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ABSTRACT

We define a class of real numbers that has full measure and is contained in the set of
Roth numbers. We prove the Cl-paxt of Herman's theorem: if{is a C3 diffeomorphism of the
circle to itself with a rotation number w i’n this class, then f is Cl—conjugate to a rotation by w.
As a result of restricting the class of adn;issible rotation numbers, our proof is substantially

shorter than Yoccoz' proof.



1. INTRODUCTION
Recall Herman's theorem as it is stated and proved by Yoccoz [1934].

5]
Herman's theorem: Let f be a C<T ¥ circle diffeomorphism { @ > 0), with an irrational rotation
number w which is Diophantine of order 8 (see section 3). Then for every e > 0, f is

Cl+abﬂ—€—conjugate to the rotation by w.

For w € R we denote the integer coefficients of its continued fraction expansion by ai(_ w)
and the continued fraction approximants by pi( w)/qi(w) , so that
Pi( w) = a'i( W)Pi__l( w) + pi—Q( w) .
qi( w) = ai(u)qi_]_( w) + qi_Q(W) .
In this note we prove the Cl—part of Herman's theorem for all rotation numbers of

sub—exponential growth. More precisely, we prove theorem 1.1.

Theorem 1.1: If the integers ai( w) have sub—exponential growth,
lim supi\l/ ai(w) =1,
then any C3 circle diffeomorphisms with rotation number wis Cl— conjugate to the rotation by

w.

For this more geometrically characterized (compared to Diophantine) class of rotation
numbers, the proof we give is substantially shorter than Yoccoz' proof of the analogous result
for rotation numbers satisfying a Diophantine condition. Moreover, the class of rotation

numbers for which the assumption in theorem 1.1 holds is large.

Theorem 1.2: The set of w for which the integers ai( w) have sub—exponential growth has full

measure.



Definition 1.3: Let ¢ : RT > RT . We say that an irrational number wis yY~renormalizable if
there is a constant C > 0 such that for all i

a(6) < Hi+©) .
The set of y—renormalizable numbers will be denoted by R?/J'

In particular, those numbers that are usually called of constant type (such as real roots of
quadratic equations with integer coefficients) are constant—renormalizable.
For fixed A > 1, the set R ; consists of numbers w for which the sequence ai( w) satisfies
A
ai( w) < const AL
That such a set has full measure follows from the more general proposition 1.4. This proposition

as well as its proof is similar to a theorem by Khintchine [1963].

Proposition 1.4: Let ¢ : R + R be such that Zy PL'%) < oo and p is invertible with inverse
o2

99_1 . Then the set of 99—1—renorma.lizable numbers has full measure.

Remark: From the proof in the next section it will be clear that proposition 1.4 can be easily

generalized to non—invertible ¢.

Theorem 1.2. now follows easily.
Proof of theorem 1.2: One observes that the set of numbers w whose sequence of integers

{ai( w)} has sub—exponential growth, coincides with the set ,\21 R.Ai. Proposition 1.4 implies,
by taking ¢(a) = {%——-‘}, that for each A > 1, R/\i has full measure. This implies that Agl R/\i

has full measure, because this set is a countable intersection of sets of full measure (take the A's

to be rational). o

In section 2, we prove theorem 1.1 and proposition 1.4. In section 3 we compare the sets



R : with Diophantine numbers and Roth numbers.
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2 MAIN RESULTS

First we prove proposition 1.4 .

Proof of proposition 1.4: (After Deligne [1976].) Let T : [0,1) + [0,1) be defined as follows:
T(w) = frac(—la—}) .

Let v be the probability measure given by

dV"'l dw
T2 T+w

Then v is T—invariant and T is ergodic with respect to v [Khintchine, 1963]. The coefficient

an( w) for an irrational number w can now be calculated as follows:
a (v) = int{{T" ()]} -

The probability that a.n( w) = a is given by
Ly dvrd
int{w }=a a

for v almost all w (which is the same as Lebesgue almost all «). The probability PC that a, lies

above the curve a = ga_l(i—{-C) ori = ¢{a)—C (see figure 2.1) satisfies

~ 5 max{0,p(a)-C}
PC = Zm ) a‘z < 00 .

This tends to zero as C tends to inﬁnity.’lThus the complement of R?// can be made to have

Figure 2.1
arbitrarily small measure. Since R¢ is a T—invariant set and T is ergodic, it follows that R!/J
has full measure. Any irrational number w in this set satisfies that there is a C > 0 with

a(w) < ¢ (i+C) . o



Theorem 1.1 is implied by the four lemmas listed below.

Lemma 2.1: Let { be a circle diffeomorphism with irrational rotation number such that InDf has

. a
bounded variation and set M = max |x —f "(x)| . Then {Mn} converges to zero at least

exponentially fast.

Lemma 2.2: Let { be a 03 circle diffeomorphism, with an irrational rotation number w. Then

q
max [InDf ®(x)| < const M111/2 .

Lemma 2.3: Let { be a C3 circle diffeomorphism, with an irrational rotation number w

contained in /\21 RAi. Then sup  max |InDf%(x)| is bounded. -

Lemma 2.4 (Gottschalk and Hedlund): Let { be a circle diffeomorphism with irrational rotation
number. The following statements are equivalent:
1) There is an orbit {x;} of { with
sup, |E?=O InDf(x;)| = sup_ llann(xo)l <w .
ii) There is a continuous function ;z such that

pof—{- InDf = B

For the proofs of lemmas 2.1, 2.2, and 2.4 we refer to Yoccoz [1984]. The simplification
comes about in the proof of lemma 2.3, where it suffices to employ a standard number
theoretical device (see for example proposition 1.6 of chapter 9 in Herman [1979]). This replaces

the complicated estimate of Yoccoz [1984, sections 6 and 7] by the following reasoning:

Proof of lemma 2.3: We can decompose every n € N in terms of qi(w)



n=2iop by
such that the bi are bounded by the a;:
b. < a
1=
b.q. q:
Then MaDe™ < =¥ _ nDf ) < =5 byt |

Szk_ a,‘I\/I.]'/2 .
1=1"1

By lemma 2.1 the Mi converge exponentially fast to zero. Since w € A0 R o the a; grow
A

slower than /\i for any A. So the sum is bounded. o

Proof of theorem 1.1: Denote by h a conjugacy between { and and the rotation by w:
hof(x)=h(x)+ w -
If h were differentiable then
w(x) = In Dh(x)

would satisfy the equation in lemma 2.4 ii. Since the rotation number wis in N A>1 R :

lemma 2.3 applies. Therefore lemma 2.4 i holds, and we conclude that the equation in lemma
2.4 ii has a continuous solution . Such a solution is unique up to an additive constant.

/

Choosing this constant suitably and integrating exp(y) one finds a conjugacy h, which is then

Cl. a

Remarks: i) In the proof of lemma 2.1, the rate at which MiI/Q converges to zero depends only

on the total non—linearity [ 1 If'/f] dx . If a bound on the non—linearity is known then
S

theorem 1.1 holds for exponentially renormalizable numbers with small enough exponent.
ii) On the other hand, with a little more work than lemmas 2.1 to 2.4, Yoccoz shows that M,

decreases faster than (2/3)i (Yoccoz (1984, section 6]).



3 RELATED RESULTS

If 8> 0, one says that a real number w is Diophantine of order 8if there exists a C

such that for all rational p/q

=B > ZETB -
Let DiO,B be the set of diophantine numbers of order 8. Then the set of Roth numbers is
defined as: Roth = ﬂgO Dioﬂ .
(A number which is not Diophantine of any order is called Liouville.) The first lemma concerns

a standard result (see Herman {1979, chapter 5]).

Lemma 3.1: 1) w € DiO,B & thereisa K > 1 with an+1(w) < an(w)ﬂ.
i) w € Roth & for all > 0 there is a K with an+1(w) < an(w)'g.

iif) w € Roth & forall #>0 Tya,, (Wa ()P < oo

Now let v denote the golden mean
r=1+1 ;

T+1
)’ I +1..

and recall that for any number w € R\Q ‘

q (w)> 7" .

Proposition 3.2: i) R',\ig Dioﬂ, if A< 73 .

i) 0 R,\igRoth .

Proof: To prove i) , suppose that w £ Dioﬂ. We have to prove that for all A < 7‘3, we R’\i :

By assumption we have that for all K > 1, there is an n such that

a;,q(w) > an(w)l3 S RyB" > 7ﬂn+MnK/ln‘y > \i+1+nK/Iny-1 _ yn+1+C



Therefore for all C there is an n such that

1+C
an+1(w) > zptith

The second statement is proved similarly. If w ¢ Roth, then there is an ¢ such that for
all K, there is an n with
ay41(@) > Ka (o > Ko™,

which proves that there a subsequence of {an( w)} which grows exponentially fast. o

In particular, the first part of this proposition implies that Herman's theorem also holds for

exponentially renormalizable numbers as long S is taken to be InA/Iny.

Proposition 3.3: For any A i) R/\i ¢ Roth .

i) Roth (R : .
Al

Proof: We prove i) for integer values of A only. Let £ and m be two integers greater than one.

to be chosen later. Let w be the numberin R . defined by (qo( w) = ql( w)=1)
2
a,(w) =’f1ifi¢m] forjeN ,
, ‘ i
a (w)=y¥m") =t .
ol
Since most of the a; are equal to one, we have that if
k = int{ln n/ln m] ,

n nk n Ekmi k —rni
qn(w)<'y I(a i(w)+1)=7 L ma+2 ).
m

The latter product is convergent, and so there is a K with

k+1 _k+1 —%
q gl (W) <Ky™ ™ (l-m " =1)/(m-1)
m -1
Therefore there is a ¢ > 0 such that

(w) =12 ok K[ (w))f
a ) = > q W ,
k+1 k+1_4



for all k € N. Thus w cannot be Roth.
To prove ii), we construct a different number: The number w be determined by qO( w) =
2
ql(w) =1 and a (w) = int[e" ]
1s not exponentially renormalizable. However, because there is a C such that
2 2 149
ap(w) = intle™ Jq,_y(0) + q_o(0) > e® Vi (W) +aq_(w)
we also have
n .2 3
q,(v) > 2 (i*)-n/2 S5 el /3 '
Therefore, for all¢ > 0, there is a K > 0 such that
a0 1(6) < Ka (o

which is equivalent to w being a Roth number. )

i
Proposition 3.4: Let ¢(i) = e(1+‘8) . Then Dioﬂ_c_ Rd/'

Proof: Assume w € Dioﬂ. Then there isa K > 1 with

a.l(w) <K,
and  a () <Kq (0 <KIP ailgw)ﬁ(l+%%7)-)’3 <KMmaw)f .
Now define #: N+ N A1) =K ,

An+1) = K 2" i) .
Thus An+l) = Qﬂ z9(n)1+‘9 .
One obtains
*n) = %—(QK)(I‘*”ﬂ)n_l > e(lﬁ'ﬂ)n-FH-(j = Y(n+14+C) ,

for appropriately chosen C . Since

ay < K1) ,
one proves recursively, using (*), that

a1 < 2P IPH0)P = dnt1) = Yn+14C) . a
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The last three results are summarized in the Venn—diagram of figure 3.1 .

Rexp((1+8)")

figure 3.1
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