of ;
r map. He def
hence that IZ:go(‘h’Pl;h)+€$1(41v171,02§h)+0(52)=$ (91, p1,6,3 1), (2.4)
change of where |
> system i§ y o ) ‘
‘ot H 0,; &%  h
tc — q k4 p b b4 q ’ p b
of ellipu $0=F2 l(h_F1(‘I1’P1))a and £'=-— — 02 = ’ (2.5)
of such an 2(2L°(qy, ps b))
of smooth
1 4, below. as can be verified by expanding all the functions in Taylor series.
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Having passed to the level set H®=h and eliminated I,, we next eliminate the variable ¢, conjugate to
I,. Since £2(1,)> 0 and H°® is not explicitly r-dependent, 8,(¢) is an increasing function (for small &) and
we can eliminate ¢ by inverting 6,(r) and expressing ¢, and p, as functions of 8,. Letting ( )’ denote
d()/d8,, we have

a{=aq./0,, pi=p1/b,, (2.6)

and using (2.5) and implicit differentiation of H(q,, p1,8; £(q;, p1,8; h))=h with respect to ¢, and p,,
we obtain the Hamiltonian evolution equations for the reduced system:

32° 4!
g=-—F =t
1

aL° 9!
+ 0(62), pi= _5:]1— + e-;—qT + 0(82). (2.7)

I 41

For each fixed h, egs. (2.7) take the form of a periodically perturbed planar system, since #° depends
only on (g;, p,), while &' has explicit §;-dependence. We can therefore apply the Melnikov theory for
subharmonic motions as developed by Greenspan and Holmes [8], cf. Guckenheimer and Holmes [6]. We
now use assumption H3, which guarantees that we can find countably many resonant tori in the (¢, p,, 8,)
phase space of each constant energy surface surrounding the unperturbed periodic orbit
(0,0, 2(£°(0,0, h))t + 6,). Such tori are direct products of periodic orbits for the F, and F, systems and
the periods of such orbits must satisfy the relationship

mT, m2w

n nQ(h,)

T, = (2.8)

for (admissible) relatively prime integer pairs m, n. In terms of the ‘new time’ ,, the period 7, of the F,
system must satisfy

2mm
n

(2.9)

N

This in turn implies a relationship between the unperturbed energy levels (integrals) Fi(q,, p,)=hi,
F,(1,)= h,, which, together with the constraint h, + h, = h, fixes a unique unperturbed resonant torus for
each pair (m, n).

We pick a point (g,(0), p,(0)) on the unperturbed m/n-resonant level curve F] '(k,) of the 1-system and
a starting time 6, € [0,27) and write the unperturbed solution based at this point as (¢,(8), p,(8), 8, + ;).
Using regular perturbation theory we express the distance between the base point of the perturbed solution
at 8, and the return point at 8, + nT, = 6, + 27m as

eM(6y;m,n, h)
| X-(0) |

where X(0)=(dF,/dp,, —dF,/3q,) (¢,(0), p,(0)) is the Hamiltonian vector field at the base point, and

d(oo) =

0(&?), (2.10)

" is necessary for normalization. A short calculation using the first variational equation for (2.7) yields the

Melnikov function

27m
M(8,; m,n,h)=/(; {"?0"'?1}(‘11(02‘90)’P1(02_00)’02; h)d0 ) (2-11)

(cf. Guckenheimer and Holmes [6, chap. 4], Greenspan and Holmes {8]) and we have our main result:
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Theorem 2.1. Fix h>0,m, n€ Z* relatively prime and choose ¢ sufficiently small. Then, if M has j
simple zeros as a function of 6, in [0,27m/n), the resonant torus given by (¢;, p1, 0,) = (q,(8, — 6,), p,(0,
— 8,), 8,) breaks into 2k = j/m distinct 2m-periodic orbits, and there are no other 27m periodic orbits in
its neighborhood.

Remarks. The integer j is necessarily an even multiple of m, so that 2k is even. Note that each
2mm-periodic orbit pierces the Poincaré cross section at 6, =0 precisely m times before closing up (see
pelow). For sufficiently small e, precisely k of the periodic orbits are hyperbolic and k are elliptic. The
coupling parameter ¢ must be taken sufficiently small for two reasons: (i) to guarantee e-closeness of the
perturbed solution to (q,(8), p,(8),0 + 6,); and (i) to guarantee that the term eM/||Xf| in (2.10)
dominates the uniformly bounded @(e?) error. This means that, in the absence of special circumstances, we
must let e = 0 as m, n = oo. Hence we cannot directly prove the coexistence of infinitely many periodic
orbits using Melnikov theory. (In previous work infinitely many periodic orbits were found via the
Smale—Birkhoff homoclinic theorem, as a consequence of transversal homoclinic intersections.)

Sketch of proof. There are two main ingredients in the proof of this theorem, which is essentially a
straightforward application of the implicit function theorem. The Melnikov function measures the ‘radial’
distance (in the I, direction) by which the perturbed orbit fails to match up. The twist guaranteed by
assumption H3, ensures that, if M(f,) has a simple zero, implying that the radial component of the
difference between base and final point vanishes, then the angular (,) component can also be made to
vanish nearby.

To count the number of periodic orbits for ¢ # 0 we count the number of zeros of M in a suitable
§,-interval. The period of the unperturbed F, system is Tj, or, in terms of the ‘new time’ 8,, the period of
L0 is2aT,/T,=2nm/n, since d6,/dt = Q(I,)=2n/T,. Let (q,(6, — b,), p1(8, — 6,)) denote a family of
2mm/n-periodic orbits of the unperturbed & 0 gystem based at ‘time’ 8,=0. As § varies from 0 to
2am/n, the base point of the unperturbed orbit moves once around a closed circle containing (0,0). A
simple zero of M at 8, = ¢ implies that the degenerate periodic orbit (q,(8, — ¢), p,(0, — ¢)) perturbs to a
nearby 2#m/n periodic orbit for & small. Hence, j simple zeros in the interval 8, € [0,27m/n) implies
that precisely j/m such orbits are preserved. The reason that j=2km for some k € Z is described below.

We remark that a simple translation of 8, enables us to rewrite (2.11) in the more convenient form

2mm
M(00;m,n,h)=j(; {.?0,fl}(ql(ﬂz),pl(ﬂz),02+00;h)d02, (2.12)

as in Guckenheimer and Holmes [1983, Theorem 4.6.2], but note that there is an error in the §,-domain
given in that theorem. a

The behavior of the perturbed system is best seen in terms of the (time 2«) Poincaré¢ map P, defined on
the cross section = ={(q,, p1,8,, h)|6, =0, h = constant} for eq. (2.7). We consider the mth interate of this
map in the neighborhood of an m/n-resonant torus, which intersects 2 in a simple closed curve I'. Clearly
P{" fixes every point on I. Since P, is area preserving, the image of the interior of any such closed curve I''
under P cannot strictly contain I'” or be contained by I'’; there consequently must be point of
intersection between I'” and P(I'’). Now these points may not be fixed for P, since the perturbed orbits
may undergo angular motions, but the @(1) twist assumed in (H3) guarantees that a closed curve
I =T+ O(¢) does exist with the property that each point I', moves precisely radially under P,". The
Melnikov function provides a measure of the radial motion of points at different angles 6, on this curve.

S i D i
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Fixing the twist so that the period of the unperturbed orbits decreases as action increaseg
(F(I)(F/(1,)? + F(IL,X(FY(I}))* <0 in (H3)), we have the situation of fig. 1, which is adapted from
Arnold and Avez [11, § 20]. It is not too hard to see that, of the fixed points lying at transverse intersections
of I', and P/(I,), half are hyperbolic and half are elliptic, if ¢ is small enough. If all intersections are
transverse then there are necessarily 2km of them. Although transverse intersections are generic, we cannot
assert their existence in specific cases without computation. The Melnikov function provides the necessary
computational tool.

In practice the reduced Hamiltonian #¢= 2%+ %! is often awkward to calculate, but fortunately a
simple identity can be used:

Proposition 2.2. (Holmes and Marsden [1])

{go’31}(‘]1(02),%(02)’02*'00’h)= {Fl’Hl}(ql(t)’Pl(t)’02+00?12)’ (2-13)

1
2
[2(1,)]
where I, = F; '(h,) is the unperturbed action of the 2-system.

Using (2.13) in (2.12) and changing the variable of integration from 6, to ¢ and the variable 6, to to,
using dé,/d¢ = 2(1,), we have

1

M(tg;m,n, h)= 20
2

L7 (Y @), pi(0, e+ o). ol o)) ()

Thus, we need not even know the action angle transformation explicitly, provided that we know
(g2(2), p5(2)) on the level set F; '(h,). Finally, since the integrand is periodic with period 2mm/Q(1,)=
mT, = nT,, we can change the limits of integration to obtain

T, rmT,/2
M(to;m,n,h)=ﬁf ;/Z{Fl»Hl}(Ql(t),Pl(t)"h(t'*'to)’Pz(t'*'to))dt. (2.15)
—mT,

Eq. (2.15) is the form we shall use in the next section. To establish the existence of 2k isolated
m-periodic orbits, we must show that M(¢,; m, n, h) has 2km simple zeros in t, € [0, T}), since as 1, varies
from O to T, 8, varies from O to 2# T, /T, =2wm/n.

Fig. 1. The perturbed Poincaré map P,”. Elliptic fixed points indicated by O, hyperbolic points by X (after Arnold and Avez (11D
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3. The proof of theorem A

In this section we perform the computations necessary to establish that the Melnikov function (2.14) for
the coupled pendulum problem has a finite number of simple zeros for each relatively prime integer pair
m/n (m,n odd) in some interval.

Each uncoupled pendulum has Hamiltonian

p?
F,= —2'- +(1 —cosgq,), (3.1)

3

and the periodic orbits for energies F, = h; € (0,2) can be written in terms of Jacobi elliptic functions as

st1= i [5] " 2
a) |
2

where sn and cn are the elliptic sine and cosine functions with modulus &,/2. We have based the orbits at
(¢,(0), p;(0)) = (0,y2h,). For a resonance of order m/n, we require

pi(t)= 2(%)mcn(t

nT, = mT,, (3.3)

and since p, = dgq,/dt, (3.1) can be integrated to yield

7}=4K(£’2—i), ' (3.4)

where K is the complete elliptic integral of the first kind. The resonance condition relating the energies &,
and h, is therefore

hy hy
nK(Z)—mK(-z—). (3.5)
We also have
hy+h,=h, ' (3.6)

if we work in a constant (total) energy surface H®= h. Combining (3.5) and (3.6) we obtain

nK(%) =mK(h;h1). (3.7)

Lemma 3.1. For he€(0,2) and each m,n€Z ™ with m/n € [K(0)/K(h/2), K(h/2)/K(0)] eq. (3.7) has a
unique solution h¥(m, n, h). These solutions are dense in h, € (0, h).

Proof. K(a) is a monotonically increasing function with domain « €[0,1), so nK(h,/2) increases on
h, €[0,2) while mK(h — h,/2) decreases on h;, € (h—2, h]. The fact that K(a) increases monotonically

B FTYY]



184 P. Veerman and P Holmes / Periodic orbits in Hamiltonian systems

with a (on its domain of deﬁhition), yields at most a unique intersection point. The fact that solutiong
cannot be found for all m, n is due to the restrictions that mK(h/2) > nK(0) and mK(0) < nK(h/2) for
intersections to exist. Density follows from the density of the rationals m/n and the continuity of K(a) for
a<(0,1). [

This result implies that the unperturbed system has a dense set of resonant tori in any neighborhood of
the elliptic orbit (0,0, g,(¢), p,(¢)) on every energy surface k< (0,2). This is, of course, the generic
situation for integrable two degree of freedom systems.

We next compute the Melnikov function. Selecting a total energy A > 0 and an admissible integer pair
(m, n) and the associated unperturbed orbits (g;, p;) with energies 4,, and recalling that the perturbation is
H' = 1(q, — q,)* we substitute into eq. (2.15) to obtain

T, rmT;/2
M(to;m,”’h)=_2 : {Fl’Hl}(‘h(f)’lh(t),‘h("*"0)’P2(t+to))dt
277 /2

-mT,
T, rmT/2
=2 [T —pi()(a(1) — galr + 1)) d, (38)
2w —mTy/2 .
where
h
T,= 4K( 72 )
Since p,(t) = q,(¢) is even and ¢,(?) is odd (see (3.2)) the integral of p,q, vanishes and, substituting (3.2)

into (3.8) we obtain
hy A2\ h,
> ) arcsin [(7) sn{ 1+ 15 dr. (3.9)

The integral (3.9) is difficult to evaluate, and so we use indirect arguments to establish the following:

T, m h 12
Mmon = 5 )

Lemma 3.2. For each h € (0,2) and each pair (m, n) of odd, relatively prime integers satisfying m/n €
[K(0)/K(h/2), K(h/2)/K(0)], M(ty; m,n,h) has precisely 2m simple zeros in the interval t, € [0, T}),
where T, = 4K(h,/2).

Proof. We first demonstrate the existence of at least 2m zeros. We note that, since p,(¢) is even while, for
to =0, g,(2 + t,) is odd, (3.9) vanishes for ¢, = 0. Similarly, for each 1ty =kT,/2 = knT,/2m, q,(t + t,) is
also odd and so M(knT,/2m;m,n, h)=0 for all integers k € Z. Computing kn/2m mod.1 for n,m
relatively prime and both odd, we find precisely 2m such zeros (at knmod2m =0,1,2,...,2m — 1) in the
interval 0 < kn/2m < 1.

We next show that the zeros found above are simple. We have

M’(ty;m,n, h)=

I fmn/z d ) dr

27 —mTz/ZdtO o

T, m hy\172 B\ /2
S e o NN T

(1-(hy/2)sn?

W

Se¢

wi

s
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where cn ; = cn(t|h,/2) etc. Using elliptic function identities, (3.10) simplifies to
T, ,( hihy \'? 2 h, h,

M (ty;m,n, h)= 4( ) ) f_mrz/zcn(t —2—)cn(t+t0 >
Setting 1, =0 (or 1, = kT,/2 for k € Z), the integrand of (3.11) becomes

cn(t

To evaluate M’ we will use the Fourier series representation of the elliptic cosine:

)dt. (3.11)

72) (3.12)

WAL
2cn

hi 20 0 1+1/2
cn(t 7) D K §=_‘, s cos [(21+ 1)———21((}1/2) (3.13)

where

o] o= )

is the elliptic nome [12]. Substituting into (3.11), using (3.12), recalling that 7, = 4K(h,/2), and interchang-
ing the order of summation and integration, we have

T, 256m2 & gi Vg1
2a TlT (1+q21+1)(1+q221+1)

/kTZ
M(2 mnh)

(2_]+1)——]COS

21+ 1)@]& (3.15)

mT,/2
x/ ¥ cos
mT,/2

Using orthogonality of the Fourier components, we see that the integral is non-zero if and only if

2j+1)  (2l+1)
Tl B TZ

or n(2j+1)=m(21+1), , 7 (3.16)

since nT, = mT,. This condition can only be satisfied for m, n both odd and if in addition we have
2j+1)=(Qp+ 1)m, 21+ 1)=Q2p+ n, p=0,1,2,3.... (3.17)

Finally, using (3.13-14), we have

(KT, T, 64n2 & mT,
M (—2—2-;m,n,h) = 572; T, ‘E,Osech[vr(p+ L)mr,] sech [7(p+ %)nﬂrz]—z—z-
o0
=167n Y. sech[7(p+ L)mr]sech[p(7 + 3)nr], (3.18)

p=0
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where

n=K(1-hy/2)/K(h/2)=K"(h/2)/K(h/2). (3.19)
Since ¢; and 7, are positive, we can estimate M "(kT,/2; m, n, h) as follows:

kT, = 5 on 1/2 - 1/2
M’(T;m,n,h) <167n Y, 2e "B/ Dmn) g mutl/nmy (3.20)
u=0

to obtain

'M'(% im,n, h) ‘ < 64ﬂne—(ﬂ/2)m-rl—(1r/2)n-rz (1 _ e(—‘rrm‘rl-—ml-rz))_1

=327rncsch[12r-(mq-l+n1-2)]. (3.21)

In the same way we obtain

kT, i
’M'( 22 “m,n, h) > 167n Z e-qr(/,:.+1/2)m‘rle—w(u+l/2)n'rz

u=0

=87mcsch[§(m'rl+n1'2)]. (3.22)

In obtaining these estimates we use the fact that, for a,5>0

1 < 1 1 < 1
4ea+b T e?4 e ¢ eb+e—b - ea+b’

(3.23)

and then sum the resulting geometric series. Our bounds on |M "(kT,/2; m,n, h) 1 show that, for any odd
m, n < oo, the zeros are simple. However, we remark that to obtain all the resonant tori in any
neighborhood of a given torus or of the elliptic orbit (0,0, g,(¢), p,(¢)) we must let m, n — oo. Thus
mncsch((w/2)(mT + nry)]~ ne ("/DmTi+nT2) 0 and simple arguments do not yield a uniform lower
bound for (3.18) for all admissible pairs (m,n). In fact M’(and M)— 0 as m, n = oo.

To compute M’ as a function of ¢, we simply expand the cosines of the Fourier series of (3.13), and use
n/T,=m/T, to obtain

cos| 221+ 1)(2+1o) ) _ COS( 2m(21+ 1)21 ) Cos( 27 (20 + 1)mt0)

T, T, nT,
202U+ 1)) . (20U + 1),
_ein| 2T Dt cmiel T H)miy 24
sm( T, ) sm( T . (3.24)

Using this expression in place of the second cosine term in the sum of the integral of (3.15) and selecting
21+ 1)=Q2p+ Dn (cf.(3.17)), we obtain

2a0(2p+ 1)me,

T (3.25)

o0
M (ty;m,n,h)=16nn Y, sech|[w(p+1)mr]sech[n(p+1)nn]cos
u=0

~ "
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Since M’ is given by a convergent Fourier series we can integrate term by term to obtain

o0
T,
to;m,n, h) =16 S S —
M(to;m, . h) ”"Eozw(zuﬂ)n,m

« sin ( 2a02u+ 1)mt, )
T,

sech [7(p+3)mr ] sech [7(p+3)nmy]

_sr i sech [7(p+3)mr ] sech [7(p+$)nr] sin 27(2p+ )mi,
2 (2p+1) T '

(3.26)

As our earlier argument showed, for each fixed odd integer pair n, m, this function has 2m (simple) zeros
in t,€[0,T,) at t;=kT,/2mmod T}, with k=0,1,...,2m — 1.

Finally we show that there are only 2m zeros in ¢, € [0, 7). To do this it is sufficient to show that each
partial sum of the Fourier series:

N
au+1) .
Ty(¢) = E‘%ﬁ%ﬁlﬂnaﬂ+n¢, (3.27)
p=0 H
with
T m
a(2p+ 1) = sech [—2'(2[.L + 1)m'rl] sech [5(2;1 + 1)n1-2],
has no zero in the interval ¢ € (0, 7). We first note that each partial sum
Y1
SN(¢)='E:O 2p‘_*_lsm(2p4+l)4> (3.28)

of the Fourier series for f(¢) ={ _:; :‘ :ee ((f‘;ﬂ))

(m,27)). This is proved in the appendix. We next note that 0 <a(2u+1)<1 for all u and that the
coefficients a(2p + 1) are strictly decreasing with p. In fact, as for the bounds established on M’ above, we
can obtain the estimate

} is strictly positive on ¢ € (0, =) (and strictly negative on

e < a(2p+1)

< 22D (3.29)

<c,e”

for constants ¢,,c,, « (depending upon m,n,, 7, and hence hy, h, and k). Now clearly S;(¢) and
To(¢) = a(1)sy(¢) are positive on (0, 7). Since S,(¢) is likewise positive on (0, 7) it follows that

Ty (¢) = To(¢) +(Ti(¢) — To(¢)
=a(1)S,(9) +a(3)(S,(¢) — So(9))

is also positive on (0, ), since the ‘adjustment’ T,(¢) — Ty(¢) has the same sign as S;(¢) — So(¢) and is
smaller in magnitude relative to Ty(¢) by the factor a(3)/a(1) < 1. Continuing inductively, we see that each

(3.30)
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partial sum

Ty(¢)= T,(¢) + (T (o) - To(¢)) + --- +(TN(¢) ~Ty_1(9))
=ao(1)So() +a(3)(S,(¢) =So(#))+ -+ +a(2N +1)(Sy(¢) - Sy-1(9)) (3.31)

- is positive on (0, 7), and hence we obtain our result. n

Remark. For m and/or n even, the Melnikov function is identially zero, due to the symmetries of the
unperturbed solutions (the Fourier series (3.13) contains only odd terms). Thus one obtains no information
for ‘even’ resonances from these first order perturbations.

Equipped with lemmas 3.1-2, we can now prove theorem A.

Proof of theorem A. Select h € (0, 2), in which case lemma 3.1 guarantees that there is a dense set of
resonant tori surrounding the unperturbed periodic orbit (0,0, ¢,(2), p,(¢)), where (g2, p,) lie in the leve]
set F; '(h). Lemma 3.2 shows that, for any finite m, n in the interval [K(0)/K(h/2), K(h/2)/K (0)], with
m and n both odd, M(ty; m, n, h) has precisely 2m simple zeros in the interval ty €10, Ty). Application of
theorem 2.1 and lemma 3.2 with a suitable choice of ¢, then yields theorem A. N

4. Concluding remarks

As we remarked in section 2, as we take m larger and larger, so we must let ¢ = 0 to guarantee validity
of the perturbation methods used, and to guarantee that the Melnikov function dominates the radial
distance calculation (eq. (2.10)). (Recall that M( toym,n,h)—>0as morn— oo eq. (3.26)). Thus we have
the curious situation that, the smaller ¢ and the closer the system to the integrable limit & = 0, the more
‘distinct’ periodic orbits can be proven to exist. As ¢ —» 0 we can demonstrate that arbitrarily many of the
dense set of resonant tori have broken up. In contrast, Kolmogorov-Arnold—Moser theory ([10]) guaran-
tees that as ¢ — 0 the measure of the set of diophantine irrational tori preserved converges to 1. There is of
course no contradiction, since the irrational tori form a nowhere dense, albeit measurable, Cantor set and
the resonant orbits inhabit the gaps in this set.

For sufficiently small ¢ and any fixed m, n < oo, the width of these gaps goes as 0(vz ), as can be seen
from the following argument. Using the action angle variables ( 1,,8,) for the F, system, for each fixed 4
the Hamiltonian takes the form

£(1,,0,;86,) =21 +eLY1,0,;0,)+ ---, (4.1)

so that eq. (2.7) for the reduced periodically perturbed Hamiltonian can be written

1
11’=€'83%(11:01; 02) '*‘0(52),
1 (4.2)

1
0i=—-w(l) —8%(11,01; 0,) +0(e?),
1
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where w(1,)=3.2L°/31I,. Moving to a coordinate system

I,=1I+ ek,
P (4.3)
6, = _‘*’(1—1)02""!’: - %02'*'4/,
which fixes the resonant torus with action I, = (£ °)~!(h,), (4.2) becomes
, 02! né,
K \/_ 30 (I —74-\[/,02)4'0(8),
(4.4)

V= —Vew (1)K +0(e),

where the @(¢) remainder is uniformly bounded and 27 periodic in ¢ and 6. We next apply the averaging
theorem (Hale [14]) to (4.4) to remove the explicit ‘fast’ 8, dependence, thus obtaining the truncated system

K'=Ve fz"’”{.?‘) ,9’1}(11,¢ nb; 02)d02,
(4.5)
Y= _‘/E‘*”(I_l)K-

In deriving the first component of (4.5) we have used the fact that the canonical Poisson bracket { £°, £}
can be written

.70 8.?1 L0 3£ 3.£!
0 ¢l =
(LY = Sa, ~ 96, a1, )55 (4.6)
and hence that
2mm 3.9’1 _ 2mm 0 1
fo W’ngz—fo (11){.,? , £} d6,. (4.7)

We remark that the right-hand side of the first component of (4.5) is essentially the Melnikov function
(2.11), cf. Guckenheimer and Holmes [6, §4.7]. Denoting this right-hand side by Ve f(¢), it is clear that
(4.5) is an integrable Hamiltonian system with Hamiltonian

#(K0) = Ve (1) 5+ [F)an). (43)

Since #! is 2#-periodic in 6,, f ‘Pf(n)dn is 2ar-periodic in ¢ and the maximum separation of the level
0

curves of »# which contain hyperbolic fixed points can be estimated as

Konax = \/w(zl ) -per[no ’2‘,,)([ f(n)dn)
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Fig. 2. Level curves of the @ (Ve ) averaged system.

(See fig. 2.) Thus from the transformation (4.3) we obtain the maximum separation in K as Ve K max- ThIS
argument can be made rigorous by appeal to the averaging theorem, which guarantees that solutions of the
truncated, averaged system (4.5) remain within O(Ve) of solutions of the full system (4.4) for ‘times’ of
01/ Ve).

The level curves of the averaged system (4.5) in the neighborhood of a resonant closed curve therefore
appear somewhat as sketched in fig. 2; note the alternating elliptic and hyperbolic fixed points. (The
argument sketched above is essentially the same as the more familiar Birkhoff normal form transformation
method, cf. Arnold [10] appendix 7.) The averaging theorem does not of course guarantee that the families
of heteroclinic orbits connecting the hyperbolic points are preserved as smooth manifolds, rather we expect
the stable and unstable manifolds of these points to intersect transversely. Unfortunately, attempts to prove
this in specific cases using Melnikov methods run into an obstruction: the Melnikov function is exponen-
tially small: of O(e™</*). While there is a general belief that this does reflect the correct picture (e.g.
Chirikov [13]), there is as yet no rigorous proof (cf. Holmes, Marsden and Scheurle [15]). We remark that, if
such @(e™/¥#) transverse homoclinic intersections could be proven to occur in the gaps between the
irrational tori, then we would be able to establish the nonexistence of analytic second integrals for the
perturbed system as in Holmes [2].

Appendix A
We are indebted to Richard Rand for the following result, which seems not to be widely known. Let

1
p+1

Sw(#)=2 ¥ =L sin(2u+1)s (A1)
pn=0

denote the Nth partial sum of the Fourier series for

1, O<e¢<m,

f(¢)={—1, 7<¢<2m. (A2)
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Lemma. Sy(¢) is strictly positive on ¢ € (0, ) for all N >0.

Proof. Rewrite each term of (A.1) as
f¢cos(2p+ 1)ndy (A.3)
0

and interchange the order of integration and summation to obtain
4 (o o
Sw(¢)==[* L cos(2p+1)ndn. (A4)
mJ0 p=0
Now use the fact that

sin n(cosn +cos 3n+ -+ +cos(2N +1)7)

sin 27 + sin 47 — sin 27 et sin(2N +2)n —sin 2Nq

2 2 2
_ sin(2N +2)q
_sn@N+ 2, (AS)
so that we can write
2 esin(2N+2)q
Sy(#) = ﬂfo —am (A.6)

Note that this integral converges for all N and 5 € (0, 7); in fact it can be used for small 7 to compute the
characteristic Gibb’s Phenomena or over-shoot in the series representations of f(¢) at 0. For our purposes
it is sufficient to note that, for each N, the integral of (A.6) is strictly positive on (0, 7/2) because the
negative contributions to the integrand (for n €(7/Q2N +2),7/(N + 1)), etc.) are smaller than the
positive contributions (for n € (0, 7 /(2N + 2)), etc.), since 1/siny is monotonically decreasing on 0, 7/2).
To obtain the same conclusion for ¢ € (m/2,m) we merely use the symmetry properties of the sine
function. [ ]
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