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It is known that the Hausdorff dimension of the invariant set �t

of an iterated function system Ft on R n depending smoothly on

a parameter t varies lower-semicontinuously, but not necessarily

continuously. For a specific family of systems we investigate

numerically the conjecture that discontinuities in the dimension

only arise when in some iterate of the iterated function system

two or more branches coincide. This happens in a dense set of

codimension one. All other points are conjectured to be points

of continuity.

1. INTRODUCTIONLet F = ffigNi=0 be a collection of smooth contract-ing di�eomorphisms of R n. Such a collection is oftencalled an iterated function system, since we are inter-ested in its properties under iteration. There existsa unique compact invariant set � with the property� =[i fi(�);
and this set supports a natural invariant probabilitymeasure �t (see Section 2 for the meaning of natu-ral). For all these statements, see [Hutchinson 1981],for example.We now consider a family fFtg of iterated func-tions systems, depending smoothly on a real pa-rameter t, together with the associated invariantsets �t and probability measures �t. Under certainweak conformality conditions for systems in dimen-sion greater than 1, the Hausdor� dimension andthe Lebesgue measure of �t vary semicontinuously[Veerman and Jonker 1997]. That this is the bestpossible general result is illustrated by the family ofsystems discussed in this paper (see Theorem 1.1).The question that arises is: where and how often dothe discontinuities arise? Can we say that in some
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sense the dimension and the measure of the set aretypically continuous?The example family we will discuss in this paperis Ft, for t 2 [0; 1=2], where F = ffig2i=0 is given byf0(x) = 13x;f1(x) = 13(x+ t);f2(x) = 13(x+ 1): (1–1)

The Hausdor� dimension Hdim and the Lebesguemeasure � of the invariant set depend on t. Thefollowing striking result was stated in [Veerman andJonker 1997], although the most important parts ofit were proved in older papers (referenced there). Aproof can also be found in [Kenyon 1997].
Theorem 1.1. Let Ft be the system just described .Then:
(i) If t = p=q is rational and pq = 2 mod 3 then�(t) = 1=q.
(ii) If t = p=q is rational and pq 6= 2 mod 3 thenHdim(t) < 1.
(iii) For all irrational t, �(t) = 0.
(iv) For almost all t, Hdim(t) = 1.We shall see in Section 2 that whenever the systemrespects an (invertible) a�ne image L of Z n in thesense that Si f�1i (L) � L (we call this commensu-rably constructed), then e�cient algorithms to cal-culate, or estimate, the dimension are available. Forthe family under consideration, it is easy to see that�t is commensurably constructed if and only if tis rational. The following conjecture (attributed toFurstenberg in [Kenyon 1997]) stipulates that dis-continuities should only occur at rational values of t.
Conjecture 1.2. For all irrational t, Hdim(t) = 1.(Note that Theorem 1.1 already guarantees the con-tinuity of the measure at irrational values of t.)This article provides numerical and heuristic ev-idence that for irrational values of t (in particularthe golden mean) the dimension of the invariant setequals 1. Thus in Section 2 we outline our algo-rithms used to do the numerics. In Section 3 weprove that for certain Liouville numbers t, the in-variant set indeed has dimension 1. The main pur-pose of this paper is to present evidence in supportof Conjecture 1.2. This is done in Section 4.

2. METHODS FOR COMMENSURABLY CONSTRUCTED
SETSThis section lists some methods to calculate or es-timate the dimension for rational values of t. Asproved in [Veerman and Jonker 1997] (see also Sec-tion 3), the Hausdor� dimension of the invariant set(for the sets under consideration) is equal to its limitcapacity. The algorithms we discuss will thus onlyhave to calculate the limit capacity (or box dimen-sion).Suppose t is rational, say p=q. Then by the a�necoordinate transform x ! x=q we may map the it-erated function system to the following:f0(x) = 13x;f1(x) = 13(x+ p);f2(x) = 13(x+ q): (2–1)

An equivalent de�nition of the invariant set of thissystem is the set of points
�(3; f0; p; qg)=�x2R :x= 1Xi=1 3�iri; ri2f0; p; qg�:

(2–2)We can thus approximate the set by consideringthe points that can be written as Pk�1i=0 3�iri; ri 2f0; p; qg � R. A simpler way of stating this is
�k = 3�k k�1Xi=0 3iR and � = lim�k;where the summation here is a sum of sets. The sumof two sets A and B is de�ned as follows:Z = A+B def= fz : z = a+ b; a 2 A; b 2 Bg:(See [Hacon et al. 1994; Veerman 1995; 1998] for de-tails.) The box dimension is calculated by countingthe number of distinct integers in fPk�1i=0 3iRg. Letk denote this number.

Proposition 2.1. The Hausdor� dimension of the in-variant set of the system (3; f0; p; qg) islimk!1 log klog 3k :The method of calculating the dimension in whichwe are interested here is a re�nement of this. It wasdeveloped independently (and slightly earlier) byRao and Wen [1998] and proved by di�erent meth-ods.
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Note that if R consists of integers, the expressionsin fPk�1i=0 3iRg have integer values. In these cases wemay de�ne the maps Tk and tk from the integers tothe nonnegative integers:
Tk(l) = #�k�1Xi=0 3iR = l�;tk(l) = minfTk(l); 1g:By a word w (in tk) we mean an ordered set of con-secutive values of tk,�tk(i0); tk(i0+1); : : : ; tk(i0+jwj�1)	;where jwj is the length of the word, and such thati0, i0 + 1, . . . , i0 + jwj � 1 is maximal with respectto the condition that less than q=2 � 1 consecutivevalues are zero. Similarly we can de�ne words in Tk.The sentence tk+1 is created from the sentence tkby multiplying by 3 and adding R. If we apply thisoperation to a word w in tk we refer to the resultingpart of tk+1 as the o�spring of w. It is easy to seethat if w1 and w2 are consecutive words in tk then3w1 + q and 3w2 are separated by q=2 � 1 or morezeros. Thus the o�spring of a word must consist ofwords.If we let fwig be a list of all the words occurringin Sk tk, then we can write the o�spring of wi as a(�nite) linear combination Pi dijwj . Let �D be theleading eigenvalue of the matrix D = ((dij)).

Theorem 2.2. If the number of words in the develop-ment of the system (3; f0; p; qg) is �nite, then theinvariant set of that system has Hausdor� dimen-sion equal to log �D= log 3.
Remark. The numerical algorithm we used to cal-culate �D does not terminate unless the number ofdistinct words in Sk Tk is �nite and smaller than arealistic limit set by memory limitations: if this isnot the case, the algorithm does not �nish its cal-culation of the values of the entries of the transi-tion matrix D. In fact, in [Rao and Wen 1998] it isproved that if the dimension of the invariant set ofthe system (3; f0; p; qg) is smaller than 1, then thenumber of words is always �nite. We do not includethis proof here, since in practice the calculationallimits are quickly exhausted (see Section 4).
Proof of the theorem. Supposing the number of dis-tinct words is �nite, we obtain a �nite matrix D.

Moreover, the matrix is primitive, since all wordswere constructed from the initial word f0g. By thePerron{Frobenius theorem, there is a unique lead-ing eigenvalue �D > 0. The associated eigenvectorv gives the asymptotic distribution of words. Forlarge k, the number of occurrences of every type ofword is multiplied by �D from one level to the next.But that means that the number k is multiplied by�D. Now apply Proposition 2.1. �The new method thus consists in identifying wordsand expressing its o�spring in terms of the originalwords and calculating the eigenvalue of the corre-sponding transition matrix. Ifw = �tk(i0); tk(i0+1); : : : ; tk(i0+jwj�1)	is a word, we can specify this word by listing, in or-der, the distances of the non-zero entries from the�rst entry. For example, the word f1; 1; 0; 1; 0; 1g for(3; f0; 1; 5g) would be denoted as f0; 1; 3; 5g. Usingthis notation, we see that for the system (3; f0; 1; 3g),where no consecutive zeroes are allowed, the devel-opment yields only 2 distinct words, namely f0; 1gand f0g. This line of reasoning leads to the follow-ing. f0g ! f0; 1; 3g � f0g [ f0; 1g;f0; 1g ! f0; 1; 3; 4; 6g � f0g [ 2 f0; 1g:We can write down the transition matrix D asD = � 1 11 2� :
We conclude that the dimension of this set equalsHdim(�1=3) = log�(3+p5 )=2�= log 3 � 0:867 : : : ;since (3 + p5)=2 is the leading eigenvalue of thematrix D. The same result was obtained earlier in[Keane and Smorodinski 1997].As we noted earlier, and can be checked in Section4, the algorithm above rather quickly exhausts ourcomputational limits. For our purposes, it is su�-cient to have a lower bound estimate of the Haus-dor� dimension. This can be done much more e�-ciently as we shall now see.We may follow [Hutchinson 1981] and adopt theview that the system Ft, as given in (1{1), acts lin-
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early on the space of probability measures on theinterval as follows (V is an interval):
Ft�(V ) = 13 2Xn=0 �(f�1n (V )); (2–3)where the fn are given in equation (1{1). If we putan appropriate metric on the space of measures, Ftis a (uniform) contraction (see [Hutchinson 1981]).De�ne a sequence �(k)p=q of probability measures as-sociated with the system (3; f0; p=q; 1g).�(k)p=q(V ) = 3�k Xq�13�ki2V Tk(i); (2–4)

where Tk is the function de�ned before for the sys-tem (3; f0; p; qg) (note the di�erence in the systems).The next result can be found in [Hutchinson 1981],for example.
Lemma 2.3. The limit limk!1 �(k)p=q is the unique �xedpoint of Fp=q.
Proof. It is su�cient to prove that Fp=q�(k)p=q = �(k+1)p=q .Write R = f0; p; qg and observe that it consists ofintegers. From the de�nition of T , we see thatTk+1(l) = #�k�1Xi=0 3iR+ 3kR = l�

=Xj Tk(j)#fj + 3kR = lg:
Combining this with (2{4) we obtain�(k+1)(V ) = 3�k�1 Xq�13�k�1i2V Tk+1(i)= 3�k�1 Xq�13�k�1i2V Xj Tk(j)#fj + 3kR = ig:
We may rewrite this as�(k+1)(V ) = 133�kXj2Q Tk(j);where the summation set Q consists of those j suchthat q�13�k�1(j + 3kR) = q�13�ki 2 V impliesq�13�kj 2 3V �R=q:Thus by (1{1) we see that�(k+1)(V ) = 13Xn �(k)(f�1n (V ));in accordance with (2{3). Together with the factthat F is a contraction this proves the result. �

Returning to the invariant set of (2{1), de�neS def= f�� �g \ Z ;that S is the set of integer di�erences contained in�. Writing � � � as a set of numbers on the base3, as in (2{2), we easily see that � � � is the in-variant set of the system (3; f0;�p;�(q�p);�qg).An easy argument shows that this is the same asthe invariant set of (3; f0;�qg), which is given by[�q=2; q=2].Let R S be the vector space obtained by associat-ing a basis vector el to each element l of S. Following[Veerman 1998], de�ne a linear map T : R S ! R S ,the transition operator for the di�erences, whosematrix elements are given by:Tij def= Xl T1(l)T1(l + i� 3j); (2–5)

where i and j are in S. This operator plays a fun-damental role in the theory of iterated function sys-tems, although it goes by very di�erent names andformulations in di�erent works such as [Pollicottand Simon 1995; Lagarias and Wang 1996; Veer-man 1996; 1998; Kenyon 1997; Solomyak 1995]. Inwords, it is the matrix whose (i; j)-th entry corre-sponds to the number of di�erences in R that areequal to i � 3j. We will call this operator the dif-ference operator. One may reduce the dimension ofthe matrix by a factor of almost 2, by exploiting thefact that we are interested only in how T operateson even vectors, v�i = vi. This is because for everydi�erence r1� r2 = d, we must have a di�erence �din the sequence; see [Veerman 1998]. De�ne the re-duced di�erence operator T(R) by setting, for i � 0,
T(R)i;j = (Ti;j + Ti;�j if j > 0,T(R)i;j = Ti;j if j = 0.Then T(R) acts on the reduced space as the originalT does on symmetric vectors. From now on we usethe abbreviation T for this operator as well.The content of the next lemma is that the numberof di�erences in �Pk�1i=0 3iR	 equal to d may be cal-culated by iterating the matrix T. This is very sim-ilar to what is proved in [Veerman 1998, Section 3]in greater generality. We give a simpli�ed proof forcompleteness. Recall that e0 is the standard basisvector in R S associated with 0 2 S.
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Lemma 2.4. The growth rate ofPi Tk(i)2 (as k !1)is equal to the growth rate � of jTke0j.
Proof. Start by observing thatTk+1(i) = #fR+ 3 k�1Xl=0 3lR = ig

=Xj T1(i� 3j)Tk(j):Using this formula, we see that for each d 2 SXi Tk+1(i)Tk+1(i+ d)
=Xi Xj;n T1(i� 3j)T1(d+ i� 3n)Tk(j)Tk(n);where all the summations are over Z . Eliminate iand j in favor of p and r by setting:i = p+ 3n� 3r; j = n� r;obtainingXi2Z Tk+1(i)Tk+1(i+d)= Xn;p;r2ZT1(p)T1(p+d�3r)Tk(n)Tk(n�r)=Xr2Z�Xp2Z T1(p)T1(p+d�3r)��Xn2Z Tk(n)Tk(n�r)�:By symmetry, we may change r to �r in the right-most sum. Also, T1(p)T1(p + d � 3r) is non-zeroonly if s �Mr 2 R � R. Since d � 3r must be inR � R � [�q; q] and d 2 S, it is easy to see that rmust be in [�q=2; q=2]. Thus by using (2{5) we seethatXi Tk+1(i)Tk+1(i+ d)

=Xr2S Td;r�Xn2Z Tk(n)Tk(n+ r)�:By a recursion argument we getXi Tk(i)Tk(i+ d) = (Tke0)d-th component: (2–6)To derive the lemma it is su�cient to notice thatthe growth rate of this expression is independent ofd, because it is an eigenvalue of T. Thus we may setd = 0. �We note that one can easily prove that the eigen-value of T referred to in this proof is the leading one.

However, this fact will not be used in the numeri-cal part of this work. In fact, the algorithm we willbe using (see equation (4{1)) is based on equation(2{6).The next result gives an e�cient way to estimatethe dimension of the sets under consideration. Itis apparently new, although a related one has ap-peared in [Lau 1993], where a very di�erent methodof proof is used.
Theorem 2.5. Denote by � the leading eigenvalue ofthe di�erence operator associated with the system(3; f0; p; qg). ThenHdim(�(3; f0; p; qg)) � log(9=�)log 3 :
Proof. Note that �(n)p=q(�) = 1 for all n. Denote byx(n)(�) and v(n)(�) the restrictions of Tn and tnto the i-th components where q�13�ni 2 �. NowH�older's inequality gives us the estimatecos �n def= P vixipP v2ipPx2i = PxipP vipPx2i � 1;
where we have dropped the superscripts (n) andwhere, of course, the summations are over the in-dices i such that q�13�ni 2 �. From the de�nitionsabove we know that 3�nPxi estimates �(n)(�). Totake the limit as n ! 1 recall that �(n) convergesto � by Lemma 2.3. Also note that P vi estimatesthe number Nn of intervals of size q�13�n neededto cover �. According to the previous lemma, thegrowth rate ofPx2i is given by �, the leading eigen-value of T.
limn!1 1n log cos �n = limn!1 1n log�3n �(n)p=q(�)pNn p�n�= log 32 � log 9=�log 3 � box dim(�)�� 0:This gives an estimate for the box dimension of �:box dim(�) � log(9=�)log 3 :Since � is contained in � it also is an estimate forthe box dimension of �. But the box dimension of� equals its Hausdor� dimension by [Veerman andJonker 1997]. �
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By way of illustration, we work out one example.The reduced di�erence operator associated with thesystem (3; f0; 1; 3g) is easily calculated, noting thatS = f0; 1g (for the reduced di�erence operator):T = � 3 21 1� ;so T� 10� = � 31� and T2� 10� = � 114 � :
Since in this case we have � = 2 + p3, the lowerestimate isd � log(9=(2 +p3))log 3 = 0:801253262:This is less than the exact value of the dimension ofthis invariant set found before.When the invariant set has positive measure (seeTheorem 1.1), its dimension is trivially equal to 1.In this case we may calculate the dimension of theboundary of the invariant set (this idea was �rstdeveloped in [Veerman 1998] in a more general con-text). An eigenvalue of T is called special if it is realand contained in [1; 3).

Theorem 2.6. Let (3; f0; p; qg) be such that pq = 2mod 3. The associated matrix T always has at leastone special eigenvalue. If we call the leading specialeigenvalue �, then the Hausdor� dimension of @�(the boundary of �) is given byHdim(@�) = log �log 3 :Since the system (3; f0; 1; 3g) is not of the form re-quired by the theorem, we consider instead the sys-tem (3; f0; 8; 13g). With a little work one can seethat the reduced di�erence operator becomes:
T =

0BBBBBBBB@
3 0 0 0 0 0 00 0 1 1 1 0 00 1 1 0 0 1 00 3 0 0 0 0 00 0 0 2 1 0 01 1 0 0 0 0 10 0 3 0 0 0 0

1CCCCCCCCA :
To obtain the next-to-leading eigenvalue, one mayset the T00 = 0 as in [Veerman 1998] and use thesame algorithm as in equation (4{1).

3. METHODS FOR INCOMMENSURABLY
CONSTRUCTED SETSWe present an estimate for the dimension for t in acertain class of irrationals. This estimate is a simpleconsequence of a general result which we give �rst.

Theorem 3.1 [Veerman and Jonker 1997]. (i) For theset �t, the Hausdor� dimension equals the limitcapacity (or box dimension).
(ii) The Hausdor� dimension is a lower semicontin-uous function of t.
(iii) The Lebesgue measure of �t is an upper semi-continuous function of t.
(iv) For d greater than the upper box dimension of@�(Ft0), and for any " > 0 and t su�ciently closeto t0, we have true:�(t) � �(t0) + " jt� t0j1�d:Let O� be the subset of reals t 2 [0; 1] such that
(i) t is irrational and for some C > 0 there is anin�nite number of rationals satisfying jt� p=qj �C=q� , and
(ii) the equation above has an in�nite number of so-lutions p=q with pq = 2 mod 3.
Theorem 3.2. When t 2 O� , the Hausdor� dimensionof �t is greater than or equal to 1� 1=�.
Remark. In [Kenyon 1997] the same statement isproved di�erently.
Proof. Suppose that t in O� , and let d0 be the boxdimension of �t. By Theorem 3.1, d0 = Hdim(t).By the same theorem, and using the de�nition ofO� , we conclude that for d > d0��pq� � �(t) + "���t� pq ���1�dimplies 1q � �Cq� �1�d:Here we have also used Theorem 1.1 twice, namely�(t) = 0, and �(pq ) = 1=q. The last equation impliesthe result. �
Corollary 3.3. If t 2 T� O� then Hdim(t) = 1.The set T� O� is contained in the set of Liouvillenumbers, which though uncountable has Hausdor�dimension zero [Oxtoby 1980]. This is di�erent fromstatement (iv) of Theorem 1.1, since now we identify
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a set of irrationals where the dimension is one. Inthe proof of the theorem it is important that the ir-rational number t for which we obtain an estimate isclose to certain rationals. In particular, the theoremdoes not apply to t = (p5�1)=2, the golden mean.
4. NUMERICAL RESULTSWe now describe certain numerical computations,performed using the methods outlined in the previ-ous sections, which support the conjecture that theHausdor� dimension of the invariant set for the sys-tem (3; f0; t; 1g), where t = g is the golden mean,equals 1. We discuss each �gure and summarize ourresults.In these numerical calculations we employ a con-venient algorithm to calculate the appropriate eigen-value � of a matrix D:� = limn!1 jDn+1vjjDnvj ; (4–1)

where, of course, v = (1; 0; : : : ; 0)y, represents theword f0g (in the calculation according to Theorem2.2) or the di�erence vector whose only di�erence iszero (in the calculation according to Theorem 2.5).To create Figure 1, 318 � 4 � 108 points of theinvariant set for the system (3; f0; g; 1g) were laidout on the interval. We then performed a standardbox-counting procedure to estimate the dimension.As can be seen in Figure 1, the estimate on thedimension is not very accurate and even seems toconverge to a number less than 1.
Claim. The conventional box-counting procedure toestimate the dimension may occasionally lead to er-roneous conclusions, even when applied to relativelysimple subsets of the line (such as the one under con-sideration).For lack of reliable computational methods appli-cable to the incommensurate case, we study thedimensions of a sequence of commensurably con-structed sets converging to the desired set (witht = g). The results are displayed in Figure 2. Firstwe calculated the exact dimension of the invariantsets associated to the systems (3; f0; fn�1=fn; 1g) us-ing the word counting algorithm of Section 2. Herefn�1=fn is the n-th Farey approximant to the goldenmean (f1 = 1, f2 = 2 are the Fibonacci numbers).

0 0:1 0:2 0:3 0:4 0:5 1=n0:70:750:80:850:90:951
dn

FIGURE 1. Direct calculation of the box dimension.Top curve: log(Nn)= log�(3n+1)=2�. Bottom curve:log(Nn)=(n log 3).The number of distinct words in its grammar in-creases dramatically and the algorithm ceases tobe practicable beyond n = 10. In fact, for n = 9the grammar consists of 8954 words with the max-imum word length of 20794 letters (integers), themain restriction in continuing the sequence beingthe available computer memory for dictionary stor-age. Finding the corresponding point in Figure 2therefore involves calculating the leading eigenvalueof a 8954� 8954 transition matrix. To continue thesequence, we used the more e�cient algorithm de-scribed in Theorem 2.5 giving the lower bound ofthe dimension. In this case, the computational dif-�culties arise from computational time rather thenmemory requirements, and here we have performedcalculations up to n = 18. Note that every fourthdimension is equal to 1 as it satis�es the criteriongiven in Theorem 1.1(i).The apparent convergence of the sequence of di-mensions in Figure 2 is of course no proof that thedimension is continuous at t = g. We set out tocompare its behavior with that of at least two othersequences, namely one for which we know the di-mension is continuous at its limit point (t = 1=2),and one for which we know that there is a disconti-nuity (t = 0).At t = 1=2 the dimension is continuous, by Theo-rem 1.1. Figure 3 displays the dimensions of the
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0 5 10 150:8
0:85
0:9
0:95

1

n
FIGURE 2. Dimension calculation when t ! g. Thesystem is f3; 0; fn�1; fng; the solid curve gives theactual dimension, and the dashed curve the lowerbound of the text.invariant sets of the systems (3; f0; n=(2n+1); 1g).Although only relatively few exact dimensions couldbe calculated, they do appear to converge to 1. Thesequence of lower bounds displayed in the same pic-ture clearly converges to 1. (In fact, we calculatedthe lower bounds for the dimensions up to n = 500and the convergence persists, the last value for thebound being 0:999507.)

0 10 20 30 40 50 60 70 80 90 1000:8
0:85
0:9

0:95
1

n
FIGURE 3. Dimension calculation when t ! 1=2.The system is (3; f0; n=(2n+1); 1g); the upper (solid)curve gives the actual dimension, and the dashedcurve that extends to the right gives the lower bound.

At t = 0 the dimension is discontinuous. Figure 4plots both the exact values and the lower bounds ofthe dimensions of the invariant sets associated withthe systems (3; f0; 1=n; 1g). First, if n = 2 mod 3,the dimension of the sets is 1, by Theorem 1.1. Inaddition if n = 3k one can show (as in the calculationfor n = 3 done in Section 2) that the dimension ofthe set is approximately 0:876; this is also mentionedin [Kenyon 1997]. Therefore the displayed sequencecannot converge. Indeed, from its appearance, itmight have many limit points.

0 10 20 30 40 50 60 70 80 90 1000:8
0:85
0:9
0:95

1

n
FIGURE 4. Dimension calculation when t ! 0. Thesystem is (3; f0; 1; ng); the upper (solid) curve givesthe actual dimension, and the dashed curve gives thelower bound.To make this more apparent, we calculated thelower bounds for the dimension for all n � 1000for these systems and displayed them in Figure 5,which also shows the (exact) values for the dimen-sion of the boundary of the invariant sets associatedwith the systems (3; f0; 1=n; 1g) when n = 2 mod 3(compare Theorem 2.6). They apparently converge(slowly) to 1; this was proved in [Kenyon et al. 1999].From [Veerman and Jonker 1997], one can concludethat these boundaries as sets converge to �t=0 inthe Hausdor� metric.There is a striking di�erence in the behavior of thedimension function depending on the limiting valueof t: when t ! 1=2 the dimension converge, andwhen t ! 0 they do not. From this we formulate aconjecture:
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0 100 200 300 400 500 600 700 800 900 10000:8
0:85
0:9
0:95

1

n
FIGURE 5. Dimension calculation when t ! 0 for large n. The system is (3; f0; 1; ng); the black dots give thedimension of the boundary, and the gray dots give the lower bound for the dimension. Not shown are the graydots at (n; 1) for n = 2 mod 3.

Conjecture 4.1. If limt!t0 Hdim(t) exists , Hdim(t) iscontinuous at t0.Based on this criterion we may now take the factthat the limit of the dimension as t! g appears toexist (see Figure 2), as evidence that Hdim(�t) iscontinuous at the golden mean.Because our main conjecture relies crucially uponthis second conjecture, we felt it was necessary toprovide additional evidence for it. Thus we testedthe convergence of the bounds for the dimensions of

the invariant of the system(3; f0; (2+n)=(9+5n); 1g);where t converges to 1=5 and we expect the dimen-sions to converge to 1 (Figure 6), and those of thesystem (3; f0; (3+2n)=(8+5n); 1g);where t converges to 2=5 and the dimensions are notexpected to converge (Figure 7).
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FIGURE 6. Dimension calculation when t! 1=5. The system is (3; f0; 2+n; 9+5ng); only the lower bound of thedimensions is given.
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FIGURE 7. Dimension calculation when t! 2=5. The system is (3; f0; 3+2n; 8+5ng); only the lower bound of thedimensions is given. For clarity, those n where the value is 1 are not shown.The task of producing data for reasonable conclu-sions turned out to be computationally formidable.Only after a very careful, low level optimization ofthe C program (including consideration of registerversus memory variable storage, inline function ex-pansion, and substitution of algebraic operations bylogical instructions), using two processors of the 64bit UltraSparc HPC 3000 continuously for over fortydays (60,000 minutes for each of the two processes,equivalent to three months CPU time), were we ableto produce the data of Figures 6 and 7.These �gures show only the lower bound, since theword algorithm that gives us the exact values of thedimension is not practicable except for very smallvalues of n. However from the other �gures it isapparent that the tendencies of the exact dimensionare reected in the behavior of the bound.Finally, we also consider the invariant sets associ-ated to the systems (3; f0; cn�1=cn; 1g), wherecn = 3cn�1 + cn�2; c0 = 1; c1 = 3; (4–2)converging to the value t = (p13�3)=2 � 0:3027.This should be similar to the golden mean case, ex-cept that now pq = 0 mod 3 for all approximants.Numerically, this is a much harder problem than thecase t = g; we were able to calculate only the lowerbound of the dimension up to n = 7. The re-sults are shown in Figure 8, where it is seen thatthe dimension also seems to converge to 1. The

general behavior of successive approximants is sim-ilar to that in the golden mean case, except for theabsence of points with Hdim(t) = 1 which satisfythe criterion given in Theorem 1.1(i).In all rational cases that we have been able tocheck, we �nd that whenever Hdim(�p=q) < 1 wealso have that the lower bound of the dimension isstrictly smaller than the (exact) dimension. Thisleads us to believe that in these cases the dimensionof the support of the invariant measure is strictlysmaller than the dimension of the set. That thisshould occur in one-dimensional systems was ap-parently not known, although it has been observed
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FIGURE 8. Dimension calculation when t approaches(p13� 3)=2. The system is (3; f0; cn�1; cng), wherethe ci are de�ned in (4{2); the dots show the lowerbound of the dimension.
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for two-dimensional iterated function systems [King1995]. It is interesting to note that since the esti-mate of the dimension tends to 1 (in the third se-quence) apparently the dimension of the measure inthe irrational case equals the dimension of the set.
Conclusion. Our numerical work indicates thatHdim(�g) = Hdim(�g) = 1;where g is the golden mean.
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