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Asymmetric Decentralized Flocks
F. M. Tangerman, J. J. P. Veerman, B. D. Stošić,

Abstract—This paper analyzes the transient dynamics of one
dimensional flocks, platoons, i.e. a finite collection of identical
vehicles moving on the line, with a single leader with independent
motion. We show for a class of platoon control laws that if the
information flow is asymmetric then a motion change of the
leader will cause system transients with amplitudes that grow
at an exponential rate as the length of the platoon increases.
With suitable choice of the control parameters the system is
asymptotically stable and in steady state all vehicles move at
the same velocity as the leader and at the required separation.
When the leader changes velocity, over very long time scales the
vehicles in the platoon tend to the steady state dictated by the
leader’s new velocity. The transient dynamics in the intermediary
regime can however appear quite unstable, where the trailing
vehicle can undergo oscillatory motion with amplitudes that grow
exponentially large with the number of cars N in the platoon, or
may be irresponsive over an exponentially long time to the change
in the motion of the leader. In this paper we prove that if the
control law is asymmetric then such transient errors, measured
in terms of displacement between the leader and the trailing car,
grow at an exponential rate in N , the length of the platoon. This
contrasts sharply with the symmetric (bidirectional) case when
such transient errors grow only linearly in the length of the
platoon, the theoretical minimum for decentralized linear time-
invariant platoon control systems with a constant vehicle spacing
policy. These results suggest that symmetry of the information
flow is an important design parameter for safe control laws for
platoons.

Index Terms—Stability of linear systems; Agents and au-
tonomous systems; Traffic Control.

I. INTRODUCTION

IN In the context of automated vehicular control (see [1],
[2], [3], [4], [5]), biology (to understand the methods

employed by flocks of birds or schools of fish to maintain for-
mation), various motion control mechanisms and the resulting
stability properties of the formation have been gaining interest.
Many approaches assume an underlying information graph,
which describes some of the agents as leaders that act on the
basis of extraneous information and goals while the motion
control of the remaining agents is determined from sensed
motion (differences) from the agents linked by the information
graph. Furthermore the system should admit a range of stable
steady state solutions where every agent moves at the same
velocity, at prescribed spacings. Finally, in order to have a
scalable design, it is often assumed that the communication
range is limited: the information graph is suitably local and
the control law decentralized. In particular the leaders do not
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directly communicate their velocity or desired velocity to the
formation, and thus motion changes of the leaders propagate
indirectly through the formation producing transients. With
increasing formation size such transients tend to increase in
magnitude and to display a ‘bullwhip’ effect: to be largest fur-
thest removed from the leaders ([6], [7], [8]). Large transients
can mean that collisions can occur in the formation or that
following distances become large, effectively disconnecting
the formation ([9]), and are therefore undesirable.

In order to maintain formation cohesion it is therefore im-
portant to understand what additional design factors mitigate
transient effects. The class of formations that has been studied
most extensively (see for instance [6], [9], [10], [11], [12],
[13], [14], [15]), and which represents the focus of this paper,
is that of a platoon consisting of identical cars modeled as
point masses moving on the line, with a linear time invariant
and decentralized control law.

If one also assumes a constant spacing policy then (see [13])
in the transient regime between two steady state solutions the
spacing errors will grow in amplitude at least polynomially
in the number of cars N of the platoon, particularly when
the motion of the lead agent is sinusoidal of low frequency.
Reference [13] concludes that at least one car has to communi-
cate with O(N) members of the platoon in order that spacing
errors remain bounded.

The goal of this paper is to present a class of platoon models
for which the transients can be explicitly analyzed in the time
domain with increasing length of the platoon. This appears for
general models a difficult task and the models studied here
are therefore kept simple. We assume only nearest neighbor
communication and a constant spacing policy. We find that
in the transient regime the spacing errors are significantly
larger in amplitude, namely exponentially in the number of
cars N , with one exception, namely when the communication
is symmetric. In the symmetric case (see [15]), spacing errors
grow at most linearly in N , at the theoretical minimum.

Specifically, let x0(t) denote the position of the leader, and
let xk(t) k = 1, ...N be the positions of the cars following,
with xN (t) < xN−1(t) < ... < x1(t) < x0(t). Let ∆ be the
desired following distance between neigboring vehicles, and
let f , g, and ρ be constants. Assume

for k = 1, ..., N − 1 :
ẍk = f(ρ(xk − xk+1 −∆)) (1)

+f(1− ρ)(xk − xk−1 + ∆)) (2)
+g(ρ(ẋk − ẋk+1) + (1− ρ)(ẋk − ẋk−1))

ẍN = f(xN − xN−1 + ∆) + g(ẋN − ẋN−1) (3)

This control model determines for any vehicle, except
the lead vehicle and the trailing vehicle, its acceleration by
weighting of the relative positions and relative velocities of the
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vehicles immediately behind by a factor of ρ and immediately
in front by a factor of 1 − ρ. The trailing vehicle determines
its acceleration from the relative position and relative velocity
of the vehicle in front. This model is Galilean invariant,
the parameter f corresponds to a spring constant, while g
corresponding to a damping constant. When both f and g are
negative this control system is asymptotically stable. Its steady
states correspond the leader moving at constant velocity and
with every vehicle following moving at the same velocity and
at the prescribed following distance ∆.

Figure 1 illustrates this class of systems.
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Fig. 1. In the upper figure the ‘symmetric’ (ρ = 1
2

) platoon is illustrated.
Each vehicle is linearly coupled to its nearest neighbor via springs and
dampers. At t = 0 the leader, labeled 0, undergoes a forced motion: either
an oscillation or a kick in the direction of the arrow above it. The asymmetric
interaction is suggested in the lower figure, which shows the k − th-vehicle
with its interactions and their weights. The arrows give the direction of the
information flow.

We say that the control law is symmetric if the weights ρ
and 1−ρ are the same, equal to 1

2 , and asymmetric otherwise.
The symmetric case is also known as the bidirectional case.
The asymmetric case contains in particular the ‘ahead only’
case (ρ = 0), also known as the unidirectional case, when the
data from the car in front are weighted fully while the data
from the car behind is ignored. When ρ = 1, no weight is
given to the vehicle in front, and the the leader is effectively
isolated from the formation. This case is therefore not further
considered here.

Assume that the platoon is initially in steady state. Since the
control law is Galilean we may assume that all the velocities
are equal to zero. Consider what we dub the ‘canonical traffic
problem’: assume that at some time, say t = 0, the leader
quickly accelerates, say impulsively ẍ0(t) = δ(t), to a new
terminal velocity v0 = 1. Since the control law is asymptoti-
cally stable the platoon will converge to the new steady state
determined by the terminal velocity of the leader. Figure (2)
shows the distinctive and different transient behaviors for three
values of ρ: .45, .50 and .55, when N = 100.

In order to capture the exponential growth of transients,
exponential in the length N of the platoon, we introduce two
notions of (in)stability. The first is stated in the frequency do-
main: harmonic instability (see also [16]), where the growth is
characterized by the exponential growth (or lack thereof) of the
frequency response function of the trailing agent. Harmonic
stability or instability can be relatively easily established. We
show that asymmetric systems are harmonically unstable.

The second notion, impulse instability (see also [17]), is
stated for the time domain, in terms of the exponential growth
of the maximal displacement between the leader and the
trailing vehicle as a function of N , the length of the platoon.
We show that asymmetric systems are impulse unstable. By

Fig. 2. Images of time series for three values of ρ: ρ = 0.45 on the left,
ρ = 0.50 in the middle and ρ = 0.55 on the right. In each of the figures
the horizontal direction is the spatial direction, while the vertical direction
is the time direction. In each is shown the trajectory of the leader, the right
most - red - curve, and those of 100 cars following with the terminal car
-blue - initially left most. In this simulation f = −1 and g = −2, the cars
are initially at rest, each one unit apart, with the leader impulsively moving
a speed of .1 m/s. The (vertical) time runs for 1000 seconds. The figures
show dramatic differences. In the leftmost figure the trajectory of the terminal
car is initially highly oscillatory and then converges to the desired velocity
and separation. In the middle figure, the symmetric case, the trajectory of the
terminal car is slowly oscillatory about the desired trajectory. In the rightmost
figure the terminal car appears to be immobile on the time scale of the figure.
Furthermore there are additional oscillations in the beginning of the platoon
(that are not analyzed in this paper). While asymptotic stability guarantees
that trajectories will converge to the steady state trajectories as time tends
to infinity, in the rightmost figure one has to wait ∼ 105 seconds before the
terminal car moves at speed comparable to that of the leader.

contrast, the symmetric case is both harmonically stable and
impulse stable. We observe that these two notions of stability
are different from, and in fact unrelated to, standard notions
that express stability properties in terms of the location of
eigenvalues of a linear operator at an equilibrium point.

A. Related Work

A number of stability criteria were developed to develop
controls for platoons (and other coupled systems), to ensure
that perturbations (modeled as changes in initial conditions,
or as stochastic fluctuations) diminish over time, or at least
have a bounded effect. For systems of finite size with state
vector z = (z1, ..., zN )T described by a linear homogeneous
differential equation:

ż = Mz , (4)

such conditions amount to the requirement that the spectrum
of M is in the left open or closed half plane.

For infinite linear systems Chu ([18]) defined, with further
refinements in ([9], [19]), ‘string stability’ using the supremum
norm: if for some B supk |zk(0)| ≤ B, then the solutions zk(t)
are uniformly bounded in t and tend to 0 as t tends to infinity.
This form of stability requires that the closure of the spectrum
of M be in the open left half plane. The notion mesh stability
was introduced in ([19]) as a generalization of string stability
for flocks in 2 or 3 dimensions.
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Cook (see [20]) introduced a subtler variant, referred to as
practical string stability, requiring an l1 bound on the initial
conditions:

∑
k |zk(0)| ≤ B implies that the solutions zk(t)

are uniformly bounded in t, and defined practical asymptotic
string stability by the additional requirement that the solutions
zk(t) tend to 0 as t tends to infinity. For bi-infinite, symmet-
ric, systems of the form considered here [20] demonstrated
practical asymptotic string stability.

For formations with independent leaders [21] introduced the
concept of leader-to-formation stability, a weaker notion than
string stability, characterizing the formation temporal response
in terms of leader input and initial conditions in terms of
certain inequalities and show how leader-to-formation stability
can be maintained as platoons grow .

While this paper shows that front-back asymmetry causes
exponential growth in system transients, it may be possible to
improve some other platoon stability properties, for instance
the stability of equilibrium states. Reference [22] discovered
for a control model that is different from the one analyzed
here (it has besides a desired spacing also a desired absolute
vehicle velocity with damping based on the difference between
vehicle velocity and desired velocity) that a slight asymmetry
can influence the location of the least unstable eigenvalue and
move it further in the left half plane. The impact on system
transients was however not analyzed.

Specific attention to transient growth with increasing pla-
toon size is provided in the following references. In [13] it is
shown that spacing errors increase at least polynomially in the
platoon size N under a constant spacing policy in the transient
regime. Reference [6], using Bode’s complementary sensitivity
integral, and generalizing the results of [7], constructs many
examples where in the transient regime spacing errors increase
exponentially fast in the platoon size N and examines the
effect of communication graph and constant spacing versus
constant time headway policies in platoon dynamics. Refer-
ence [11] shows for the asymmetric example studied here,
and assuming that the motion of both the leading car and the
trailing car is given, that instabilities occur with amplitudes
that become exponentially large as the length of the platoon
increases. In the model studied in this paper the motion of the
trailing car is determined by its coupling to the platoon and is
far from independent. Most of the complexity of the analysis
presented here is in fact the determination of the motion of
the trailing car.

The generalization of these approaches to dimensions 2
and 3 poses numerous problems, not least of which are to
guarantee asymptotic stability, system non-linearity and non-
holonomy, see [23], [24].

B. Organization of the Paper

Section II defines the model, and we derive the requirement
for the model to be asymptotically stable. Section III provides
the definitions of harmonic stability and we show that the
asymmetric systems are harmonically unstable. Section IV
defines the ‘canonical traffic problem’ and defines impulse sta-
bility. We show that asymmetric systems are impulse unstable.
Section V states the final conclusions of this paper. Some of

the more calculational steps in the proofs are relegated to the
Appendix.

Notational Conventions: For a complex number z its square
root

√
z is defined as the root with argument in the interval

[0, π) (branch cut along the positive real axis). The number of
cars N is a parameter in this problem. When there is no risk
of confusion we do not carry this parameter into the notation.
Instead, the subscript N will always refer to the last car in the
platoon. Similarly we do not carry the dependence on model
parameters f , g, and asymmetry ρ, explicitly into the notation.

II. THE MODEL

It is advantageous to write Equation (3) as a first order
linear system, and to eliminate the following distance ∆. Let
z0(t) = x0(t) be the motion of the leader and consider the
vector

z ≡ (z1, ż1, z2, ż2, · · · , zN , żN )
≡ (x1 + ∆, ẋ1, x2 + 2∆, ẋ2, · · · , xN + N∆, ẋN )T .

Then Equation (3) can be written as a first order linear
inhomogeneous differential equation (see also [14]):

ż = Mz + Γ0(t) . (5)

The motion of the leader appears in the forcing term Γ0(t):

Γ0(t) =




0
(1− ρ) (fz0(t) + gż0(t))

0
...


 . (6)

The matrix M and its spectral properties can be explicitly
analyzed using the following approach. Let Qρ denote the
following N ×N matrix:

Qρ =




0 ρ
1− ρ 0 ρ

. . . . . . . . .
1− ρ 0 ρ

1 0




, (7)

Let I be the N ×N identity matrix and P ≡ I −Qρ be the
reduced graph Laplacian. The entries of P describe the flow
of information among the following cars in the platoon. Using
the 2× 2 matrices A and K given by:

A =
(

0 1
0 0

)
and K =

(
0 0
f g

)
. (8)

and the Kronecker product (⊗) M of Equation (5) can be
written as:

M ≡ I ⊗A + P ⊗K . (9)

The eigenvalues of Qρ and thus of P are known in many cases
and therefore easily related to the spectrum of M .

We note that Equation (3) remains invariant under Galilean
transformations, and that steady state solutions in the reference
frame of the leader take the form: z = 0. We can also fix a
reference frame in which all the agents are initially at rest (z =
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0), consider a nonzero motion of the leader in this reference
frame, and determine the motion of the entire flock relative
this reference frame.

A. Asymptotic Stability

Definition 2.1: The system in Equation (5) is called
‘asymptotically stable’ if all eigenvalues of M have negative
real part.

Asymptotic stability implies for a given motion z0(t) of the
leader that the difference between two solutions, determined
by different initial conditions of the following cars in the
platoon, tends to zero as time tends to infinity.

In what follows we show that ’asymptotic stability’ is
equivalent to the requirement that the coefficients f and g
are negative.
First, the eigenvalues of P , as shown in [25], are (for the most
part) implicitly given in terms of an angle φ that is a root of
the following equation involving ρ ∈ (0, 1) and N :

(2ρ− 1) cot(φ) = cot(Nφ) . (10)

Proposition 2.2: ([25]) For any ρ ∈ (0, 1), the N × N
matrix P has N distinct eigenvalues {λ`}N−1

`=0 each contained
in the interval (0, 2), and of the following form:
i) If ρ ∈ (0, N+1

2N ]: for ` ∈ {0, . . . , N − 1}, λ` = 1 −
2
√

ρ(1− ρ) cos φ`, where φ` ∈
(

`π
N , (`+1)π

N

)
is a root of

Equation (10).
ii) If ρ ∈ (N+1

2N , 1): for ` ∈ {1, . . . , N − 2}, λ` = 1 −
2
√

ρ(1− ρ) cos φ`, where φ` ∈
(

`π
N , (`+1)π

N

)
is a root of

Equation (10); λ0 = (2ρ−1)2

2ρ2

(
1−ρ

ρ

)N−1

+O
((

1−ρ
ρ

)2N−2
)

and λN−1 = 2− λ0.
In particular, if ρ < 1

2 the eigenvalues of P are uniformly
bounded away from zero, while if ρ > 1

2 one eigenvalue,
λ0, is close to zero while the remaining ones are uniformly
bounded away from zero. To every eigenvalue λ` of P (see
also [14], [15], [26]) corresponds a pair of eigenvalues ν`± of
M that are the solutions of the equation

ν2 − λ`gν − λ`f = 0 , (11)

Specifically:

Theorem 2.3: Asymptotic stability of the system given in
Equation (5) is equivalent to the condition that both parameters
f and g in Equation (3) are negative.
Proof: The eigenvalues of M are

ν`± =
1
2

(
λ`g ±

√
(λ`g)2 + 4λ`f

)
=

λ`g

2

(
1±

√
1 +

4f

λ`g2

)
,

where λ` runs through the spectrum of P . Recall that each
λ` is contained in the interval [0, 2] (see Proposition 2.2). If
f > 0 then both ν`± are real and have opposite signs. If f = 0
then ν`− = 0. In either of these cases the system is thus not
asymptotically stable. If f < 0 and g > 0 the real parts of ν`±

are positive, while if f < 0 and g < 0 the real parts of ν`±
are negative. Therefore the system is asymptotically stable if
and only if both f and g are strictly smaller than zero.

The following corollary provides a geometric picture of the
location of the eigenvalues, when the model parameters f and
g are negative:

Corollary 2.4: The eigenvalues ν±` of M in the complex ν

plane either lie on the circle |ν + f
g |2 = f2

g2 , namely whenever
4|f |
λ`g2 > 1, or else are real numbers less than or equal to − |f |

|g| .

i. When ρ < 1
2 all eigenvalues are uniformly (in the

parameter N ) bounded away from zero.
ii. When ρ > 1

2 , and N is sufficiently large, one pair of
eigenvalues (corresponding to the index 0) is close to
zero, while the remaining are uniformly bounded away
from zero.

Proof: If 4|f |
λ`g2 > 1 the eigenvalues ν`± are complex conju-

gates. If ν and ν are the roots of Equation (11) then νν =
−λ`f and ν + ν = λ`g. Now |ν + f

g |2 = νν +(ν + ν) f
g + f2

g2 .

Therefore the right hand side reduces to f2

g2 .
If the eigenvalues are real, then they are the intersections

of the graph of y = ν2 and the graph of y = λ`gν + λ`f
which has negative slope and is non-positive over the interval
[− |f |

|g| , 0]. Therefore the intersection points must be to the left

of ν = − |f |
|g| . The statements (i) and (ii) follow immediately

from the corresponding statements regarding the eigenvalues
λ` of P .

III. HARMONIC INSTABILITY OF ASYMMETRIC FLOCKS

Assume that Equation (5) is asymptotically stable. Also
assume that the leader executes an oscillation of the form
z0(t) = eiωt. Then the motion of the kth car zk(t) tends
to ak(iω)eiωt as t tends to infinity. The functions ak(iω) are
the frequency response functions, and have these properties:

Proposition 3.1: The frequency response functions ak(iω)
satisfy:

1) ak(0) = 1 and,
2) ak(−iω) is the complex conjugate of ak(iω)

Proof: The first property expresses translational invariance of
the Equation (5): when z0 = 1 then the limiting steady state
solution is zk = 1. The second property follows since the
system has real coefficients.

Instead of analyzing all cars in the platoon, we concentrate
on the dynamics of the trailing car and its frequency response
function: aN (iω). We are interested in its behavior as N →∞
in the supremum norm over ω: does this remain bounded,
increase linearly or polynomially with N or does it increase
at an exponential rate? We will see that at large frequencies
aN (iω) tends to rapidly decay as a function of N , while at
low frequencies it tends to rapidly increase.

Definition 3.2: Let AN ≡ supω∈IR |aN (iω)|. The system
is called ‘harmonically stable’ if it is asymptotically stable and
if lim supN→∞ |AN |1/N ≤ 1. Otherwise the system is called
‘harmonically unstable’.
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Harmonic instability implies that certain oscillatory motions
of the leader will have their amplitude magnified through the
platoon with amplitude that is exponentially large in N at the
trailing agent. This definition of harmonic instability allows for
the possibility that the set of frequencies ω where aN (iω) is
on the order of AN may change with N . Harmonic stability
was established for the symmetric case (ρ = 1

2 ) in [26]. In
what follows we establish that Equation (5) is harmonically
unstable in the asymmetric case.

The following constant will frequently simplify formulae:

κ ≡ 1− ρ

ρ
or ρ =

1
1 + κ

.

Transforming Equation (5) to the frequency domain via the
Laplace Transform leads to recursion relations between the
various frequency response functions that are easily solved,
using the method that will be outlined next (see also Lemma
3.2 of [15]). Specifically, one obtains from the Laplace Trans-
form of Equation (3) that:

ν2ak(ν) = f(ak(ν)− ρak+1(ν)− (1− ρ)ak−1(ν)) +
gν(ak(ν)− ρak+1(ν)− (1− ρ)ak−1(ν)),
k = 1, ..., N − 1

and the recursion relation is obtained by expressing ak+1 in
terms of ak and ak−1. As this relation is linear the solution is
of the form ak = α+µk

+ +α−µk
−, where µ± are the roots of a

quadratic equation and the coefficients α± are independent of
k. The boundary conditions for the leader and for the trailing
car allow one to determine the coefficients α± and to obtain
ak in closed form. We note that essentially the same recursion
relations occur in the determination of the eigenvalues and
eigenvectors of the matrix Qρ. To state the result in the form
needed involves a number of intermediary functions. Let

γ ≡ γ(ν) =
f + gν − ν2

f + gν
(12)

and define µ± = µ±(ν) as the roots of the following quadratic
equation:

ρµ2 − γµ + (1− ρ) = 0, i.e (13)

µ± ≡ µ±(ν) =
1
2ρ

(
γ ±

√
γ2 − 4ρ(1− ρ)

)
(14)

One obtains as specific expression:

Proposition 3.3: For ρ ∈ (0, 1)\{ 1
2} the frequency re-

sponse function of the last agent is given by

aN (ν) =
1 + κ

κ
κN µ+ − µ−(

µ+ − µ−1
+

)
µN

+ − (
µ− − µ−1

−
)
µN−

,

with γ as in Equation (12) and µ± as in Equation (14).

Remark: Even though µ+(ν) and µ−(ν) are not rational
functions of ν, aN (ν) is a rational function of ν.

Remark: The eigenvalues ν`± are poles of the function
aN (ν). The denominator of aN (ν) is however expressed
in terms of the µ variable and we point out the follow-
ing properties. Let µ+` = µ+(ν`+) and µ−` = µ−(ν`+).

Then µ−` =
κ

µ+`
. Moreover since γ(ν`+) = γ(ν`−) also

µ+` = µ+(ν`−). Furthermore µ+` and µ−` are the roots of the
quadratic equation ρµ2−(1−λ`)µ+(1−ρ) = 0. In particular,
if λ` = 1− 2

√
ρ(1− ρ) cos(φ`) then µ+` =

√
κeiφ` and µ−`

is the complex conjugate of µ+`. Such values of µ lie therefore
on the circle centered at 0 of radius

√
κ.

Since aN (−iω) equals the complex conjugate of aN (iω)) it
is sufficient to study the magnitude of aN (iω) only for ω > 0.
In the next proposition we extract the leading growth terms in
the frequency response.

Proposition 3.4: Suppose f , g, ω > 0 and ρ ∈ (0, 1/2) ∪
(1/2, 1) are all fixed. Then there exists r ∈ (0, 1), such that
as N tends to infinity:

aN (iω) =
1 + κ

κ
µN
−

µ+ − µ−
µ+ − µ−1

+

(
1 +O(rN )

)
.

Proof: Use Proposition 3.3 and the fact that µ−µ+ = κ to
rewrite aN (iω) as:

1 + κ

κ
µN
−

µ+ − µ−
µ+ − µ−1

+

(
1− µ− − µ−1

−
µ+ − µ−1

+

(
µ−
µ+

)N
)−1

The magnitude of the ratio µ−(iω)
µ+(iω) is bounded by r < 1, as

in Lemma A.3 in the Appendix. It therefore suffices to show
that for fixed ω the factor

µ−−µ−1
−

µ+−µ−1
+

is finite.
Since

µ− − µ−1
−

µ+ − µ−1
+

=
−1
κ

µ2
+ − κ2

µ2
+ − 1

,

it suffices to prove that if ω > 0, then µ+(iω)2 6= 1. Now
suppose that µ+(iω)2 = 1, then since µ and γ are related by
a quadratic equation with real coefficients:

ρµ2 − γµ + (1− ρ) = 0 . (15)

γ(iω) = ±1 and so Lemma A.1 implies that ω = 0.

Remark: It is important to emphasize that the bound O(rN )
is not uniform in ω. The factor analyzed in the proof of
the preceding proposition becomes large if µ+ is close to
1. The results in the appendix show that this can occur if
and only if ρ < 1

2 and ω is close to zero. We make use
of this fact in the proof (for ρ < 1

2 ) of the next and main
result of this section, which shows that asymmetric systems
are harmonically unstable.

Theorem 3.5: (Harmonic Instability) For all
ρ ∈ [0, 1)\{1

2}, AN grows exponentially in N .
Proof: The behavior exhibited in the two cases ρ < 1

2 and
ρ > 1

2 is different and will be treated separately.
Fix ρ < 1

2 and let ω+ = ω+(f, g, ρ) be as in Equation
18 in the Appendix. Lemma A.4 and the remark thereafter
now imply that |µ−(iω)| > 1 if ω ∈ (0, ω+). The claim then
follows directly from Proposition 3.4.

Finally fix ρ > 1
2 , or κ ∈ (0, 1). First use Lemma A.2 to see

that if ω2 = 1
2 |f |(1−κ)2κN−1, then µ+ = 1− (1−κ2)

2 κN−1+
O(κ3N/2) and µ− = κ(1 + (1−κ2)

2 κN−1) + O(κ3N/2).
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Substitute this into the denominator of aN in Proposition 3.3.
The leading order cancels. The next term is of order at least
κ3N/2. Thus AN is of order at least κ−N/2.

Remarks: The proof of Theorem 3.5 also shows a dichotomy:
When ρ < 1

2 , then there is an interval of fixed size over which
aN (iω) grows at an exponential rate. When ρ > 1

2 there is
for fixed N a small region close to zero where |aN (iω)| is of
order at least κ−N/2.

IV. IMPULSE INSTABILITY OF ASYMMETRIC FLOCKS

Definition 4.1: The ‘canonical traffic problem’ corresponds
to setting the acceleration of the leader equal to the Dirac delta
function, z̈0(t) = δ(t), and z0(0) = ż0(0) = 0.

Definition 4.2: Consider Equation (5) for the canonical
traffic problem and subject to the initial conditions zk(0) =
żk(0) = 0, k = 1...N . Let Z

(i)
N ≡ supt>0 | di

dti (zN (t)−z0(t))|.
The system is called ‘impulse stable’ if it is asymptotically

stable and if for i = 0, 1, 2, lim supN→∞
∣∣∣Z(i)

N

∣∣∣
1/N

≤ 1.
Otherwise the system is called ‘impulse unstable’.
Impulse instability means therefore that if the leader receives
a ‘unit-kick’, then that perturbation travels through the flock
to produce at some time t = tN relative displacements errors
(|z0(t) − zN (t)|), relative velocities errors (|ż0(t) − żN (t)|),
or relative accelerations errors |z̈N (t)| that are exponentially
large in N . As time further increases asymptotic stability will
force the trailing agent, as well as the entire flock, to travel
ultimately ‘in formation’.

Remark: The notions ‘harmonic stability’ and ‘impulse sta-
bility’ are not unrelated, since the time domain and frequency
domain are linked via the Laplace Transform. However these
notions appear not to be equivalent.

A. Residue Expansions
We will solve the canonical traffic problem, via the Inverse

Laplace Transform. Precisely, with z̈0(t) = δ(t) in Equation
(5) and initial conditions: for all k ≥ 1: żk(0) = zk(0) =
0, the acceleration of the trailing agent is then given as the
Inverse Laplace Transform of the frequency response funtion
(see [15]):

z̈N (t) ≡ 1
2πi

∫ r+i∞

r−i∞
aN (ν)eνt dν . (16)

In order to evaluate this inverse the strategy is to per-
form a residue expansion (or partial fraction expansion) of
aN (ν) . Using Proposition 3.3 we write aN (ν) = p(ν)

q(ν) as
a quotient of polynomials with degree(q) at least that of
degree(p). The zeros of q are the eigenvalues of M . Thus
according to Theorem 2.3 the denominator in aN (ν) has
only simple roots located at {ν`±}, except when for some
`: −4f = λ`g

2. Avoiding that case for simplicity, we have
with residue Res(aN (ν), ν′) = p(ν′)

dq
dν (ν′)

aN (ν) =
N−1∑

`=0

(
Res(aN (ν), ν`−)

ν − ν`−
+

Res(aN (ν), ν`+)
ν − ν`+

)

(17)

The motion of the trailing car is then:

zN (t) =
N−1∑

`=0

(
Res(aN , ν`−)

ν2
`−

eν`−t +
Res(aN , ν`+)

ν2
`+

eν`+t

)

+CN + DN t .

The constants of integration CN and DN have to guarantee
that zN (0) = 0, żN (0) = 0.

Recall that the indexing has been chosen so that the pair ν±`

corresponds to µ+`.

Theorem 4.3: If the poles are simple then
Res(aN (ν), ν`±) is given by

− (f + gν`±)2

ν`± (2f + gν`±)
· κN−1µN−3

+` (µ2
+` − κ)2

2Nµ2N−2
+` (µ2

+` − 1) + 2µ2N
+` + 2κN−1

Proof: The theorem is an application of the chain rule. Recall
the following implicit relationships. γ is a function of ν:

γ = 1− ν2

f + gν
.

Recall that µ+ is a function of γ by (choose the ‘+’root):

ρµ2 − γµ + (1− ρ) = 0 ,

This defines µ+ and µ− implicitly as a function of ν. Since
µ− equals κ/µ+, the expression for aN in Proposition 3.3 is
a rational function of µ+ alone:

aN =
1 + κ

κ

κNµN
+ (µ2

+ − κ)
(µ2

+ − 1)µ2N
+ + (µ2

+ − κ2)κN−1

≡ 1 + κ

κ

pN (µ+)
qN (µ+)

.

(The polynomials pN and qN still have a factor (µ2
+ − κ)

in common, which is kept to simplify the calculation.) As a
result aN (ν) = aN (µ+(ν)). Furthermore γ(ν`+) = γ(ν`−)
and therefore µ+(ν`±) = µ+`. Now apply the chain rule to
obtain the residues when the poles of aN are simple:

Res(aN (ν), ν`±) =
1

µ′+(ν`±)
Res(aN (µ), µ+`)

with µ′+ the derivative of µ+. Using the above relations, one
obtains:

µ′+(ν`±) = −(1 + κ)
µ+(ν`±)2

µ+(ν`±)2 − κ

ν`±(2f + gν`±)
(f + gν`±)2

.

Using this and replacing the residue of aN (µ+) by
1+κ

κ
pN (µ+`)
q′N (µ+`)

, we obtain that Res(aN (ν), ν`±) equals

−(1 + κ)−1

(
µ2

+` − κ

µ2
+`

)
(f + gν`±)2

ν`± (2f + gν`±)
·

(1 + κ)κN−1µN
+`(µ

2
+` − κ)

2Nµ2N−1
+` (µ2

+` − 1) + 2µ+`(µ2N
+` + κN−1)

which after some simplification gives the desired result.

We note that the residue in the previous theorem is a product
of two factors. The first, the ν-factor, is a function of ν and
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equal to
1

γ′(ν`±)
. The other, the µ-factor is expressed in the

µ+` variable is the same for ν`+ and ν`− and can be bounded
separately using the fact that in most cases µ+` has norm equal
to
√

κ. While in the previous we assumed that the poles are
simple, it is clear that the residues can be arbitrarily large if
ν`± is very close to zero or if 2f + gν`± is very close to
zero. The first case occurs only, see Corollary 2.4, if ρ > 1

2
and when ` = 0, and N is large. In that case one finds the
pair of eigenvalues ν0± close to zero for which we have a
bound. The contribution to the Inverse Laplace Transform is
relatively easy to analyze, and is then dominant, see the results
in subsequent sections. The second case occurs precisely when
the pair ν`± is close to the point ν∗ ≡ −2 f

g . Furthermore it
is quite possible that for large N there are many, O(N), pairs
ν`± close to ν∗. ν∗ a the bifurcation point, the intersection
of the circle of radius f

g , centered at the point − f
g , with the

negative real axis, and is a critical point of γ: γ′(ν∗) = 0. We
now show that for each pair there is sufficient cancelation so
that one can bound the large time behavior of its contribution
to the Inverse Laplace Transform.

Proposition 4.4: Let 0 < ε < 2
f

g
. There exists a constant

C so that if the pair ν`± satisfies Re(ν`±) < −ε then

the Inverse Laplace Transform of
∑
±

1
γ′(ν`±)

1
(ν − ν`±)

is

bounded by Ce−εt

Proof: It suffices to consider the case that the pair ν`± is
close to ν∗. First observe that both ν`+ and ν`− have the same
value under γ: γ(ν`±) = 1 − λ`. We claim that the pair ν`±
is essentially symmetric with respect to ν∗. Namely consider
the Taylor expansion of γ near ν∗:

γ(ν) = γ(ν∗) +
1
2
γ′′(ν∗)(ν − ν∗)2 +O((ν − ν∗)3)

Since γ(ν`−) = γ(ν`+) and since γ′′(ν∗) 6= 0 therefore:
ν`− − ν∗ = −(ν`+ − ν∗) + O((ν`+ − ν∗)2). Therefore
also the pair γ′(ν`±) is essentially symmetric with respect
to zero: γ′(ν`±) = γ′′(ν∗)(ν`± − ν∗) + O((ν`± − ν∗)2) and
γ′(ν`−) = −γ′(ν`+) +O((ν`+ − ν∗)2)

The Inverse Laplace Transform is equal to
∑
±

eν`±t

γ′(ν`±)
=

eν∗t
∑
±

e(ν`±−ν∗)t

γ′(ν`±)
. Let f(t) =

∑
±

e(ν`±−ν∗)t

γ′(ν`±)
. First, con-

sider f(0) =
1

γ′(ν`+)
+

1
γ′(ν`−)

. This quantity is uniformly

bounded: |f(0)| ≤ K1 when the pair ν`± is close to ν∗.
Second, consider its derivative

f ′(t) =
∑
±

(ν`± − ν∗)e(ν`±−ν∗)t

γ′(ν`±)

The coefficients
(ν`± − ν∗)

γ′(ν`±)
are also bounded. Fix β > 0,

small, and assume that the real parts of the complex numbers
ν`± are within β of the real part of ν∗, then we obtain a bound
for f ′(t) of the form:

|f ′(t)| ≤ K2e
βt

By integration we obtain therefore |f(t)| ≤ K1 +
K2

β
eβt ≤

K3e
βt. Multiplication by eν∗t proves the proposition.

We next consider the µ-factor in the residue formula. Recall
that when λ` = 1− 2

√
ρ(1− ρ) cos(φ`), then µ+` =

√
κeiφ`

and has magnitude
√

κ. In the next proposition we consider
therefore the µ-factor on the circle of radius

√
κ in the complex

plane.

Proposition 4.5: The maximum of the absolute value of the
function κN−1µN−3(µ2−κ)2

2Nµ2N−2(µ2−1)+2µ2N+2κN−1 on the circle of radius
√

κ 6= 1 is bounded from above by O(
κN/2

N
).

Proof: The numerator is bounded by O(κ3N/2). Since κ 6= 1
then for N sufficiently large the absolute value of the denom-
inator is greater than NκN . The result follows.

Combining these two results we obtain the following corol-
lary bounding the contribution of a pair ν`± to zN (t).

Corollary 4.6: Let 0 < ε < 2
f

g
. If the pair ν`± satisfies

Re(ν`±) < −ε then its contribution to zN (t) for t > 0 is

bounded by O(
κN/2

N
)e−εt.

1) ρ > 1/2 (or κ < 1): When ρ > 1/2 (or κ < 1), the
weighting is more on the agent following. We will show that
in this case two poles dominate the frequency response aN (ν)
and we can estimate the impulse response.

Remark: In the symmetric case (see [15]) on the order
√

N
poles are close to zero.

Fix the parameters f , g and ρ and let N →∞. The first goal
is to derive an asymptotic expansion for the trajectory of the
trailing car.

Proposition 4.7: The impulse response for the trailing car
is given by:

zN (t) = t− 1√
|f | √λ0

eλ0gt/2 sin(
√

λ0|f | t) +O(κN/2)

where λ0 =
1
2
(1− κ2)κN−1.

Proof: The first term is a linear term obtained by integrating
the acceleration twice and using the boundary conditions
zN (0) = żN (0) = 0. The sinusoidal term is the contribution
of a pair of poles close to zero, and the error term is the
contribution from the remaining poles.

Proposition 2.2 implies that when κ < 1 the eigenvalue
λ0 = 1

2 (1 − κ2)κN−1 is exponentially small. Theorem 2.3
implies that the sign of 1 + 4f

λ0g2 determines whether the
corresponding pair of eigenvalues ν0± are real or complex.
Therefore, we may assume that ν0± are complex with small
negative real part, It is straightforward to obtain to leading
order: ν0± = 1

2λ0g ± i
√

λ0|f |. As a result the ν-factor in

the residue is equal to − ± i
√
|f |

2
√

λ0

. Furthermore, to leading
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order µ+0 = 1 − 1
2 (1 − κ2)κN−1, and the corresponding µ-

factor equals λ0. As a result the residue Res(a(ν), ν0±) =

− ± i

2

√
λ0|f |. Taking the Inverse Laplace Transform, and

integrating twice, produces the second term in the asymptotic
expansion. For small time its contribution is equal to −t and
in order to maintain the boundary condition, the first term is
needed.

The pairs ν`±, ` = 1, ..., N−2 are contained in the left half
plane Re(ν) < −ε with ε independent of N . We can apply
Corollary 4.6 to bound the contribution of these pairs.

Finally we have a pair corresponding to ` = N − 1.
Since λN−1 = 2 − λ0, this produces also a pair in the left
half plane, far from zero. It is straightforward to see that
the corresponding µ-factor is O(κN ). As a result, this pair
contributes no more than O(κN )e−εt to zN (t).

Note that λ0 is exponentially small, yet positive, in N.
The motion zN (t) for a substantial time interval, as long as√

λ0|f | t is sufficiently small, remains small,i.e. the last car
appears to be immobile, while the leading car has traveled a
significant amount.

Theorem 4.8: If ρ > 1/2 (or κ < 1) then Equation (5) is
impulse unstable.
Proof: It suffices to show that one can find times so that
the distance between the leader and the trailing car is expo-
nentially large. The term ′t′ in the asymptotic expansion for
zN (t) in Proposition 4.7 provides the location of the leader.
The magnitude of the second sinusoidal term describes the
distance between the leader and the trailing car. If one chooses
t =

π

2
√

λ0|f |
= O(κ−N/2) then this distance is equal to

eλ0gt/2

√
λ0|f |

= O(κ−N/2). Since κ < 1 the distance is then

exponentially large in N . The system is therefore impulse
unstable.

2) ρ < 1/2 (or κ > 1): When ρ < 1/2 (or κ > 1),
the weighting favors the agent in front. In this case no poles
appear to be negligible. However, there exists ε > 0 so that
all eigenvalues ν`± ` = 0, ..., N − 1 are in the left half plane
Re(ν) < −ε. Their residues are however not small and tend to
increase with N . As a result all eigenvalues contribute and a
useful asymptotic expansion appears intractable. We can apply
the logic behind Corollary 4.6 to deduce an upper bound on
the acceleration: |z̈N (t)| ≤ O(κN/2)e−εt which is enough to
control the large time behavior.

Theorem 4.9: If ρ < 1/2 (or κ > 1) then Equation (5) is
impulse unstable.
Proof: We show that as N → ∞ the sup norm of the
acceleration supt |z̈N (t)| grows at an exponential rate. The
proof of Theorem 3.5 shows that when ρ ∈ (0, 1/2), then
there is an interval of fixed size in the frequency domain,
contained in the interval [0, ω+] over which aN (iω) grows at
an exponential rate: there is β > 1, independent of N , so that

supω |aN (iω)| ≥ βN . From the Fourier Transform:

aN (iω) =
1
2π

∫ ∞

0

z̈N (t)eiωtdt

and as a result, using the general L1 bound:

|aN (iω)| ≤ 1
2π

∫ ∞

0

|z̈N (t)|dt

one obtains that: βN ≤ 1
2π

∫∞
0
|z̈N (t)|dt. Since

|z̈N (t)| ≤ O(κN/2)e−εt we can find a constant C so
that

∫∞
CN

κN/2e−εtdt → 0 as N → ∞. Thus one can find σ
so that for N large

∫∞
CN

|z̈N (t)|dt ≤ σ. With TN = CN

1
TN

∫ TN

0

|z̈N (t)|dt ≥ 2π
βN − σ

TN

Since TN is linear in N the right hand side of the inequality
grows at an exponential rate. Since the average:

1
TN

∫ TN

0

|z̈N (t)|dt

grows at least at an exponential rate, supt |z̈N (t)| grows also at
least at an exponential rate in N and proves impulse instability.

V. CONCLUSION

In this paper we have analyzed a simple decentralized linear
platoon motion model on the line in which the influence
of neighboring agents is weighted asymmetrically. We have
shown that although these systems are asymptotically stable,
transients due to the response to changes in the motion of the
leader, tend to grow at a rate that is exponential in the length
N of the platoon (impulse instability).

These results contrast to the symmetric case, i.e. equally
weighted, where such transients grow at a rate that is roughly
linear in the length of the platoon. It may thus be argued that
symmetry of information flow is an important consideration in
the design of a stable decentralized control law for platoons.

These results have been proven rigorously for the canonical
traffic problem where the leader accelerates impulsively. In
this case the acceleration of the leader produces a uniform
distribution in the frequency domain. Similar results should
hold for a much larger class of motions of the leader. What
should be important is that the support of the leader accelera-
tion in the frequency domain contains frequencies ω where the
frequency response function aN (iω) grows at an exponential
rate.

A critical component of the approach in this paper and also
[15] has been to understand the location of the eigenvalues of
the system with increasing length of the platoon, the residues
of the frequency response function at these eigenvalues, and a
method to control the influence of nearly double poles (pairs
of eigenvalues that are close). The authors expect that this
approach generalizes to much larger classes of decentralized,
linear and time invariant, Galilean invariant motion models.
This suggests a program to characterize those control laws
that are impulse stable.
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A particular example is the following. The weighting pa-
rameters in the control law considered in this paper are the
same for relative position and velocity. One can ask if there
are benefits in choosing them differently, say of the form:

v̇i = f {δxi − (1− ρ)δxi − ρδxi+1}
+g {vi − (1− r)vi−1 − rvi+1}
δxi ≡ xi − hi

with ρ and r distinct, while maintaining Galilean invariance.
While it is certainly possible (P. Barooah and H. Hao, pri-
vate communication) to influence the spectrum of M and in
particular the location of the eigenvalue in the left half plane
closest to zero, we conjecture that such systems will exhibit
both harmonic and impulse instability, unless the system is
symmetric: r = ρ = 1

2 .
We believe that is the first paper to rigorously demonstrate

impulse instability in platoon models. It is of great interest
to analyze a wider class of platoon models, for instance
heterogeneous platoons with relaxed headway policies (see
for instance [6]) in the time domain and to verify impulse
instability of such systems.

It is in general of interest to define a notion of ‘flock
stability’ that properly quantifies geometric or dynamic char-
acteristics of ‘flock transients’ as the size of the flock grows,
in one or more dimensions. Such a notion should incorporate
what effect a motion change that occurs on the boundary of
the flock, a response to an external factor, has on the flock,
as a function of time and size of the flock. Our proposal for
the notion of ‘flock stability’ is simple: we say a system is
flock stable if it is harmonically stable and impulse stable.
Flock stability thus requires sub-exponential growth rates of
transients, and in particular dynamic stability. When these
conditions are not satisfied we call the system flock unstable.

APPENDIX A
TECHNICAL RESULTS

For completeness we collect a number of straightforward
results that are necessary for development of the theory, but
would clutter the exposition in the main text. Various relevant
quantities are evaluated for ν = iω where ω is real and non-
negative. As observed in the main text, by symmetry of the
impulse response function, we may assume ω ≥ 0 without
loss of generality.

Lemma A.1: γ(iω) = 1− ω2|f |
f2 + ω2g2

+ i
ω3|g|

f2 + ω2g2
.

Proof: This follows immediately from the definition of γ in
Equation (12).

Lemma A.2: i): For ρ ∈ (0, 1
2 ) and ω ≥ 0 small:

µ+ =
1− ρ

ρ

(
1 +

ω2

(2ρ− 1)|f | − i
|g| ω3

(2ρ− 1)f2

)
+O(ω4)

µ− = 1− ω2

(2ρ− 1)|f | + i
|g| ω3

(2ρ− 1)f2
+O(ω4)

ii): For ρ ∈ ( 1
2 , 1) and ω ≥ 0 small:

µ+ = 1− ω2

(2ρ− 1)|f | + i
|g| ω3

(2ρ− 1)f2
+O(ω4)

µ− =
1− ρ

ρ

(
1 +

ω2

(2ρ− 1)|f | − i
|g| ω3

(2ρ− 1)f2

)
+O(ω4)

Proof: A calculation, using the definition of µ±, see Equation
(14).

Remark: This expansion diverges for ρ = 1/2.
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Fig. 3. The eigenvalues µ+(iω) (blue) and µ−(iω) (red) of C when
f = g = −1 for ω positive. From left to right: ρ = 0.4, 0.5, and 0.6. In
addition the circles with radii

√
κ and κ are drawn in green and black, resp.,

where κ ≡ 1−ρ
ρ

.

Lemma A.3: For each ρ ∈ (0, 1)\{ 1
2}, the number r ≡

supω
|µ−(iω)|
|µ+(iω)| is smaller than one. (See Figure 3.)

Proof: From Lemma A.1, γ(iω) ≈ − iω
g when ω is large.

Substitute this into the expression for µ± in Equation 14 to
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see that for large ω, in fact |µ−(iω)|
|µ+(iω)| becomes very small. When

ω = 0, Lemma A.2 implies that |µ−(iω)|
|µ+(iω)| = min{κ, κ−1}.

It is now sufficient to prove that for ω ∈ IR+ the absolute
values |µ±| are never equal. So suppose there are ω0 and θ ∈
IR so that µ+(iω0)−µ−(iω0)eiθ = 0. Using Equation 14 then
gives:

γ(1− eiθ) = −
√

γ2 − 4ρ(1− ρ) (1 + eiθ) .

Dividing this by 1+eiθ, squaring the equation, and noting that
(1−eiθ)2

(1+eiθ)2
= −(tan( θ

2 ))2, we see that

γ2

(
1 +

(
tan

θ

2

)2
)

= 4ρ(1− ρ) .

This implies that γ2 is a positive real and therefore γ is real
for some ω 6= 0, which is impossible by Lemma A.1.

Lemma A.4: For each ρ ∈ (0, 1/2), there is a unique ω+ >
0 such that

ω ∈ (0, ω+) =⇒ |µ−(iω)| > 1
ω > ω+ =⇒ |µ−(iω)| < 1

Proof: We know that µ−(0) = 1 and (from the proof of the
previous Lemma) for large ω: |µ−(ω)| is small. It is sufficient
to prove that ω+ is the unique solution in (0,∞) of |µ−(iω)| =
1 and that it is simple.

Consider the characteristic equation (Equation 14) ρµ2 −
γµ + (1 − ρ) = 0 and suppose that there is a root µ = eiθ.
Then γ = ρeiθ + (1 − ρ)e−iθ = cos(θ) + i(2ρ − 1) sin(θ).
Equate this to the expression given in Lemma A.1 and use the
identity cos2(θ) + sin2(θ) = 1 to obtain:

(
1− ω2|f |

f2 + ω2g2

)2

+
1

(2ρ− 1)2

(
ω3|g|

f2 + ω2g2

)2

= 1

This equation factors as follows:

ω2

(
g2

(2ρ− 1)2
ω4 + (f2 − 2|f |g2)ω2 − 2|f |3

)
= 0

The second factor gives exactly one simple positive root for
ω2, yielding a unique simple positive root ω = ω+.

Remark:
ω2

+

(1− 2ρ)|f | =
(

1− |f |
2g2

)
(1− 2ρ)+

√(
1− |f |

2g2

)2

(1− 2ρ)2 +
2|f |
g2
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