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Abstract— We investigate stable maneuvers for a group of
autonomous vehicles while moving in formation. The allowed
decentralized feedback laws are factored through the Laplacian
matrix of the communication graph. We show that such laws
allow for stable circular or elliptical motions for certain vehicle
dynamics. We find necessary and sufficient conditions on the
feedback gains and the dynamic parameters for convergence to
formation. In particular, we prove that for undirected graphs
there exist feedback gains that stabilize rotational (or elliptical)
motions of arbitrary radius (or eccentricity). In the directed
graph case we provide necessary and sufficient conditions on
the curvature that guarantee stability for a given choice of
feedback gains. We also investigate stable motions involving
reorientation of the formation along the direction of motion.

Keywords: formation stability, formation maneuvers, graph
Laplacian, decentralized control.

I. INTRODUCTION

The study of decentralized control of multiple autonomous
vehicles offers many interesting challenges. There is a grow-
ing literature devoted to such problems [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. One
of the main goals is to achieve a coordinated objective
while using only relative information concerning positions
and velocity. More precisely, the goal of the vehicles is
to achieve and maintain pre-specified relative positions and
orientations with respect to each other while performing joint
maneuvers. Each vehicle is provided information only from
a subset of the group. The specific subset is given through
the set of “neighbors” in a communication digraph. This
digraph remains fixed during the motions and need not be
related in any way to the actual position of the vehicles. In
this paper we study the stability of circular and elliptical
motions while maintaining an arbitrary formation. We also
sharpen the estimates in [16] that relate the feedback gains
to the curvature of the motion and investigate the problem
of reorienting the formation while moving.

The feedback scheme investigated here was proposed by
Fax and Murray in [2]. We point out that the issues investi-
gated here are related to the problem of consensus seeking
by autonomous agents ([17]). For additional background we
refer the reader to [6] and the references therein.

The paper is organized as follows. In Section II we set
up the basic model. The relevant graph theoretic facts are
collected in Section III. The main results are proved in
Section IV. Various motions of the formation are illustrated
in Section V and VI.
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II. MODEL

We assume we are given N vehicles with the same
dynamics

ẋi = Avehxi + Bvehui i = 1 . . . N xi ∈ R2n (1)

where the entries of xi represent n configuration variables for
vehicle i and their derivatives, and the ui represent control
inputs. We will be specially interested in the case where the
vehicles move in two dimensions and the matrices Aveh and
Bveh are of the form

Aveh =




0 1 0 0
0 a22 0 a24

0 0 0 1
0 a42 0 a44


 Bveh =




0 0
1 0
0 0
0 1


 . (2)

The form of the first and third rows of Aveh and Bveh is
determined by the fact that the even-numbered coordinates
represent the velocities of the (previous) odd-numbered coor-
dinates and that the controls are the accelerations (this even
holds for n > 2). The zeros in the even columns of Aveh are
necessary if we want the vehicles to converge to formation
(see [5] Proposition 3.1 and [16] Proposition 4.2). We will
explore below the effect of the other entries.

We will refer to the odd-numbered entries of x =
(x1, . . . , xN )T as position-like variables and to the even-
numbered entries as velocity-like variables. We will
use the notation xp = ((xp)1, . . . , (xp)N )T , xv =
((xv)1, . . . , (xv)N )T to denote the vectors of position-like

and velocity-like variables, so x = xp ⊗
(

1
0

)
+ xv ⊗

(
0
1

)

(where ⊗ denotes the Kronecker product).

Definition 2.1: A formation is a vector h = hp⊗
(

1
0

)
∈

R2nN (where ⊗ denotes the Kronecker product). The N
vehicles are in formation h at time t if there are vectors
q, w ∈ Rn such that (xp)i(t) − (hp)i = q and (xv)i(t) =
w, for i = 1 . . . N . The vehicles converge to formation
h if there exist Rn-valued functions q(·), w(·) such that
(xp)i(t) − (hp)i − q(t) → 0 and (xv)i(t) − w(t) → 0, as
t → ∞, for i = 1 . . . N (where xp and xv are as indicated
above).
Figure 1 illustrates the interpretation of the vectors in the
definition.

For more convenient mathematical treatment we introduce
the following space associated with each formation vector.

Definition 2.2: Let h = hp ⊗
(

1
0

)
∈ R2nN , let 1N

denote the all ones vector of size N , and let ej , j = 1, . . . , 2n
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Fig. 1. Four vehicles in arrow tip formation

denote the standard basis vectors in R2n. Set W = {1N ⊗
ej : j = 1, . . . , 2n}. We define the h-formation space Fh by

Fh = h + span W = {x| ∃γ ∈ R2n : x− h = 1N ⊗ γ}
Notice that x−h = 1N⊗γ is equivalent to (xp)i−(hp)i = q

and (xv)i = w where γ = q ⊗
(

1
0

)
+ w ⊗

(
0
1

)
.

With this definition x is in formation h if and only if
x ∈ Fh and x(t) converges to formation h if and only if the
distance from x(t) to the space Fh tends to zero as t →∞.

To complete the model we are also given a digraph Γ
which captures the communication links between vehicles
(see Section III). Each vertex represents a vehicle and there
is a directed edge from one vertex to another if there is a
communication link sending information from the first vehi-
cle to the second. The second vehicle uses this information
in a feedback formula to adjust its own state. We say that the
first vehicle is a neighbor of the second. For each vehicle i,
Ji denotes the set of its neighbors. The decentralized nature
of the control is encoded into the fact that controls ui are
functions of xj − xi and hj − hi for each j ∈ Ji. Note,
however, that this still requires all vehicles to agree on a
global reference frame with respect to which the differences
xj − xi can be described.

A natural way to combine the relative information (as done
in [2]) is to define output functions yi computed from an
average of the relative displacements (and velocities) of the
neighboring vehicles as follows

yi = (xi − hi)− 1
|Ji|

∑

j∈Ji
(xj − hj) i = 1, . . . , N.

where |Ji| indicates the number of neighbors to vehicle i. We
will make a slight modification here to allow for the possi-
bility that a vehicle might receive no information and so the
corresponding vertex in the graph would have no neighbors.
This situation occurs naturally if one of the vehicles is a
designated leader around whose motions the others should
adjust theirs. We will define the output functions zi by

zi =

{
1
|Ji|

∑
j∈Ji((xi − hi)− (xj − hj)) if |Ji| 6= 0

0 otherwise

for i = 1, . . . , N . As a result, the corresponding output
vector z can be written as z = L(x − h) where L =
LΓ ⊗ I2n and LΓ is the (directed) Laplacian matrix of the
communication graph Γ (see Section III).

Collecting the equations for all the vehicles into a single
system we obtain

ẋ = Ax + Bu

z = L(x− h)

with A = IN ⊗Aveh, B = IN ⊗Bveh.
We are interested in studying the existence of feedback

matrices F such that the solutions to

ẋ = Ax + BFL(x− h) (3)

converge to formation h. This is a stabilization problem
involving output feedback. In order to take advantage of
the block structure of the matrices A, B, and L we will
restrict our study to matrices F of the form F = IN ⊗Fveh

(a particular “decentralized” control law where the same
feedback law applies to all vehicles). In this case, we can
write Equation (3) as follows

ẋ = IN ⊗Avehx + LG ⊗BvehFveh(x− h) (4)

The main purpose of the paper is to investigate the
relationship between of feedback matrices Fveh that
guarantee convergence to formation and the structure
of Aveh.

III. ALGEBRAIC GRAPH THEORY

Here we include only the minimal terminology from graph
theory to treat the problem at hand (for standard terms
see [18]). A directed graph or digraph Γ consists of a finite
set V of vertices and a set E ⊆ V×V (the directed edges). We
will assume that the digraph has no loops, that is (x, y) ∈ E
implies x 6= y. If the digraph has the property that (x, y) ∈ E
implies (y, x) ∈ E we will say that it is undirected. In
the vehicle context this corresponds to having bidirectional
communication.

A (directed) walk in a digraph is a finite sequence of edges
(ak, bk) k = 1, . . . , r such that bk = ak+1 for k = 1, . . . , r−
1. A walk with distinct vertices is called a (directed) path.

Let Γ denote a digraph with vertex set V = {i : i =
1, . . . , N} and edge set E . Let MatN denote the set of all
square N × N matrices with real entries. The adjacency
matrix of Γ is the matrix Q ∈ MatN with entries

qij =
{

1 if (j, i) ∈ E ,
0 otherwise (i, j ∈ V).

When Γ is undirected, the matrix Q is symmetric. The in-
degree matrix of Γ is the diagonal matrix D ∈ MatV(R) with
diagonal entries

dii = |{j ∈ V : (j, i) ∈ E}| (i ∈ V).

The directed Laplacian of Γ is the matrix defined by ([16])

LΓ = D+(D −Q),



where D+ is the (Moore-Penrose) pseudoinverse of D. If
D is invertible then LΓ = IN − D−1Q (see [19], [1] for
general properties in this case). We use the word directed
to distinguish this matrix from the most common definition
of Laplacian in the graph theory literature ([18]) as MΓMT

Γ

where MΓ is the incidence matrix of Γ (but see also [20]).
This definition always results in the same symmetric matrix
regardless of whether the graph is directed or not. We prefer
the first definition since it is the matrix LΓ which is the most
relevant to this problem. Both definitions agree for undirected
graphs.

The eigenvalues of the Laplacian have several well known
properties. If the graph is undirected then the eigenvalues of
LΓ are real. A key property of LΓ that we will use is that
zero is an eigenvalue of LΓ and the all ones vector 1 is an
associated eigenvector (but in general there could be others).
In all cases, all the eigenvalues of LΓ lie in the circle of
radius 1 centered at the point 1 + 0i in the complex plane.
In particular, except for zero, all eigenvalues have positive
real part (for additional properties see [6]).

Definition 3.1: A rooted directed tree is a digraph T with
the following properties:
• T has no cycles.
• There exists a vertex v (the root) such that there is a

(directed) path from v to every other vertex in T .
The following result was proved in [6].

Proposition 3.2: Let G denote a (loopless) digraph. Then,
zero is an eigenvalue of algebraic multiplicity one for the
directed Laplacian LΓ if and only if Γ has a rooted directed
spanning tree.

In fact, this is a consequence of a more general result on
the structure of the null space of the Laplacian (see [16]).
For additional graph theoretic terms and results see [21]. In
what follows we will only be interested in the case when
zero is an eigenvalue of multiplicity one of Γ.

IV. STABILIZABILITY

We are interested in stabilizing gains for matrices Aveh

and Bveh given by (2). First we recall the general stabiliza-
tion result.

Theorem 4.1: ([6]) Let Γ be a digraph with the property
that zero is an eigenvalue of the directed Laplacian LΓ of al-
gebraic multiplicity one. Then the matrix Aveh +λBvehFveh

is stable (Hurwitz) for each nonzero eigenvalue λ of LΓ if
and only if, for every h, every solution of (4) converges to
formation h.

We now investigate the existence of Fveh that make
Aveh + λBvehFveh stable for the matrices of the form (2)
(in particular, the vehicles are moving on a plane). Towards
this end we introduce the following submatrix of Aveh

Afor =
(

a22 a24

a42 a44

)
.

We will search for feedback which is of the even simpler
form

Fveh =
(

f1 f2 0 0
0 0 f1 f2

)

Necessary and sufficient conditions for f1, f2 to stabilize
Aveh + λBvehFveh where given in [6] for the case when
Afor is diagonal. Here we continue the analysis in [16] for
the case when Afor has off-diagonal terms. We consider first
the case when Afor has the form

Afor =
(

0 −k
k 0

)
(5)

for some k > 0. We should think of Afor as capturing the
formation dynamics.

Let q(x) = x2+sx+p, be a polynomial where s = s1+s2i
and p = p1+p2i are complex numbers. If µ is a root of q(x)
then µ̄ is a root of r(x) = x2 + s̄x + p̄. Therefore q(x) is
stable if and only if h(x) = q(x)r(x) is. Applying Routh’s
criterion to h(x) (which has real coefficients) results in the
following necessary and sufficient conditions for stability of
q(x):

s1 > 0 2p1 + s2
1 + s2

2 > 0 s1p1 + s2p2 > 0

p1s
2
1 + p2s1s2 − p2

2 > 0

The eigenvalues of Aveh +λBvehFveh are the roots of the
polynomial q(x) = (x2 − λf2x + (−λf1))2 + k2x2. We can
factor q(x) as q+(x)q−(x) where

q±(x) = x2 − λf2x + (−λf1)± ixk.

Since the only difference in the factors is in the term ±ikx
we will only show the calculations for q+(x). Writing λ =
α + βi we can apply the above conditions with s1 = −f2α,
s2 = k − f2β, p1 = −f1α, and p2 = −f1β. The above
formulas become:

0 < −αf2

0 < −2αf1 + (αf2)2 + (k − βf2)2

0 < (−f2α)(−f1α) + (k − f2β)(−f1β)
0 < (−f1α)(f2α)2 − f1β(−f2α)(k − f2β)− f2

1 β2

As mentioned in Section III, we always have α > 0, so
the first inequality is always equivalent to f2 < 0. In the case
when λ is real (β = 0), for example when the communication
graph is undirected, the last inequality is equivalent to f1 <
0. In this case the other two inequalities are automatically
satisfied. We conclude that for real λ the inequalities simplify
to

f1 < 0 f2 < 0

regardless of k.
We have now shown:
Proposition 4.2: When the eigenvalues of the Laplacian

are real and the vehicle dynamics are given by (5) the
vehicles converge to formation if and only if f1 < 0 and
f2 < 0.
The sufficiency was also derived in [16] in a different way.

Remark 4.3: It is worth pointing out that in the case of
real eigenvalues the same gains achieve stability for any
value of k (and hence for arbitrary curvatures). The story



is quite different in the case of complex eigenvalues as we
now see.

Assume now that there are some complex eigenvalues, so
β 6= 0. We still get f2 < 0. The third inequality reduces to
f1βk < f1f2(α2 +β2). Since the Laplacian has real entries,
its eigenvalues come in complex pairs. Therefore this last
inequality must hold for β positive and negative. This implies
that the right side must be positive and so again we get
f1 < 0. We therefore get the inequality

|k| < −f2(α2 + β2)
|β| , (6)

for those eigenvalues of LΓ for which β 6= 0 (for the others
the third inequality above is automatically satisfied). Notice
that the absolute value also accounts for the corresponding
inequality for q−(x). Since f1 < 0 the second inequality is
automatically satisfied. The fourth inequality simplifies to

βk >
−f1β

2 − αf2
2 (α2 + β2)

−f2α
.

Again this must hold for β both positive and negative. This
requires that the right hand side be negative. This condition
is equivalent to

−f1

f2
2

<
α

β2
(α2 + β2) (7)

Under this condition the fourth inequality then reduces to

|k| <
−f1|β|
f2α

− f2(α2 + β2)
|β| (8)

Since f1 and f2 are negative the inequality (8) implies (6). So
the conditions we obtain for k are just given by (7) and (8).
We have shown the following.

Proposition 4.4: Necessary and sufficient conditions for
system (5) to converge to formation are f1 < 0, f2 < 0 and
that k satisfy (7) and (8) for all eigenvalues of the Laplacian
with non-zero imaginary part.

These conditions are sharper than those in [16] as can be
seen by choosing f1 = −1, f2 = −1 and k = 0.05 when
the graph is the directed cycle on 5 vertices, for example.
In this case both (7) and (8) are satisfied but the conditions
in [16] fail.

We now analyze the paths that are followed while main-
taining the formation. Assume that the vehicles start in
formation. That is, if x0 is the initial condition, then x0 =
h + 1N ⊗ γ0. Let x(t) denote the solution to the system

ẋ = (IN ⊗Aveh)x (9)
x(0) = x0. (10)

We want to show that there exists a function γ(t) such that
x(t) = h + 1N ⊗ γ(t) for all t (see Definition 2.2). Notice
that, in this case, x(t) is also a solution of System 4, and
so solutions of (9) represent the trajectories of the vehicles
while in formation. The solution to (9) has the form x(t) =

In ⊗ eAvehtx0. Then, by expanding the exponential into its
power series, we get

x(t) = IN ⊗ eAvehth + (IN ⊗ eAveht)(1N ⊗ γ0)

= (IN ⊗ I2n)h +


IN ⊗

∑

j>0

Aj
vehtj

j!


 h

+1N ⊗ (eAvehtγ0)
= h + 1N ⊗ (eAvehtγ0)

where the second term vanishes because the even-numbered
entries of h are zero and the odd-numbered columns of Aveh

are zero. This is as desired with γ(t) = eAvehtγ0. For the
system (9) the functions x2

2i +x2
4i are integrals of motion for

i = 1, . . . , N (we are in the case n = 2). We have shown
the following.

Proposition 4.5: If the vehicles start in formation with
initial velocity v0 then the vehicles maintain the formation
while moving along a circular path of radius v0/k at constant
speed v0. If v0 = 0 then the vehicles will approach formation
and a fixed point location in space.

If the vehicles do not start in formation then, under the
assumptions of either Proposition 4.2 or Proposition 4.4,
the vehicles will converge to formation while asymptotically
approaching such a circular path where v0 depends on the
initial velocities. Finally we point out that if in the matrix
Afor we set a22 = a44 = 0, a24 = −k2 and a42 = 1, then
the exact same inequalities for k guarantee convergence to
formation and this time the functions x2

2i+k2x2
4i are integrals

of motion for i = 1, . . . , N . Therefore the in-formation
trajectories are ellipses (of eccentricity

√
1− k4 if k < 1).

V. EXAMPLES

We illustrate the main results with several numerical exam-
ples. In all these figures, there are six vehicles and the desired
formation is an arrow tip pointing to the right. In some of
the plots involving circles of small radius the formation was
scaled up in order to show details of the trajectories (the size
of the formation does not affect convergence). All vehicles
start lined up in a row with some initial velocity. Figure 2
shows the trajectories when the communication graph is a
directed cycle in six vertices and v0 ≈ 30.15. This results
in circles of radius of about 150 and curvature 0.007. In
Figure 3 the same graph is used but k is larger (k = 5) and
v0 ≈ 1, which results in a radius of approximately 0.2 (the
formation was scaled up). In this case the larger k required
different gains to guarantee convergence. Figure 4 has the
same graph and parameters as Figures 2 but the value of k
is increased to the point that Inequality (8) fails and so the
vehicles do not converge to formation.

Figure 5 illustrates the effect of using different graphs,
but the same feedback gains. Compare Fig 5 where Γ is the
undirected 6-path to Fig. 3 where Γ is the directed 6-cycle.
In Fig. 5 the vehicles take a much longer time to achieve
formation.

Figure 6 illustrates the effect of a change of gains. The
solid and dashed formation lines indicate the position of the
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Fig. 2. Rotation with k = 0.2, f1 = −2, f2 = −3
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Fig. 3. Rotation with k = 5, f1 = −4, f2 = −6.
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Fig. 4. Rotation with k = 10, f1 = −2, f2 = −3. Inequality (8) fails.
Vehicles do not converge to formation.
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Fig. 5. Rotation with k = 5, f1 = −4, f2 = −6. Γ is the undirected
6-path.

vehicles at the end of two runs of the same duration but
with different gains. The vehicles connected by the dashed
lines are visibly further away from formation than the ones
connected by the solid lines.
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Fig. 6. Γ is undirected cycle, k = 5. Gains are f1 = −2, f2 = −3 (solid)
and f1 = −1, f2 = −1 (dashed).

In the case of zero initial velocity the vehicles still
converge to formation but they do not rotate around a circle
(actually the radius is zero). Figure 7 illustrates two runs with
initial zero velocity and two different values of k (k = 1 in
bold, k = 10 in normal). The larger k produces the longer
excursions.

Finally, Figures 8 and 9 illustrate the elliptical motion
described earlier. In both cases the graph is the undirected
6-cycle.

VI. ORIENTABLE FORMATIONS

We note that if we desire that the formation reorients
itself to always “point” in the direction of the motion we
need a different kind of feedback law (and indeed a different
definition of formation space). The appropriate set up in the
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Fig. 7. Rotation with zero initial velocity. k = 1 (bold), k = 10 (regular),
f1 = −2, f2 = −3. Γ is undirected cycle.
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Fig. 8. Elliptical motion, k = 2, f1 = −6, f2 = −9.
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Fig. 9. Elliptical motion, k ≈ 0.3, f1 = −2, f2 = −3.

case Afor = 0 is to define the vehicles to be in (oriented)
formation h if the state x(t) = R1N⊗αh + 1N ⊗ α with α
satisfying Equation 9, where Rz is (essentially) a rotation
matrix that turns a vector into the direction specified by the
vector z (this requires z 6= 0), properly applied one vehicle at
a time. It was shown in [16] that under these conditions and
using the feedback law FL(z −Rzh) the vehicles converge
to formation provided the (negative) gains are large enough
and the speed is large enough. Figure 10 illustrates this in
case the communication graph is the undirected cycle in six
vertices. There a three traces corresponding to three different
initial velocities. The formation orients itself in the direction
of motion. It is important to note that these new equations
are non-linear and thus much harder to analyze.
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Fig. 10. Reorientation of the formation for three different sets of initial
velocities.

We also illustrate the motion in the case when the matrix
Afor has nonzero off-diagonal terms (Figures 11 and 12).
Notice that, while the reorientation is not exactly in the
direction of motion, there appears to be a stable limit cycle
(notice the almost superimposed formations on the right of
Figure 12). Moreover, it appears that the vehicles are close
to formation while they perform this maneuver. This can
be used in two different ways. If the goal is to maintain
that maneuver but with the formation exactly oriented in
the direction of motion one could specify a ghost initial
formation that would cancel out the offset. If the goal is to
perform a temporary maneuver until straight motion resumes,
the model as is maintains the vehicles close enough to
formation so that it can be restored later.

The new feedback law FL(z−Rzh) depends on using the
vehicles own velocities to compute Rzh (as opposed to their
velocities relative to their neighbors). However, computing
the velocity depends on local information. More precisely,
the vehicles can compute their velocity without knowing the
global origin of coordinates, but just a translate of the axis.

VII. CONCLUDING REMARKS

We have extended earlier results guaranteeing convergence
to formation for various vehicle dynamics. We established
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Fig. 11. Rotation with k = 0.1, f1 = −2, f2 = −3. Γ is the complete
graph.
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Fig. 12. Rotation with k = 0.5, f1 = −2, f2 = −3. Γ is the undirected
6-cycle.

that, in the case that the eigenvalues of the Laplacian are
real, circular and elliptical motions are stable regardless of
the radius (and eccentricity) if and only if the feedback
gains are negative. This covers all cases of bidirectional
communications. For the case of complex eigenvalues we
provide necessary and sufficient conditions on the values of
k and the gains that guarantee convergence to formation.
We also discussed some stable non-linear feedback laws that
achieve reorientation of the formation in the direction of
motion.
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