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Irrational rotation numbers
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Abstract. For a general class of one-parameter families of ‘flat spot’ circle maps {such
as non-decreasing fruncations of non-invertible circle maps), we prove the following facts.
The set of parameter values where the rotation number is irrational has Hausdorff
dimension zero. Each recurrent set with irrationol rotation number has Hausdorff
dimension zero. Moreover, the closure of their union has Lebesgue measure zero.

Our results are less general than the ones obtained recently by Swiatek; however,
they are stronger and the proofs are much simpler.

AMS classification scheme numbers: 58F

1. Introduction and results

We are interested in a certain class of one-parameter families of circle maps f,. For
each ¢, f, has a ‘flat spot’, i.e. there is an open set U such that for all
x € U, d/dx(f,(x)) =0 and in a neighbourhood of S' — U, f, can be extended to a C'
map with log[d/dx(f,(x))] of bounded variation. In particular, we will denote the
following requirement by the derivative condition: the one-sided derivative on the
boundary of U is bounded away from zero. Although the derivative condition is a
strong condition, there are families of maps that satisfy it naturally, for example the
truncations of non-invertible circle maps; see figure 1. Apart from this, we require
that the parameter dependence be continuous, non-decreasing and increasing in at
least one point. More precise definitions are given in §2.

Thus defined, these families of circle maps have the property that each map has a
well defined and unique rotation number p(f)) € [0, 1) assigned to it (see Nitecki
1971, Herman 1979). Moreover, the map ¢— p(f,) is continuous, strictly
increasing where p(f)) is irrational, and constant in a closed interval (‘locking
interval’) when p(f) is rational (Boyland 1983, Herman 1979). An example of such
staircase-like functions is given in figure 2. The set of parameters where p is
irrational will be denoted by A.

The dynamics of f, admits two cases. If ¢ is in one of the locking intervals, then its
non-wandering set €2, consists of periodic orbits. If ¢ € A, then the non-wandering set
€, consists of a unique minimal set and the orbits in the non-wandering set are well
ordered.

1 Present address: Rockefeller University, Box 75, 1230 York Avenue, New York, NY 10021, USA.
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(6)

Figure 1. (o) A

picture of a bimodal map from which a fruncated family can be
derived. (b) The fl

at spot map. This map is an example of a truncated map.

ot e

We are interested in the measure theoretic questions: how often does irrational
behaviour occur and how much s

pace do the minimal sets occupy in the circle?
In §3, we give a characterisation of Q, for teA (ie: if p(f) is irrational),
namely Q, = S\, f (V). ‘

——

. In the next section, we use a theorem of Maii€ (1985) to prove that for each ¢ € 4
ot 'Lﬁ and for all y>1, there is an m>0 such that for all x with fi(x)eS\U for
o zé ism-1: d/dx(f}"(x))?y> 1
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f
is a piecewise linear family, its slope in the gap
of this curve can be described by a very simple

Figure 2. The function r—» p(f). Here, f,
being zero and outside 1.2. All details
recursive structure.
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When the above inequality holds, we will say that f; has the property of (y, m)
ansivity. We will prove that the estimates for y and m are locally uniform in ¢.
“‘pﬂ]e Lebesgue measure will be denoted by u, the Hausdorff dimension of a set §

by HD(S). Define T as follows:

I'= U Qt‘
teA .
In §5 it is proved that u(A)=0, in §6: HD(A)=0, in §7: u()=0 and in §8:

Q,)=0.
HD,(x s;))ecial case of the results of §§5 and 6 (namely, f, being (7, 1) expansive for

Jll 1) was proved by Boyd (1985). Our reasoning in §5 is different from his. We
remark here that our way of arriving at the result of §6 is to combine Maiié’s result
with Boyd's reasoning. The problem of matching them up is solved by the uniform
expansitivity. Swiatek (1986) has proved a generalisation of the main result of §5 (he
Joes not need the derivative condition; he needs another condition, but that is a
merely technical one, see §5). However, his methods are very different from ours.
The main thrust of our exposition is that these results are now elementary. (In
veerman (1986, 1987) exact expressions for the lengths of the locking intervals were
derived for families of piecewise linear circle maps with flat spots.)

These results complement the classical theorem of Arnold (1965) and Herman
(1977), which asserts that if the f; are diffeomorphisms of the circle, then u(A)>0.
For ‘critical’ families, homeomorphisms of the circle with a cubic inflexion point,
numerical work indicates (Jensen et al 1984) that the Hausdorff dimension of A is
087...., independent of the family. The quantity that distinguishes the three cases
(difficomorphic, critical and non-invertible) would then be the Hausdorff dimension
of A, We treat here part of the non-invertible case (the other part being the
chmination of the derivative condition).

2. Definitions

Let f, be a one-parameter family of circle maps satisfying the following requirements
(from now on we will write D for d/dx and A for d/d¢).

(i) f has degree one and preserves orientation.

(ii) For each ¢, there is an open interval U, = S* containing the point x = 0 such
lh.ul Df(x)=0 for x in U,, and f, extends to a C' on an open neighbourhood of
§" - U, with log Df,(x) of bounded variation.

(ii) The function f,(x) is C° (as a function of (x, t)).

o ()iv) For all x e s' — 8U, f(x) is C' (as a function of t), Df,(x) is C° (as a function
1),
(V) As a function of ¢, fi(x) is non-decreasing and for x € U,, we have Af,(x)>0.
In order to keep the notation reasonably transparent, we will refer to the derivative
'"“y—-r [f(,V) ~f(x)]/(y —x), for both x and y in S*\ U, (note that this is a one-sided
:?{‘;"""e on 3U,) simply as Df(x). We will denote the points in dU, by x_(f) and
. bfor later 2reference, we define the ‘truncated family’ depicted in figure 1. Let g be
ma;,‘mOdal ¢® map of dggree one and fix a lift G. Denote the local minima and
" ma of G by x,,, +i and Xmax + I, where i runs through the integers, such that

™o < Xmax <Xmin+ 1. Choose an interval U = [x=, xi] = [Xmin> Xmax] such that

o0
%

e
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G(x_) = G(x.) and define a parametrisation as follows:

t= (G(x_) - G(xmin))/(G(xmax) - G(xmin))'

Then outside U,, we set f(x) = g(x), and inside U,, we set f(x)=g(x)=g(x,). Itis
clear from this definition that the truncated family satisfies our assumption, provided
we consider a closed parameter interval contained in (0, 1).

As is usual, we will define the lift of a map by an upper case symbol. We allow
only lifts for which F(0) € [0, 1). The iterates f”(x) will be denoted by x,.

3. @, =S"\Us™"(U)

In this section we prove that if p(f) is irrational, then the non-wandering set Q, of f,
is equal to the complement of the union of the inverse images of the flat spot. This
results from a reasoning which in the case of C? diffeomorphisms leads to Denjoy’s
celebrated theorem that Q,=S'. Since this reasoning is almost identical to the
classical reasoning, we only remark on those points where differences occur. For the
course of this section, we fix ¢ such that p(¢) is irrational and leave out the subscript.

A homterval J is an open interval such that f*(J) are disjoint and f” carries J to
f"(J) homeomorphically.

Lemma 3.1. 1f f":J— F*(J) is homeomorphic for all n, then the f"(J) are pairwise
disjoint (J is a homterval).

Proof. 1f f***(J) N f*(J) + O for some n and k, then for all p, e nfr ) +Q.
One verifies easily that K =J;_,f"*P*(J) cannot contain U and that fYK)<K.
Then K contains a periodic point which is incompatible with f having an irrational
rotation number (Boyland 1983, Nitecki 1971). .|

We can rephrase Denjoy’s classical result (see Nitecki 1971, Arnold 1983).
Proposition 3.2 (‘Denjoy’). f has no homtervals.

Proof. The proof is entirely similar to the proof of the classical result (see Nitecki
1971). First, one establishes the existence of a subinterval H of the homterval such
that H is a homterval for both f and f~'. Then one uses the fact that log df /dx is of
bounded variation on the set consisting of the full orbit of the alleged homterval H
to contradict the existence of such an interval. The only difference with the classical
reasoning is that, in our case, log df/dx is not of bounded variation on the entire
circle. 0O

Corollary 3.3. The set  jof ~'(U) is dense in S'.

Proof. By lemma 3.1, every interval that is not a homterval has a forward image
intersecting U,. The previous proposition says that there are no homtervals.

Theorem 3.4. Let Q be the non-wandering set of f. Then Q = S\, ).

Proof. The inclusion Q € §'\{U;, f (V) is evident. So, we have to prove that each
point in $'\{_, f ~/(U) is non-wandering.
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It is clear that S'\{_;»of ~*(U) contains no isolated points, because such a point
would be on the boundary of two inverse images of U and therefore would imply the
existence of a periodic orbit. In particular, x_ and x. (on the boundary of U) are
non-wandering.

By corollary 3.3, the inverse images of x_ and x, are dense in S'\U;»of (V).
Because f is order preserving, their forward images are dense in S'\\U;»of (V).
Thus every point in S'\U;.of “(U) has a dense orbit (again by the property of
being order preserving). O

4. Expansivity

In this section, we formulate and prove results concerning hyperbolicity. The first
proposition is a powerful result by Mafié (1985). Theorems 4.2 and 4.3 extend the
result somewhat, so that estimates can be given. In this section, we fix 7 so that p()
is irrational.

Proposition 4.1 (Maié 1985). Let f be C* (on the circle or unit interval) and A a
compact invariant set, not containing critical points, sinks or non-hyperbolic
periodic points. Then either A is the circle or A is a hyperbolic expanding set.

With theorem 3.4, it now follows immediately that for all n > 1 there is a k >0
such that for all x € Q,, we have

Dff¥(x)=n>1.
Remark. If there is a compact invariant set Q. satisfying the above inequality, then
there is a 6 >1 and a C >0 such that:

Dfi(x) = C6" uniformly in Q, and n > 0.

Proof. Choose C =[ming_Df,(x)]*"! and 8 = n". O

From now on, we will denote the closed set S' —\U7Zg' f,/(U,) by E,.(t). Note
that these sets have a partial ordering given by

LE, ()< ELN(1) ... c Ey).

Theorem 4.2 ((v, m) expansivity). For all y>1 there exist m =1 such that for all
xeE, (1) we have Df7(x)=vy>1.

Proof. According to theorem 3.4, lim,,_,.. Hdist(E,,(t), Q,) = 0, where Hdist means
the Hausdorff distance between two sets (see Falconer 1985). Let k£ and 7 be the
constants for which the consequence of proposition 4.1 holds and let n and p be
positive integers. On E,,(7), the derivative Df%(x), k <m, is continuous, so that for
p sufficiently big, Q, is a sufficiently dense £-net in E,.(7) so that if x € E,.(7), and
y € Q_ sufficiently close to x, then

IDf%(x) — Dfi(y)| <i(n —1).
Now, choose n > p such that

(_nt, Ort)) 11+ 2 - DI > [+ dn - DI
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Now,

Df :k(xo)A,E,,k =Df ,':(x(n—l)k) ... Df ’r‘(xo)
for xo € E,.(7), and noting that x, € E,_i(7), the theorem follows with m = nk
and y = 4(1 + p).

O
Theorem 4.3 (uniform (y, m) expansivity). If, for t = 1, f: is (v, m) expansive, then

there is an £ >0 such that for each ¢ in an & neighbourhood of T, fis 31+ ), m)
expansive.

Proof. As a function of t, f7'(x) is continuous except in X(¢) = f,(x_). Since p(T) is
irrational, f7/( U:), i=1, does not touch or contain X(z). Therefore, the map
t—E,,(¢) is continuous at t = ¢ (with the Hausdorff topology on sets). The theorem
then follows from the continuity of Df?"(x) as function of (x, o). 0

5. u(4)=0

In this section we prove that the set of parameters such that p(f) is irrational, has
zero Lebesgue measure. A slight restriction of this also follows from results by
Swiatek (1986, 1988) (he needs, for technical reasons, Af,>0 on the entire circle,
not just on the flat spot). We include the reasoning here, because our methods are
vastly different from Swiatek’s and because we need the result in the next section.

Let x; = fi(x_(¢)) and recall that F is a lift of f and that A stands for d/de. We will
write Af,(U,) for Aﬁ(x)l,eu,.

Lemma 5.1 Alfi(x(1))] = Af(U) T Df(x).
Proof. ‘
AlfeGe-(N1= Alfie f£7 (1)) = (3£ 3) (xy ) + Dfi(xx—)ALFE'(x_(1))).
The partial derivative is certainly >0, By induction one then obtains
ALFHG- )= i) TT DA,
The lemma follows from the equality
AL(U) = ALf(x_())].

Define a monotone function h,(t) by
1
hat) =~ F1(x_(0)).

Since f7(x_(¢)) is not in U, for te A, it follows that A, is C' in some neighbourhood
of A. Define the sets K, » as '

K.n={teA|Ah,(1)=N}.

Lemma 5.2. lim,, B(K, n) = u(A).
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Proof. According to theorem 4.3, there is an open countable cover {T;} of A, such
that for each te T, f, is (y, m;) expansive. We can thin the cover out, so that
limy e #(Ui=z+1 T;) = 0. Now, consider the set

k
Ak= U TZHA.
i=0

It is clear that lim;_.. #(A,) — u(A) = 0. We prove that if n is sufficiently large, then
Arc K, n

Let M =I5, m;, and Q =int(n/M). For all t € A,, fis (v, M) expansive. So, by
lemma 5.1 (with n > m) we have

Aot 81(U) TT DAGR)

1 Q s--1
=~ Af(U) I] Df¥(xines1) T1 DF(Xag—ss0) for some S <M
i=0 i=0

1 . -
>~ Af,(Uyy®(min Df,(x))"""
=N for Q large enough. O

Theorem 5.3. u(A)=0.

Proof. The function k,(t) is C' on an open neighbourhood of K,, 5 with derivative
greater then or equal to N. Its range is bounded from below by min/(1/n)F?(x_(t))
and from above by max/(1/n)F;(x_(t)). These sequences converge to min, p(f) and
max, p(f;), respectively, and are therefore uniformly (in n) bounded. Thus, for all n,
the range of h,(t) is contained in some interval of length L. It follows that
u(K, n) < L/N, so that

lim u(K, ») =0.
N

Combining this with lemma 5.2 yields the resuit. a

6. HD(A)=0

We prove that the Hausdorff dimension of A is zero. In order to do this, we make
use of uniform expansivity and a theorem of Besicovitch and Taylor (1954). For
definitions and properties of the Hausdorff dimension and Hausdorff measure, we
refer to Falconer (1985). We assume in this section that p(f,) is irrational. We
remark that the proof of proposition 6.3 is essentially due to Boyd (1985).

Slightly reformulated, the theorem of Besicovitch and Taylor says the following.

Proposition 6.1 (Besicovitch and Taylor 1954). Let A<|[0, 1] be a set of zero

measure and which is the complement of countably many disjoint intervals of length
r,. Suppose that 7, can be bounded from above by s,. Then

HD(A)<inf{B | Y, sf < ).

N g
sy — s ot e



—————

STATE -

sa LB

chnwa‘\'i_‘vm-un_ b
anNWERS\TY L\BRAR\L‘§

e e

426 J J P Veerman

Let us denote the parameter interval for which

in the interior of Lo, then f has at least one sta

1979, Boyland 1983). Let T denote an interval wh
define N as the smallest integer such that

m-—1

yN<min Dﬁ(x)) >1.

tLx

Lemma 6.2. For all P/q such that [

with u(l,,) < C/y", where n = int(q/m).
Proof. By expansivity,

m-—1

Df?(x) > "(min Dfr)) " =

so that, for ¢ € 1,,, and under the assumptions of the lemma, fiis (n,

Thus stable periodic orbits have to intersect U, and we can characteris
Fi(x_(t)) ¢ U — 0<i<
te1,,,qe{ x-(0)¢0.~p i<q
Fi(x-(0) € U, +p.
According to lemma 5.1,

e I,, by

AUH:-0)> 41U [T Dpe) > a0 min D)™™

Because each U, contains the point x =0, it is easy to see that U

re1,,, U, is contained
in an interval S,/ Of length less than 2. The lemma is then implied by

.u(Sp/q)
min, A[f(x_(t))]

Proposition 6. 3. HDANT)=0.

U (Ip/q ) <

Proof. According to theorem 5.3 the intervals 1, such that L,/ N T #J have full
measure in 7. For all $>0, we have (X* is the sum over pairs (p, q) of relative
primes)

2* [”(Ip/q n T)]ﬁ sq;Ntn [.u(Ip/q n T)]l3 + 2* Cﬁ‘y_ﬁ"

q>Nm

<finite part +C* 3" ¢(q)y*

q>Nm

where ¢(q) <q is Euler’s phi function counting the number of relative primes to q.
Since the sum is finite for eve

ry >0, we obtain the proposition as a consequence
of proposition 6.1. O
The main result of this section is the following theorem.

Theorem 6.4. HD(A) =0,

Proof. Choose a countable covering {T;}
teT,. For each T;, we apply the previou

i=1 of A such that f, is (y, m;) expansive for
O

$ proposition.

p(f) is equal to p/q by 1. If tis
ble g periodic orbit (see Herman
ere f; is (y, m) expansive. Finally,

b/q 1S contained in T and q>Nm, there is a C

q) expansive.
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7. n(M =0 for thg bimodal family

In this section we specialise the discussion to a truncated family derived, as
described in §2, from a bimodal map g. It is proved that the measure of the union I'
of all order-preserving non-wandering minimal sets of g with irrational rotation
number, is zero.

Lemma 7.1. Every order-preserving minimal set S with irrational rotation number is
equal (as set) to the non-wandering set Q, of f, for some .

Proof. Clearly G(S) is contained in an interval of length one. So, either the lemma
is true or S contains a point x that lies under the orientation-reversing part of the
graph of G. In the latter case, however, since S is minimal, there is a point y € S so
close to x that G is orientation reversing on an interval containing both x and y. This
is a contradiction. |

Theorem 7.2. Let g be a bimodal map such that its endpoints have rational rotation
number. Then u(T) = 0.

Proof. {T;}~, is a covering of A as defined in §6. For every teT, f is (v, m)
expansive in an open neighbourhood N; of U, 7, Q. Therefore g™ restricted to N, is
expanding and restricted to U,z {Q,\x_(f)} = N; it is also a bijection onto its image
which is (U, Q,. One sees easily that

(U Q\x_ (t)) (U Q,).

teT; teT;

(This is implied by theorem 5.3 and

w(Ux-0) <5 pau)

teT;

and dx_(¢£)/dt > 0 for the family discussed in this section.) The theorem follows by
noting that the covering is a countable one. O

Remark. Swiatek (1986) has proved that the condition in the above theorem is
Lebesgue almost always satisfied in a smooth one-parameter family. If the condition
is not satisfied, the result may still be true, but there is no proof of this yet.

8. HD(Q,)=0

For families of maps satisfying the general requirements (i)—(v) of §2, we prove that
the Hausdorff dimension of Q, is zero if ¢ € A. Since this is essentially a repetition of
the techniques used in the above, it will suffice to merely give an outline here.

Theorem 8.1. Forte A, HD(Q,)=0.

Proof. We know that |7, f~'(U,) is the complement of Q,. Moreover, these ‘gaps
in Q,” have full measure, as follows from the fact that £, is expansive. The lengths of
these gaps thus decreases exponentially. Proposition 6.1 then immediately gives the
result. a
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Remark. The above theorem deals with the irrational case. In the case that p(f) is
rational, it could occur that Q, contains open intervals (if Df?(x) = 1). Generically,
however, Q, for rational rotation number, is finite (see Nitecki 1971). In particular,
if f; is expansive there are at most two periodic orbits (one stable and one unstable).

il 9. Concluding remarks

The fact that expansitivity can be made uniform in the parameter means that the
amily for small parameter intervals is similar to piecewise linear flat spot families.
In figure 2, we have drawn the function r— p(f)) for such a family, which can be
generated by a very simple recursive procedure (see Veerman 1986, 1987). If zero
derivatives are admitted, they may annihilate all derivatives of subsequent iterates,
and so no iterate of the map resembles a piecewise linear flat spot map.

1 The result of §7 can be sharpened. The dimension of the union of the
order-preserving sets is zero. This will be elaborated in a forthcoming preprint
(Veerman 1989).

The assumption that U, is a single open interval is not essential. If U, consists of
at most finitely many intervals (one of them always containing x =0) our results
generalise (the proof of theorem 3.4 has to be modified). An example of such a

e e = e

¢ family is f7, where f, satisfies the assumption of §2. We have not taken this case into
ot w account, in order not to clog up the notation.

0% As a last remark, we note that the results in our paper can be used to extend the
5 fé ones in Boyd (1985) concerning Cherry flows. A Cherry flow is a vector field on the
£ torus with a saddle and a sink, whose first return map is a map of the circle with
s irrational rotation number.
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