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Abstract. We discuss some stability problems when each agent of a linear flock in R interacts
with its two nearest neighbors (one on either side).

1. Introduction

A flock consists of a large number of moving physical objects, called agents, with their po-
sitions being controlled in such a way that they move along a prescribed path, in a prescribed
and fixed configuration (or in formation). Each agent knows the position and velocity of only a
few other agents, and this flux of information defines a communication graph.

In [5] graph theory and linear systems techniques are combined to provide a framework for
studying the control of formations. The main tools of graph theory that are related to the
problem are the directed graph Laplacians and the connectedness of the graph. Linear feedback
is then used to stabilize the patterns.

More recently [6] studied a system of coupled linear differential equations describing the
movement of cars in R, where each car reacts only to its immediate neighbors, and only the
movement of the first agent (the leader) is independent from the rest of the group. In the paper
it was proved that When equal attention is paid to both neighbors perturbations in the orbit of
the leader grow as they propagate through the flock. In fact, perturbations grow proportional
to size of the flock: when the leader’s perturbation has amplitude 1, then the perturbation in
the orbit of the agent furthest away from the leader will be proportional to N (the size of the
flock).

The aim of this paper is first of all to study the (asymptotic) stability of a family of such
systems. This is answered in detail in Theorems 3.2 and 3.3. Next we assume the flock has a
leader that chooses its orbit independently of the other members of the flock. We then analyze
how exactly the system converges to a stable flight pattern if the leader changes its orbit. This
question only makes sense when the system is already asymptotically stable, which is therefore
assumed henceforth. The latter question is important in applications as too great fluctuations
in the course of convergence to a coherent flight pattern will make that flock unviable.

In all of these arguments we closely follow the reasoning set forth in previous works [7, 8, 9].
However there are two important differences. The first is that the farthest member of the
flock (in this work) is coupled to the leader. In the language of partial differential equations,
this is akin to changing a boundary condition. The reason is twofold. Changing the boundary
condition can greatly aid the mathematics, and therefore help to gain insight. The second reason
is a deeper one: we do not know how these boundary condition influence the stability of these
systems, and thus this note can be viewed a test case (when compared with the papers just
cited). The other difference with the previous papers is that we here allow the weight of the
coupling with neighbors to be negative. While at first glance this seems a little odd, there is a
good reason to do so, if one hopes to study systems with more than nearest neighbor coupling.
Suppose for example that one models local interaction as a discretization of a fourth derivative,
a very natural idea. However the couplings to the first and second nearest neighbors will now
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have different signs. This goes against the grain of what one knows about Laplacian systems
in general, where in general all couplings must have the same sign (see [1]). In this case we
managed to overcome that problem and analyze stability also when the signs of the (nearest
neighbor) interactions are different. (By necessity they must add up to 1.)

The outline of this paper is as follows. In the next section we start by specifying the model.
Next we discuss the asymptotic stability of the model. Following [8] we introduce two other
types of stability for flocks. These describe the effect of perturbations in the leaders motion on
the outlying members of the flocks. A flock with N agents is harmonically stable if the effect
of a harmonic motion of the leader on the outlying members grows less than exponentially fast
in N (everything else held fixed). A flock is said to be impulse stable if the effect of the leader
being kicked is less than exponential on the outlying members. Thus is section 4, we discuss
harmonic stability of the model. The problem of impulse stability is still unsolved. We present
a few comments on that problem in section 5. (The appendix contains technical results and is
included for completeness.)

2. The model

We begin this section establishing the model of this work. The N +1 agents move in R along
orbits xi(t), i ∈ {0, · · ·n}, with velocities x′i(t). When they are moving in the desired formation
their velocities are equal and their relative positions are determined by N + 1 a priori given
constants hi:

(2.1) xj − xi = hj − hi .

We write the equation of motion for this model in terms of

(2.2) zi ≡ xi − hi .

These then have the following form:

(2.3) z̈i = f {zi − (1− ρ)zi−1 − ρzi+1}+ g {żi − (1− ρ)żi−1 − ρżi+1} ,

for all i = 1, . . . , N , and

(2.4) zN+1(t) = z0(t) ,

a priori given. We will assume the feedback parameters f , g are negative reals and the weight
ρ is a arbitrary real number.

It is intuitively convenient, though not necessary, to keep a particular realization of the above
system in mind. Identify x = N +1 with x = 0, so that the agents move on a (topological) circle.
Suppose further that the offsets hi are given by hi = −i mod N . Now the desired configuration
is that of N +1 agents moving at constant speed and uniformly distributed along a circle. (This
explains our title.)

Our strategy here is primarily studying qualitative aspects of the solution of (2.3)-(2.4) as we
let N tend to infinity while keeping all other parameters (ρ, f , and g) fixed. In particular we
wish to understand (1) when the system is asymptotically stable and (2) how does it converge
to its equilibrium when it is asymptotically stable. This stable equilibrium is given by the two
parameter family of orbits:

zk(t) = z0(0) + v0(0) t

and
żk(t) = v0(0) .

These orbits are called in formation orbits (for a more detailed discussion, cf. [6, 7, 8, 9]).
It is advantageous to write (2.3)-(2.4) in a more compact form:

z ≡ (z1, ż1, z2, ż2, · · · , zN , żN ) .

The system can now be recast as a first order ordinary differential equation:

(2.5) ż = Mz + Γ0(t) .

The matrix M and the vector Γ0 are defined below.
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Setting

(2.6) Qρ =




0 ρ
1− ρ 0 ρ

. . . . . . . . .
1− ρ 0 ρ

1− ρ 0




N×N

,

the matrix P defined by

(2.7) P = I −Qρ ,

where I is the N -dimensional identity matrix, is called the reduced graph Laplacian. It describes
the flow of information among the agents, with the exception of the leader (hence the word
‘reduced’).

The orbit of the leader is assumed to be beforehand given and therefore only appears in the
forcing term Γ0(t). We will refer to this agent as an independent leader. Analyzing (2.3)-(2.4)
and assuming without loss of generality that h0 = 0, one gathers that:

(2.8) Γ0(t) =




0
(1− ρ) (fz0(t) + gż0(t))

0
...
0

ρ (fz0(t) + gż0(t))




.

In order to define M matrix of (2.5) in terms of these quantities, we use the Kronecker product,
⊗,

M = I ⊗A + P ⊗K ,

where A and K the 2× 2 matrices:

A =
(

0 1
0 0

)
and K =

(
0 0
f g

)
.

The advantage of this somewhat roundabout way of defining the matrix M is that in the
eigenvalues of the reduced Laplacian P can be given explicitly. From that the eigenvalues of M
can then be derived.

3. Asymptotic Stability

The system defined in (2.3)-(2.4) is called asymptotically stable if all eigenvalues of M have
negative real part. Assuming the Γ0(t) = 0, for t > t0, the solution of the system tends to 0
exponentially fast (in t) if and only if the system is asymptotically stable. This corresponds to
the classical notion of asymptotic stability.

The study of the eigenvalues of the N × N matrix Qρ defined in (2.6) constitutes a special
case of results given in [2, 3]. They are given by:

2
√

(1− ρ)ρ cos
(

`π

N + 1

)
, for ` = 1, 2, . . . , N ,

for all real ρ. These eigenvalues are all real if and only if ρ ∈ [0, 1] and imaginary otherwise, and
the locus of the set of eigenvalues is invariant under multiplication by −1. We have:

Proposition 3.1. The reduced Laplacian P has eigenvalues λ` = 1 − 2
√

(1− ρ)ρ cos
(

`π
N+1

)
,

for ` = 1, 2, . . . , N , for all real values of ρ.

One can show that the eigenvalues of M = I⊗A+P ⊗K are the solutions ν`± of the equation

(3.1) ν2 − λ` g ν − λ` f = 0 ,

where λ` runs through the spectrum of P (cf. [4, 5, 6, 7]). So we have:
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Theorem 3.2. (1) The eigenvalues of M are

ν`± =
1
2

(
λ` g ±

√
(λ` g)2 + 4λ` f

)
,

where λ` runs through the spectrum of P .
(2) For ρ ∈ [0, 1], all real numbers λ` are contained in the interval [0, 2], and the system is

asymptotically stable if and only if both f and g are strictly smaller than zero.

These expressions are the same as the corresponding ones for a slghtly differnt one dimensional
flock given in [8]. There it was assumed that ρ ∈ [0, 1). We extend that research by looking at
real values of ρ outside the interval [0, 1]. This may at first seem obscure. Here however is the
motivation. Suppose for a moment that one allows each agent to interact with two neighbors on
either side, then one could be tempted to model this interaction as a discretization of a fourth
derivative in the spatial variable. In that case some of the weights of the interaction would have
negative values.

Theorem 3.3. Let ρ ∈ R\[0, 1]. For a given f and g, the system defined in (2.3)-(2.4) is
asymptotically stable, for an arbitrary N , if and only if both of the following hold:

(1) f and g are negative, and
(2) f + g2 ≥ 0 or else 4|ρ(1− ρ)| ≤ −g2

f+g2 .

Proof. When ρ(1 − ρ) is negative, the eigenvalues λ` of P satisfy λ` = 1 + i a`, where a` as-
sumes the values −2

√
|ρ(1− ρ)| cos `π

N+1 . In particular, for an N sufficiently large, the a`’s will
distribute themselves smoothly in the interval

(3.2)
(
−2

√
|ρ(1− ρ)|, +2

√
|ρ(1− ρ)|

)
.

We need to prove that eigenvalues of M (provided by (3.1)) have negative real part. We first
look at eigenvalues that correspond to a` approaching to 0. By continuity we may set a` = 0.
We get

ν± =
g ±

√
g2 + 4f

2
.

These roots are real and have opposite signs if f is positive and have the same sign as g if f is
negative. This proves that for a` small enough the corresponding eigenvalues of M have negative
real part if and only if f and g are negative.

It remains to check for what values of a the real part of ν− or ν+ can become greater than
or equal to 0 (cf. Figure 3.1). To that end we set ν = iτ , with τ real. The real and imaginary
part of the equation (3.1) now become (abbreviating a` to a):

{
τ2 − g a τ + f = 0

f a + g τ = 0

The first equation defines a hyperbola in the (a, τ) plane, and the second equation a line through
the origin. Real solutions for a and τ exist if and only if f + g2 < 0 and are given by

(τ, a) =
±1√
−f − g2

(f,−g) .

Such solutions exist for some a smaller than 2
√
|ρ(1− ρ)| (see interval (3.2)) if and only if in

addition

2
√
|ρ(1− ρ)| > −g√

−f − g2
.

Finally, if f + g2 < 0 and 2
√
|ρ(1− ρ)| > a > −g√

−f−g2
, we prove that the system has eigen-

values with positive real part. By continuity, it is sufficient to prove this only for a arbitrarily
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Figure 3.1. The calculation of ν± as function of a for f = −5 and g = −1, a
ranging from 0 to 5. Notice that ν±(0) = 0.5(−1± i

√
19 ); at a = 0.5, ν− crosses

the imaginary axis.

large. In that case Theorem 3.2 (1) gives:

(3.3) ν− =
λg

2

(
1−

√
1 +

4f

λg2

)
= −f

g
+ O(λ−1) .

From equation (3.1) we deduce that Re (ν+) + Re (ν−) = Re (g(1 + ia)) = g. Thus as a tends to
infinity, Re (ν+f) = g + f

g > 0, which was to be proved. ¤

4. Harmonic Stability

The system is harmonically unstable roughly if oscillatory or harmonic perturbations in the
orbit of the leader (that is: of the form eiωt) have their amplitude magnified by a factor that is
exponentially large in N (cf. [8]).

We first need some notation. It will often be convenient to replace ρ by a different constant:

κ =
1− ρ

ρ

or, equivalently,

ρ =
1

1 + κ
,

We also define (for ρ 6= 0):

(4.1) µ± ≡ 1
2ρ

(
γ ±

√
γ2 − 4ρ(1− ρ)

)

where

γ =
f + i ω g + ω2

f + i ω g
.

Proposition 4.1. The frequency response function of the k-th agent is given by

ak(f, g, ω) =
κk(µN+1−k

− − µN−k
+ ) + (µk− − µk

+)
µN

+ − µN−
,
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where µ± is defined as in (4.1).

Proof. All eigenvalues of M have negative real part. Let z0(t) be given by eiωt. Under these
assumptions, the motion of the system is asymptotic (as t →∞) to zk = ak eiωt. This leads to
a recursive equation on ak, for k = 1, . . . , N ,

(1− ρ) ak−1 − γ ak + ρ ak+1 = 0 .

The boundary conditions are given by:

a0 = aN+1 = 1 .

Let µ± be the roots of the associated characteristic polynomial

P (x) = x2 − γ

ρ
x +

1− ρ

ρ
.

The general solution is
ak = c−µk

− + c+µk
+ .

A convenient way to solve for c± is by setting d1 = c−µN− and d2 = c+µN
+ . The boundary

conditions can be rewritten as(
1 1

µN+1
− µN+1

+

)(
c−
c+

)
=

(
1
1

)

or, equivalently, (
c−
c+

)
=

1
µN+1

+ − µN+1
−

(
µN+1

+ − 1
1− µN+1

−

)
.

Substituting this into ak and using the fact that the product of the µ± equals κ, we get the
result. ¤

We will assume here without further proof that fluctuations of the leader that are propagated
through the system are largest for the agents furthest away from the leader, i.e. halfway in the
flock. For simplicity we only consider in this section the response of the agent k = N+1

2 where
N is odd (and large).

Corollary 4.2. If N is odd, we have for M = N+1
2 :

aM (f, g, ω) =
(κM + 1)
µM− + µM

+

,

where µ± is defined as in (4.1).

Recall that by Theorems 3.2 and 3.3 the system is asymptotically stable if and only if ρ ∈ [0, 1]
and f and g negative or else ρ ∈ R\[0, 1] and both of the following hold:

• f and g are negative, and
• f + g2 ≥ 0 or else 4|ρ(1− ρ)| ≤ −g2

f+g2 .

Recall from the proof of Theorem 4.1 that if z0(t) equals eiωt then zk is asymptotic to ak eiωt.
Thus the amplification at the k-th agent of the leader’s signal is given ak(ω). We need to
determine whether maxk supω |ak(ω))| is exponential in N (instability) or less than exponential
(stability). We may assume k = M . So let

AM ≡ sup
ω∈R

|aM (iω)| .

Following [8], we call a system harmonically stable if it is asymptotically stable and if

lim sup
M→∞

|AM |1/N ≤ 1 .

Theorem 4.3. The system given by the equation (2.5) is harmonically stable if and only if
ρ = 1/2 and f and g are negative.
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Figure 4.1. The eigenvalues µ+(ω) (blue) and µ−(ω) (red) when f = g = −1
and ρ = 1/2, for ω positive. In addition the unit circle is drawn in green.

Proof. We concentrate first on the ρ = 1/2 case. Here we have:

aM (ω) =
2

µ+(ω)M + µ−(ω)M
and µ+µ− = 1 .

Geometrically what happens is that the system exhibits near-resonance. More precisely, the
curves µ±(ω) are (quadratically) tangent to the unit circle at ω = 0 (see Figure 4.1). Of course
when µ±(ω) = e±iπ/2M the denominator cancels and aM is undefined. The quadratic tangency
means that (for M large) the curves µ±(ω) pass the points e±iπ/2M on the unit circle at a
distance proportional to 1/M . In turn this means that

AM = sup
ω
|aM (ω))|

grows linearly in M and is thus harmonically stable.
Analytically this can be worked out precisely by doing a pole expansion on aM (ω). A very

similar calculation was done in detail in [7] and we will not repeat that calculation here. The
only differences with that calculation are: here we are calculating aM and not aN , and here our
eigenvalues ν`± are slightly different from those in the cited paper.

Now we turn to the other cases: ρ 6= 1/2. We first argue that the cases ρ and 1 − ρ are
symmetric. In particular if we use a new value ρ′ = 1−ρ instead of ρ, then in the expression for
aM , µ± and κ are all replaced by their reciprocals as can be seen by inspecting the polynomial
P in the proof of Proposition 4.1. A little calculation shows that aM is invariant under this
operation. It is thus sufficient to consider only ρ < 1/2.

Proposition 6.3 tells us that for all ρ < 1/2 there is no resonance or near resonance as the two
µ have distinct modulus. Lemma 6.4 implies that, for ω less than some ω+ given there, µ−(ω)
is bigger than 1. Since in this case |κ| > 1 and µ+µ− = κ, we have for ω ∈ (0, ω+):

|κ| > |µ+(ω)| > |µ−(ω)| ,

and thus the expression in the above Corollary grows exponentially in M . Therefore all these
systems are harmonically unstable. ¤

5. An open problem

Suppose now that the flock is in a stable equilibrium (i.e. moves stably in formation) when the
leader suddenly and quickly changes its velocity. Roughly speaking we call the system impulse
stable when the physical response of the other agents (i.e., the acceleration, or the velocity, or
the position) is less than exponential in M . As observed in the proof of Theorem 4.3, the case
ρ = 1

2 is extremely similar to the problem studied in [7], and the solution is in fact similar to
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the one given in that case. The calculations there indicate responses that are ‘proportional’ to
M . Thus may we conclude that here also:

Proposition 5.1. The system given in the equation (2.5) is impulse stable when it is asymp-
totically stable and when ρ = 1/2.

The cases ρ 6= 1/2 lead to problems similar to the one that remained unsolved in [9]. It seems
very likely at this point that most of these cases are impulse unstable, though this is by no means
obvious or known. More specifically, as we vary f , g and ρ 6= 1/2, we do not even qualitatively
understand the large N behavior of the motion of these flocks. This question is relevant because
velocity changes of the leader are a natural context in which stability plays an important role for
the cohesion of the flock. We might think for example of a lead car accelerating when a traffic
light turns green or a large flock of animals changing course because outlying members spotted
and try evade a predator.

The mathematical problem boils down to an inverse Fourier transform of aM (ω) where M is
large. Current standard integration techniques do not readily give asymptotic (in M) expressions
for such integrals. We do not address this challenging question any further here, leaving it as
an open problem for future research.

6. APPENDIX: Technical Results

In this section we gather some technical results which we exhibited partially before in [8].
The results there were proved only for ρ ∈ [0, 1]. Some of the calculations extend verbatim
(or almost) to all ρ ∈ R. The proof of the main result, Proposition 6.3, had to be modified
substantially however.

Lemma 6.1. Let ω ≥ 0 be sufficiently small.
(1) For ρ ∈ (0, 1

2), we have:

µ+ =
1− ρ

ρ

(
1 +

ω2

(2ρ− 1)|f | − i
|g|ω3

(2ρ− 1)f2

)
+O(ω4)

and

µ− = 1− ω2

(2ρ− 1)|f | + i
|g|ω3

(2ρ− 1)f2
+O(ω4) .

(2) For ρ ∈ (1
2 , 1), we have

µ+ = 1− ω2

(2ρ− 1)|f | + i
|g|ω3

(2ρ− 1)f2
+O(ω4)

and

µ− =
1− ρ

ρ

(
1 +

ω2

(2ρ− 1)|f | − i
|g|ω3

(2ρ− 1)f2

)
+O(ω4) .

Proof. By sheer calculation. (See [6] for some of the computational details.) ¤
Remark 6.1. This expansion diverges for ρ = 1/2; in that case we have (cf. [6]):

µ± = 1− ω2

|f | ±
ω2|g|√
2|f |3/2

+O(ω4) + i

(
±
√

2ω

|f |1/2
±O(ω3)

)
.

Lemma 6.2.

γ(ω) = 1− ω2|f |
f2 + ω2g2

+ i
ω3|g|

f2 + ω2g2
.

The complicated looking conditions in the following proposition are nothing but the conditions
that insure asymptotic stability (see Theorems 3.2 and 3.3).

Proposition 6.3. Let ρ ∈ [0, 1] and f and g negative or let ρ ∈ R\[0, 1] and suppose that both
of the following hold:
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i: f and g are negative, and
ii: f + g2 ≥ 0 or else 4|ρ(1− ρ)| ≤ −g2

f+g2 .

Then, r defined by

r = sup
ω>0

|µ−(ω)|
|µ+(ω)|

exists and is contained in interval (0, 1) with only two exceptions:

• when ρ = 1
2 ,

|µ−(ω)|
|µ+(ω)| equals 1 at ω = 0 and is is strictly smaller than 1 for ω > 0, or

• when 4ρ(1 − ρ) = −g2

f+g2 < 0 < 0, |µ−(ω)|
|µ+(ω)| is strictly smaller than 1, if 0 ≥ ω2 < f2

−f−g2 ,

and |µ−(ω)| = |µ+(ω)|, if ω2 = f2

−f−g2 .

2

0

−2

−2

543210

1

−1

−1

−3

−3−5 −4

Figure 6.1. The constant κ = (1− ρ)/ρ as function of ρ.

Proof. It is clear from remark 6.1 that when ρ = 1
2 the two eigenvalues are equal to 1, when

ω = 0, and so at that point the quotient equals 1. The arguments below establish that the
quotient is always smaller than 1, for all positive values of ω. As far as the second exception is
concerned: We will show that the equality of µ+ and µ− occurs at some ω > 0. The arguments
below, however, insure that for smaller (non-negative) values of ω, the modulus of the quotient
of the eigenvalues is strictly smaller than 1.

From its definition, γ(ω) ≈ ω
ig when ω is large. Substitute this into the expression for µ±

in equation (4.1) to see that for a large enough ω, in fact, |µ−(ω)|
|µ+(ω)| becomes very small. In the

following, note that |κ| > 1 if and only if ρ < 1
2 and |κ| > 1 if and only if ρ > 1

2 (see Figure 6.1).
So when ω = 0, Lemma 6.1 implies that |µ−|

|µ+| equals min{|κ|, |κ|−1}, for all ρ.
It is now sufficient to prove that, for ω ∈ R+, the absolute values |µ±| are never equal. So

suppose there are ω0 and θ ∈ R such that µ+(ω0) − µ−(ω0)eiθ = 0. The definition of µ± in
equation (4.1) provides:

γ(1− eiθ) = −
√

γ2 − 4ρ(1− ρ) (1 + eiθ) .

Dividing this by 1 + eiθ, squaring the equation, and noting that

(1− eiθ)2

(1 + eiθ)2
= − tan2

(
θ

2

)
,

we get

γ2

(
1 + tan2 θ

2

)
= 4ρ(1− ρ) .
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If ρ(1− ρ) > 0, then γ2 is a positive real number and therefore γ is real for some ω 6= 0, which
is impossible by Lemma 6.2. If ρ(1 − ρ) < 0, then γ2 is a negative real number so that γ is
imaginary. Setting the real part of γ equal to 0 in Lemma 6.2 yields f2 + ω2(f + g2) = 0. If
f + g2 is non-negative, this has no solution (because ω is real). So suppose it is positive. Then
substitute the positive solution into γ and check that γ = i |g|√

−f−g2
. Substituting this in turn

into (4.1), we see that the modulus of µ+ is greater than that of µ− (here
√· means the root

in the upper half plane) as long as 4|ρ(1 − ρ)| < −g2

f+g2 . When 4|ρ(1 − ρ)| = −g2

f+g2 , we have
µ+ = µ−. ¤
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Figure 6.2. An illustration of the curious behavior of µ±(ω). The eigenvalues
µ+(ω) are in blue and µ−(ω) are in red, when f = −5 and g = −1, for positive
ω. The circle r = κ (green), r =

√
|κ| (yellow), and the unit circle (black)

are also drawn. Note that µ+(0) = κ (which is negative in both cases) and that
µ−(0) = 1. In the first figure ρ = −0.05 and µblue is always bigger than µred

except MAPLE insisted in using the principal root for the square root as opposed
to our convention, and so it recklessly swaps the 2 roots. In the second picture
4ρ(1− ρ) > −g2

f+g2 < 0 (while ρ(1− ρ) < 0) and now the quotient of the two roots
crosses 1.

Lemma 6.4. For each ρ < 1/2, there is a unique ω+ > 0 such that

ω ∈ (0, ω+) implies |µ−(ω)| > 1

and
ω > ω+ implies |µ−(ω)| < 1 .
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Proof. We know that µ−(0) = 1 and, from the proof of the previous lemma, for a large ω,
|µ−(ω)| is small. It is sufficient to prove that ω+ is the unique solution in (0,∞) of |µ−(ω)| = 1
and that it is simple.

In fact, consider the characteristic equation ρµ2 − γ µ + (1 − ρ) = 0 and suppose that there
is a root µ = eiθ. Then

γ = ρeiθ + (1− ρ)e−iθ = cos(θ) + i(2ρ− 1) sin(θ) .

Equating this to the expression given in Lemma 6.2 and using the Pythagorean trigonometric
identity, we to obtain:

(
1− ω2|f |

f2 + ω2g2

)2

+
1

(2ρ− 1)2

(
ω3|g|

f2 + ω2g2

)2

= 1

This equation factors as follows:

ω2

(
g2

(2ρ− 1)2
ω4 + (f2 − 2|f |g2)ω2 − 2|f |3

)
= 0

The second factor is a quadratic expression in ω2 which has a positive leading coefficient and a
negative trailing coefficient. This gives exactly one simple positive root for ω2, yielding a unique
simple positive root ω = ω+. ¤
Remark 6.2. In fact,

ω2
+ = (1− 2ρ)2|f |


1− |f |

2g2
+

√(
1− |f |

2g2

)2

+
2|f |

(1− 2ρ)2g2


 .
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