
Physica A 295 (2001) 261–267

www.elsevier.com/locate/physa

Chaotic behavior in a model for grain dynamics

G.L. Vasconcelosa ;∗, F.V. Cunha-Jr.a , J.J.P. Veermanb;c
aDepartamento de F��sica, Laborat�orio de F��sica Te�orica e Computacional,

Universidade Federal de Pernambuco, 50670-901 Recife, Brazil
bMathematics Department, Queens College-CUNY, Flushing, NY 11367, USA
cMathematical Sciences, Portland State University, Portland, OR 97207, USA

Abstract

A simple model is presented for the motion of a grain down a rough inclined surface.

Considering that the surface has a periodic pro�le and adopting a simple collision law, we

arrive at a model in which the dynamics is described by a three-dimensional map. As the sur-

face inclination increases, this map exhibits a transition from a regime of bounded velocity to

accelerated motion. In the region of bounded velocity, the original 3D map can be reduced to an

e�ective one-dimensional map that shows several dynamical features (stable �xed points, peri-

odic orbits, and chaotic behavior). A bifurcation diagram for the 1D map is presented. c© 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years, the ow of granular material on rough inclined surfaces has been

a topic of considerable attention within the physics community (see, for example,

Ref. [1]). In spite of this research e�ort, the actual grain dynamics during such ows

is still poorly characterized [2]. Given this scenario, the study of simple models (see,

e.g., Ref. [3]) that are exactly solvable is of great interest since such endeavor may

provide useful insights into the nature of grain dynamics.

In this vein, we have recently introduced [4,5] a class of models for the gravity-driven

motion of a single grain down a rough inclined surface. In order to render our models

analytically tractable, several simplifying assumptions were made: (i) the rough surface
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was supposed to have a simple geometrical pro�le; (ii) the grain size was neglected and

so the grain was treated as a point particle; (iii) a simple restitution law was adopted for

the collisions between the grain and the rough surface. More speci�cally, this collision

law was given by v′n = envn and v′t = etC(vt ; vn), where the prime (unprimed) denotes

the velocity immediately after (before) the collision, en and en are constants, and

C(x; y) is a homogeneous function of degree 1 [5]. For simplicity, we also set en =0.

With these assumptions the model could be described in terms of one-dimensional

maps whose properties were studied in great detail. First we analyzed the simpler case

in which C(vt ; vn) = vt whose main results were summarized in a phase diagram in

parameter space showing all the possible dynamical regimes of the system [4]. The

grain dynamics predicted in this case was found to be in qualitative agreement with

what has been observed, for instance, in experiments [6] on the motion of a ball down

a rough inclined plane. Subsequently [5] we showed that the behavior of this class of

models was robust in the sense that for any physically reasonable choice of C(vt ; vn)

(and en = 0) the nature of the phase diagram was preserved. This is an important

result, since tangential restitution law for binary collisions are not very well known

experimentally [7].

In this paper, we present a generalization of our previous model that includes the

case of a nonzero normal restitution coe�cient en. As will be seen below, in this

case the model is described by a three-dimensional map that displays a much richer

dynamics which includes some of the regimes seen in the 1D map as well as additional

features.

2. The model

The model we consider is shown in Fig. 1. The rough surface is assumed to have

a simple staircase shape whose steps have height a and length b. For convenience,

we choose a system of coordinates such that the step plateaus are aligned with the

Fig. 1. Model for the gravity-driven motion of a particle on a rough inclined surface.
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x-axis and the direction of the acceleration of gravity g makes an angle � with the

y-axis. A particle, thrown on the top of the ‘staircase’ with a given initial velocity,

moves downward through a succession of collisions and ballistic ights, as indicated

in Fig. 1. We assume, as already mentioned, that the collision law is characterized

by two (constant) coe�cients of restitution, en and et , which represent the respective

reduction factors for the normal and tangential velocity components after a collision.

Let V = (U; V ) denote the components of the particle velocity parallel and perpen-

dicular to the collision plane after a given collision and let Z be the distance from the

collision point to the edge of the ramp where the ight started; see Fig. 1. In what

follows, it is convenient to introduce dimensionless quantities de�ned by

u=
U

√

2ag cos�
; v=

V
√

2ag cos�
; z =

Z

a
: (1)

Using the kinematics of ballistic motion and the collision law mentioned above, one

can show [8] that the velocity v′=(u′; v′) after the next collision and the corresponding

coordinate z′ of the new collision point are given by the following three-dimensional

map:

u′ = et(u+ tv+ t
√

n+ v2) ; (2)

v′ = en
√

n+ v2 ; (3)

z′ = z + n(�− t)− 2(u+ tv)(v+
√

n+ v2) ; (4)

where t=tan�; �=b=a, and n, referred to as the ‘jump number’, is the number of steps

the particle has fallen during the ight and corresponds to the smallest non-negative

integer such that z′ ¿ 0. We observe that this last condition implies that n must satisfy

the following requirement:

√

v2 + n¿
u+ tv+

√

(u+ �v)2 − z(�− t)

�− t
¿

√

v2 + n− 1 : (5)

We also note that if the argument of the square root appearing in Eq. (5) is negative

then n should be taken zero, in which cases the particle lands on the same step where

the ight started.

3. Bounded vs. unbounded orbits

In this section, we investigate under which circumstances the map given in

Eqs. (2–4) has orbits for which the velocity grows without bound. In order to do

this, we shall examine the behavior of this map for large initial velocities. Since the

ensuing ights in this case will be very long we can take the continuum limit for the

jump number n and consider for simplicity that z = 0. 1 Thus, assuming that both u

1 A more rigorous analysis can be carried out [8], leading to the same results.
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and v are very large and setting z = 0 in Eq. (5), we obtain that n is approximately

given by

√

v2 + n ≈
2u+ (�+ t)v

�− t
: (6)

Substituting this into Eqs. (2) and (3) we obtain a linear map

u′ ≈

(

et

�− t

)

[(�+ t)u+ 2t�v] ; (7)

v′ ≈

(

en

�− t

)

[2u+ (�+ t)v] : (8)

It should be emphasized however that this linear behavior holds only for very large

velocities—for smaller velocities the map is highly nonlinear. The linear map above will

predict growth if its derivative matrix has at least one eigenvalue (Floquet multiplier)

greater than unity. One can readily show that this will be the case if and only if t ¿ t∞,

where

t∞ = �
(1− et)(1− en)

(1 + et)(1 + en)
: (9)

Thus for t ¡ t∞ the orbits are always bounded, whereas for t ¿ t∞ unbounded orbits

exist. The region of bounded motion is characterized by the fact that the orbits have

halting points, that is, the particle eventually reaches a step where it will execute an

in�nite sequence of bounces, with ever decreasing velocity, until �nally coming to a

halt. After the particle has stopped the motion must be restarted in some fashion, as

we will see shortly. But before doing that we shall �rst discuss the halting condition.

Let us denote by u0 and v0 the velocity components after the very �rst collision

on a given step and by z0 the coordinate of this �rst collision point. One can show

[8] that if the particle were to stop on this step then the halting point would lie at a

distance d from the �rst point of impact, with d being given by

d= 4
(1 + eten)tv

2
0 + (1− e2n)u0v0

(1− eten)(1− e2n)
: (10)

Thus if d¡z0 then the particle will indeed stop on this step, otherwise it will surely

reach a step below. We can now easily determine a bound on the inclination t for

which halting orbits exist. First, imagine that the particle falls o� the edge of a ramp

with zero initial velocity. Such a particle will then hit the step immediately below

at a point z0 = � − t and bounce o� with a velocity v0 = (tet ; en), as follows from

Eqs. (2) and (3) with u= v=0 and n=1. Substituting this v0 into Eq. (10) we obtain

the corresponding halting distance d0. The particle will thus come to a halt on the �rst

step provided that d0¡�− t. Proceeding along these lines, one can then prove [8] that

there exist halting orbits if and only if t ¡ ts, where

ts =
�(1− eten)(1− e

2
n)

1 + 3en(et + en) + ete3n
: (11)
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Fig. 2. Phase diagram in the plane (t=�; en) for et = 0:125. Below the line t∞ the orbit is always bounded,

whereas above the line ts no halting orbits exists and the particle accelerates; between these two lines

bounded and unbounded orbits may co-exist (see text).

In Fig. 2 we show a plot of both t∞ and ts as a function of en for et = 0:125. For

t ¿ 0 and below the line corresponding to t∞ the motion is always bounded, as we

have shown above. (Note that for t ¡ 0 the motion is trivial: regardless of its initial

velocity the particle will after a while get stuck on a local minimum of the gravitational

potential.) Above the line ts there are no halting orbits and we conjecture that the orbits

are always unbounded (our simulations support this conclusion). In the intermediate

region t∞¡t¡ ts the map has a somewhat more complex phase diagram. For instance,

if t is only slightly greater than t∞ then bounded and unbounded orbits may co-exist:

for small initial velocity the orbit will remain bounded (with halting points), whereas

for su�ciently large initial velocity the particle accelerates. It is also possible to �nd

bounded orbits where the particle never comes to a halt [9].

4. The one-dimensional map

We shall now study in more detail the region of bounded motion (0¡t¡ t∞) in

which we always have halting orbits. After the particle has momentarily stopped we

need to specify how motion proceeds. We consider for simplicity that upon coming

to a halt the particle will slide frictionlessly (with constant acceleration g sin�) until

reaching the edge of the ramp, at which point it takes o� with a certain velocity

v = (u; 0). Upon making a succession of collisions and ights the particle will come

again to halt on another step. Let us then denote by zs the �rst point of collision on

this step. Recalling that the particle traverses a distance d from this �rst collision point

to the halting point, we have that the particle will slide with a constant acceleration 1
2
t
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Fig. 3. Bifurcation diagram for the one-dimensional map with en = 0:6 and et = 0:125.

(in our dimensionless units) over a distance zs−d and then y o� with a new velocity

v′ = (u′; 0), where u′ =
√

t(zs − d).

It is clear from the discussion above that for t ¡ t∞ the dynamics of the model can

be described in terms of a one-dimensional map u′=f(u) ≡
√

t(zs − d), since for �xed

parameters both zs and d depend only on u. The mapping function f(u) is a piecewise

continuous function with in�nitely many branches [8]. If we de�ne the total jump

number N as the number of steps the particle has fallen between two halting points,

then f(u) can be divided into families of branches, with each family corresponding to

a speci�c N . (Members of a given N -family are labelled by additional N − 1 indexes

[8].) Unfortunately, f(u) cannot be expressed in closed form, except for a few cases

such as N = 1 and N = 2.

We have studied the map u′ = f(u) both analytically [8] and numerically [9] and

have found that it displays several distinct behaviors as the inclination parameter t

increases. Here for want of space we shall only outline the map main features. (A

fuller description will be left for a forthcoming publication [8].) First, for small t ¿ 0

the mapping function f(u) always has a stable �xed point with N=1. For intermediate

inclinations and for some values of the parameters en and et , stable �xed points with

N=2 (and higher) may also appear. If the �xed point N=1 has already become unstable

when the new �xed point is born then the latter is the sole attractor, otherwise there

are co-existing stable �xed points. As we increase t further, the �xed points all go

unstable and the dynamics becomes chaotic. In Fig. 3 we show a bifurcation diagram

for en = 0:6 and et = 0:125. The �rst branch in Fig. 3 corresponds to the �xed point

with N = 1 while the second one in the middle is a �xed point with N = 2. One can

also see that periodic orbits of quite high period appear between these two �xed points.

Also noticeable in Fig. 3 is a window within the chaotic region corresponding to a

stable �xed point with N = 3.
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5. Conclusions

We have presented a simple model for the gravity-driven motion of a grain down a

rough inclined surface. For small inclinations, the model has a stable �xed point that

is akin to the regime of steady granular ow observed in experiments [2,6]. For higher

inclinations, the model displays an unsteady (chaotic) behavior where the velocity

remains �nite but uctuates considerably (such a phase corresponds, for instance, to

the jump regime seen in experiments [6] on a sphere moving down a rough plane).

For even higher inclinations the particle accelerates inde�nitely. Several issues remain

to be investigated such as the nature of the uctuations in the chaotic regime and a

better characterization of the transition from bounded to unbounded motion.
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