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Abstract

This paper investigates a method for decentralized stabilization of vehicle
formations using techniques from algebraic graph theory. The vehicles exchange
information according to a pre-specified communication digraph, G. A feedback
control is designed using relative information between a vehicle and its in-
neighbors in G. We prove that a necessary and sufficient condition for an
appropriate decentralized linear stabilizing feedback to exist is that G has a
rooted directed spanning tree. We show the direct relationship between the rate
of convergence to formation and the eigenvalues of the (directed) Laplacian of G.
Various special situations are discussed, including symmetric communication
graphs and formations with leaders. Several numerical simulations are used to
illustrate the results.

Keywords: formation stability, graph Laplacian, algebraic graph theory,
decentralized control, rooted directed spanning tree.

1 Introduction

There is growing interest in the decentralized control of multiple autonomous vehicles
due, in part, to a number of new important applications. These include the coordi-
nated control of mini-satellites, drone planes, and underwater vehicles [5, 6, 8, 10, 11,
12, 13, 14, 21, 23, 24, 25, 26, 29]. One of the main goals is to achieve a coordinated
objective while using only relative information concerning positions and velocity. The
objective investigated in this paper is that of attaining a moving formation. That is,
the goal of the vehicles is to achieve and maintain pre-specified relative positions and
orientations with respect to each other. Each vehicle is provided information only
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from a subset of the group. The specific subset is given through the set of “neigh-
bors” in the communication digraph. This digraph need not be related in any way to
the actual position of the vehicles.

The feedback scheme investigated here was proposed by Fax and Murray in [6] and
is inspired by the motion of aggregates of individuals in nature. Flocks of birds and
schools of fish achieve coordinated motions without the use of a central controlling
mechanism [17]. Another simple model is proposed in [27] that captures the observed
motions of self-driven particles. Both of these models employ feedback laws in which
the motions of nearest neighbors are averaged. The notion of a communication di-
graph is introduced in [5], and an averaging feedback law is proposed based on the
flow of information. The authors of [24, 25, 26] investigate the motions of vehicles
modelled as double integrators. Their goal is for the vehicles to achieve a common
velocity while avoiding collisions. The control laws involve graph Laplacians for an
associated undirected (neighborhood) graph but also nonlinear terms resulting from
artificial potential functions. Rather than reaching for a predetermined “formation”,
the vehicles converge to an equilibrium formation that minimizes all individual po-
tentials. They also extend their results to the case of switching neighborhood graphs.
References [12, 21] contain a special case of the results presented here (among other
results). In both references the communication graph is the undirected cycle. In [12]
the vehicles are modelled directly as double integrators. In [21] a more complete,
non-linear model is introduced and then force and torque feedback is used to linearize
the model before applying the graph-theoretic techniques.

Another area of research which is closely related to the problems and techniques
discussed in this paper is that of consensus seeking by autonomous agents ([4, 16, 18,
19, 20, 22]). We say that agents 1, . . . , n achieve consensus if their associated vari-
ables x1, . . . , xn converge to a common value (or, more generally, if f(x1), . . . , f(xn)
converge to a common value for some given function f). The vector x of variables
satisfies a differential (difference) equation ẋ = −Lx(t) (x(t + 1) = −Lx(t)) where
L is (essentially) a weighted Laplacian of a digraph (the “communication” digraph).
In [20, 22] it is shown that a necessary and sufficient condition for achieving consensus
is that the communication digraph admits a directed spanning tree. In [18, 19] the
authors only prove sufficiency and assume that the graph is either undirected ([19]) or
strongly connected ([18]). References [18, 20, 22] show that under certain conditions
consensus can be achieved even when the communication graph switches over time.
Control to formation is, in a way, a consensus problem since in order to reach a stable
formation the vehicles must achieve, among other things, the same velocity. On the
other hand, the vehicle dynamics of the formation problem are, in effect, governed by
second order equations.

In this paper we prove that the same condition of the communication graph above
is necessary and sufficient for the existence of certain decentralized feedback laws that
control the vehicles to arbitrary formations. We also provide a relationship between
the rate of convergence to formation and the eigenvalues of the (directed) graph
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Laplacian. We demonstrate how, for a fixed feedback gain matrix, convergence can
be improved by choosing alternative communication digraphs. Finally, we explore
some special cases in more detail and illustrate the results with numerical examples.

We point out that the result of Proposition 3.4 below, already appears in [20, 22].
Here we offer a short, purely graph-theoretic proof.

The paper is organized as follows. In Section 2 we set up the basic model. The
relevant graph theoretic definitions and results are collected in Section 3. The main
results are proved in Section 4, and illustrative examples are given in Section 5. In
Section 6 we discuss two special cases —bidirectional communications and formations
with leaders— in which additional refinements can be made. Various motions of the
formation are illustrated in Section 7.

2 Model

We assume we are given N vehicles with the same dynamics

ẋi = Avehxi + Bvehui i = 1 . . . N xi ∈ R2n (1)

where the entries of xi represent n configuration variables for vehicle i and their
derivatives, and the ui represent control inputs. For simplicity we will assume further
that the matrices Aveh and Bveh have the form

Aveh = diag

((
0 1

a1
21 a1

22

)
, . . . ,

(
0 1

an
21 an

22

))
B = In ⊗

(
0
1

)
(2)

(where ⊗ denotes the Kronecker product). This corresponds to the individual con-
figuration variables being decoupled and the acceleration of each such variable be-
ing controlled separately. These conditions may be relaxed. We will refer to the
odd-numbered entries of x = (x1, . . . , xN)T as position-like variables and to the
even-numbered entries as velocity-like variables. We will use the notation xp =
((xp)1, . . . , (xp)N)T , xv = ((xv)1, . . . , (xv)N)T to denote the vectors of position-like

and velocity-like variables, so x = xp ⊗
(

1
0

)
+ xv ⊗

(
0
1

)
.

Definition 2.1 A formation is a vector h = hp ⊗
(

1
0

)
∈ R2nN (where ⊗ denotes

the Kronecker product). The N vehicles are in formation h at time t if there are
vectors q, w ∈ Rn such that (xp)i(t)− (hp)i = q and (xv)i(t) = w, for i = 1 . . . N . The
vehicles converge to formation h if there exist Rn-valued functions q(·), w(·) such
that (xp)i(t) − (hp)i − q(t) → 0 and (xv)i(t) − w(t) → 0, as t → ∞, for i = 1 . . . N
(where xp and xv are as indicated above).
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Figure 1: Vehicles in formation

Figure 1 illustrates the interpretation of the vectors in the definition.
For more convenient mathematical treatment we introduce the following space

associated with each formation vector.

Definition 2.2 Let h = hp ⊗
(

1
0

)
∈ R2nN , let 1N denote the all ones vector of

size N , and let ej, j = 1, . . . , 2n denote the standard basis vectors in R2n. Set W =
{1N ⊗ ej : j = 1, . . . , 2n}. We define the h-formation space Fh by

Fh = h + span W = {x| ∃γ ∈ R2n : x− h = 1N ⊗ γ}

Notice that x − h = 1N ⊗ γ is equivalent to (xp)i − (hp)i = q and (xv)i = w where

γ = q ⊗
(

1
0

)
+ w ⊗

(
0
1

)
.

With this definition x is in formation h if and only if x ∈ Fh and x(t) converges
to formation h if and only if the distance from x(t) to the space Fh tends to zero as
t →∞.

To complete the model we are also given a graph G which captures the com-
munication links between vehicles (see next section for precise definitions of graph
theoretic concepts). Each vertex represents a vehicle and there is a directed edge
from one vertex to another if there is a communication link sending information from
the first vehicle to the second. The second vehicle would then be able to use this in-
formation in a feedback formula to adjust its own state. We say that the first vehicle
is a neighbor of the second. For each vehicle i, Ji denotes the set of its neighbors. In
this model, the decentralized nature of the feedback control law is captured by allow-
ing each vehicle to use only relative information about its neighbors. More precisely,
we are interested only in controls ui which are functions of xj − xi and hj − hi for
each j ∈ Ji. Note, however, that this still requires all vehicles to agree on a global
reference frame with respect to which the differences xj − xi can be described.
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A natural way to combine the relative information (as done in [6]) is to define
output functions yi computed from an average of the relative displacements (and
velocities) of the neighboring vehicles as follows

yi = (xi − hi)− 1

|Ji|
∑

j∈Ji
(xj − hj) i = 1, . . . , N.

where |Ji| indicates the number of neighbors to vehicle i. However, we will make a
slight modification here to allow for the possibility that a vehicle might receive no
information and so the corresponding vertex in the graph would have no neighbors.
This situation occurs naturally if one of the vehicles is a designated leader around
whose motions the others should adjust theirs. We will define the output functions
zi by

zi =
∑

j∈Ji
((xi − hi)− (xj − hj)) i = 1, . . . , N.

As a result, the corresponding output vector z can be written as z = L(x − h)
where L = LG⊗ I2n and LG is the (directed) Laplacian matrix of the communication
graph G (see Section 3).

Collecting the equations for all the vehicles into a single system we obtain

ẋ = Ax + Bu

z = L(x− h)

with A = IN ⊗ Aveh, B = IN ⊗Bveh.
We are interested in studying the existence of feedback matrices F such that the

solutions to

ẋ = Ax + BFL(x− h) (3)

converge to formation h. This is a stabilization problem involving output feedback.
In order to take advantage of the block structure of the matrices A, B, and L we will
restrict our study to matrices F of the form F = IN ⊗ Fveh (a particular “decentral-
ized” control law where the same feedback law applies to all vehicles). In this case,
we can write Equation (3) as follows

ẋ = IN ⊗ Avehx + LG ⊗BvehFveh(x− h) (4)

The main purpose of the paper is to show the relationship between ex-
istence of feedback matrices Fveh that guarantee convergence to formation
and properties of the communication graph G.

Even before a more precise definition of LG we can show how its eigenvalues play
a central role. Let U be a matrix such that L̃G = U−1LGU is upper triangular. In
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particular, the eigenvalues of LG are the diagonal entries of L̃G. A direct calculation
using the special form of A, B, and F gives

(U−1 ⊗ I2n)(A + BFL)(U ⊗ I2n) = IN ⊗ Aveh + L̃G ⊗BvehFveh

The right hand side is block upper triangular. Its diagonal blocks are of the form:

Aveh + λBvehFveh

where λ is an eigenvalue of LG. There is one block for each eigenvalue (counting
multiplicity). Therefore, the eigenvalues of A + BFL are those of Aveh + λBvehFveh

for λ an eigenvalue of LG.
We now give precise definitions of all graph-theoretic terms.

3 Algebraic Graph Theory

For our purposes, a directed graph or digraph G consists of a finite set V of vertices
and a set E ⊆ V × V to be referred to as (directed) edges. We will assume that
the digraph has no loops, that is (x, y) ∈ E implies x 6= y. If the digraph has the
property that (x, y) ∈ E implies (y, x) ∈ E we will say that it is undirected and just
call it a graph. In the vehicle application this corresponds to having bidirectional
communication.

A (directed) walk in a digraph is a finite sequence of edges (ak, bk) k = 1, . . . , r
such that bk = ak+1 for k = 1, . . . , r − 1. A walk with distinct vertices is called a
(directed) path. A walk is called a (directed) circuit if in addition br = a1. We say a
digraph G is strongly connected if for any vertices i, j ∈ V , there exists a walk in G
from i to j. Each digraph has an associated (undirected) graph obtained by adding to
E every pair (y, x) for which (x, y) is in E. We say that a digraph is weakly connected
if the associated graph is connected, that is, if there is a walk in the associated graph
connecting any two vertices.

If G is strongly connected, then for any i, j ∈ V , we define the distance between i
and j to be the number of edges in a shortest walk joining i and j. The diameter D
of a connected graph G is the maximum distance between any two vertices of G.

Let G denote a digraph with vertex set V and edge set E . Let MatV(R) denote
the set of all matrices with real entries whose rows and columns are indexed by the
vertices of G. By the adjacency matrix of G we mean the matrix Q ∈ MatV(R) with
entries

qij =

{
1 if (j, i) ∈ E ,
0 otherwise

(i, j ∈ V).

When G is undirected, the matrix Q is symmetric. The in-degree matrix of G is the
diagonal matrix D ∈ MatV(R) with diagonal entries

dii = |{j ∈ V : (j, i) ∈ E}| (i ∈ V).
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The directed Laplacian of G is the matrix defined by ([1])

LG = D −Q.

We use the word directed to distinguish this matrix from the most common def-
inition of Laplacian in the graph theory literature ([28]) as MGMT

G where MG is the
incidence matrix of G. This definition always results in the same symmetric matrix
regardless of whether the graph is directed or not. We prefer the first definition since
it is the matrix LG which is the most relevant to this problem. Both definitions agree
for undirected graphs.

If every vertex has non-zero in-degree then D is invertible. In this case an alter-
native definition of a Laplacian could be L = IN −D−1Q [3, 5]. (If D is not invertible
this formula for L can be adapted by using pseudo-inverses [2].) These two matrices
LG and L have slightly different properties which make each more advantageous than
the other in different circumstances.

Some relatively simple, but powerful, results about the spectrum of LG are the
following.

1. For a digraph with N vertices, all the eigenvalues of LG have nonnegative real
part less than or equal to 2(N − 1) (use Gershgorin’s theorem). Moreover,
except for the eigenvalue zero, the real part of all other eigenvalues is positive.

2. Zero is an eigenvalue of LG and the all ones vector 1 is an associated eigenvector.

3. If G is an undirected and connected graph on N vertices, then LG is symmetric
and each nonzero eigenvalue λ of LG is real and satisfies (see [15])

N ≥ λ ≥ 4

ND , (5)

where D denotes the diameter of G. There is also a lower bound in terms of
the edge-connectivity e(G) (see [7]): λ ≥ 2e(G)(1− cos( π

N
)).

4. If G is undirected then the least non-zero eigenvalue λ1 of LG grows monoton-
ically with the number of edges. More precisely, adding edges never decreases
λ1 ([7]).

We include below as example a list of spectra of various well known classes of
digraphs. An eigenvalue λ with multiplicity k is denoted λk.
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Name # ver. Eigenvalues
Complete graph Kn n 0, nn−1

Complete bipartite Km,n m + n 0, mn−1, nm−1, m + n
Out-directed star Sn n 0, 1n−1

Undirected star Sn n 0, 1n−2, n
Directed path Pn n 0, 1n−1

Undirected path Pn n 2(1− cos(πk
n ))

k = 0, . . . , n− 1
Directed cycle Cn n 1− e

2πik
n

k = 0, . . . , n− 1
Undirected cycle Cn n 2(1− cos(2πk

n ))
k = 0, . . . , n− 1

n-cube Qn 2n (2k)(
n
k)

k = 0, . . . , n

We will need a special property of the eigenvalue zero for our purposes. For that
we need additional definitions.

Definition 3.1 A rooted directed tree is a digraph T with the following properties:

• T has no cycles.

• There exists a vertex v (the root) such that there is a (directed) path from v to
every other vertex in T .

The following result is classical.

Theorem 3.2 (Tutte (1948)) (See [28]) Given a (loopless) digraph G, let LG =
D −Q, where Q is the adjacency matrix and D is the in-degree matrix. The number
of spanning directed trees of G rooted at vertex vi is the value of each co-factor in the
i-th row of LG.

The following result can be proved using a suitable expansion of the determinant.

Proposition 3.3 Let M be a matrix and p(x) = det(xI−M) denote its characteristic
polynomial. The coefficient of x in p(x) is given by the sum of the principal co-factors
of M .

Proposition 3.4 Let G denote a (loopless) digraph. Then, zero is an eigenvalue of
algebraic multiplicity one for the directed Laplacian LG if and only if G has a rooted
directed spanning tree.

Proof. Since zero is an eigenvalue the polynomial p(x) has zero constant term. The
eigenvalue 0 has algebraic multiplicity greater than 1 if and only if the coefficient of
x in p(x) is zero. By Tutte’s theorem and the previous proposition this is equivalent
to having no rooted directed spanning tree. ¤
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Remark 3.5 We will show below that the stabilizing feedback law proposed in the
second section exists if and only if zero has algebraic multiplicity one. This shows the
exact extent of applicability of this approach.

For additional graph theoretic terms and results see [9].

4 Stabilizability

We show first that for the present decentralized feedback law to achieve formation
stability, the individual vehicle dynamics must have a particular form. We recall that
we are assuming that Aveh and Bveh have the form indicated in (2).

The following result was proved in [11] for the case a1
21 = . . . = an

21 and G a
connected undirected graph. A similar argument applies for our more general case.

Proposition 4.1 If for every formation h there exists a stabilizing feedback matrix
F = IN ⊗Fveh such that every solution of (4) converges to formation h, then ai

21 = 0
for i = 1, . . . n.

One should expect the previous result to hold whenever arbitrary formations must
be achieved since in that case the accelerations should not depend on the absolute
positions but only on their values relative to the other vehicles. On the other hand,
dependence on velocities is possible since formations might be maintained while ac-
celerating and decelerating as long as all vehicles have the same velocities. We will
assume from now on that ai

21 = 0 for all i.

Remark 4.2 The above statement implies that every odd-numbered column of the
matrix Aveh (and by extension, every such column of IN⊗Aveh) is zero. In particular,
zero is always an eigenvalue of Aveh.

Remark 4.3 If zero is an eigenvalue of LG of algebraic multiplicity 1 then the vehi-
cles are in formation h if and only if L(x − h) = 0. To see this notice first that the
null space of LG is spanned by the all one’s vector 1N . Therefore the null space of
L = LG ⊗ I2n is spanned by 1N ⊗ ej where ej, j = 1, . . . , 2n are the standard basis
vectors in R2n. The conclusion follows from Definition 2.2.

We will now show that G has a rooted directed spanning tree if and only if there
exist feedback matrices as described above that achieve formation. We start with the
following result which characterizes convergence to formation in terms of a spectral
property of LG. A version of this appeared in [11].

Theorem 4.4 Let G be a digraph with the property that zero is an eigenvalue of the
directed Laplacian LG of algebraic multiplicity one. Then the matrix Aveh +λBvehFveh

is stable (Hurwitz) for each nonzero eigenvalue λ of LG if and only if, for every h,
every solution of (4) converges to formation h.
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Proof: As shown earlier the eigenvalues of A+BFL are those of Aveh +λBvehFveh

for each λ in the spectrum of LG.
The structure of the proof is as follows. First we expand the system to ẏ = My

using hp as a new variable in a standard form. Then we show that a suitable subspace
is M -invariant. Thirdly we show that the map induced on the quotient space is
stable if and only if Aveh + λBvehFveh is stable for each nonzero eigenvalue λ of the
LG. Finally, we show that convergence in the quotient space means convergence to
formation for solutions of (4).

Since the desired formation is a constant vector, the formation variable hp satisfies
ḣp = 0. We consider the extended system

ẋ = Ax + BFLx−BFL

(
InN ⊗

(
1
0

))
hp (6)

ḣp = 0 (7)

Notice that h = hp ⊗
(

1
0

)
=

(
InN ⊗

(
1
0

))
hp. We write the above equations

as ẏ = My where y =

(
x
hp

)
and M is the (3nN)× (3nN) matrix given by

M =


A + BFL −BFL

(
InN ⊗

(
1
0

))

0 0nN




By our earlier comments about the eigenvalues of A + BFL, this shows that the
spectrum of M consists of the eigenvalues of the nN × nN matrix of zeros and those
of Aveh + λBvehFveh for λ in the spectrum of LG.

Let S be the space having the basis

B =

{(
1N ⊗ ei

0

)
: ei ∈ R2n, i = 1, . . . , 2n

}
(8)

⋃





ej ⊗

(
1
0

)

ej


 : ej ∈ RnN , j = 1, . . . , nN





Claim: The space S is M -invariant.

An element of S has the form y =

(
1N ⊗ α

0

)
+


β ⊗

(
1
0

)

β


 with α ∈ R2n and

β ∈ RnN . From the basic rules of multiplication of Kronecker products we get that(
InN ⊗

(
1
0

))
β = β⊗

(
1
0

)
. This implies that BFL

(
β ⊗

(
1
0

))
−BFL

(
InN ⊗

(
1
0

))
β =
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0 Combining this with Equations (6) and (7), we obtain

My =


IN ⊗ Aveh

(
1N ⊗ α + β ⊗

(
1
0

))

0


 =

(
1N ⊗ Avehα

0

)
∈ S

The last equality follows from Remark 4.2 and the fact that the vector β ⊗
(

1
0

)
has

zeros in its even numbered rows.
This calculation also shows that the matrix of the restriction of the transformation

induced by M on S relative to the basis above is exactly

(
Aveh 0

0 0nN

)
. We now note

that from the definitions of S and Fh we have that
(

x
hp

)
∈ S ⇔ ∃α ∈ R2n, β ∈ RnN : x = 1N ⊗α+β⊗

(
1
0

)
, hp = β ⇔ x ∈ Fh

Since 0 is an eigenvalue of LG of (algebraic) multiplicity 1, then the eigenvalues of
A+BFL are those of Aveh together with those of Aveh +λBvehFveh for each non-zero
λ in the spectrum of LG. Therefore, the matrix M induces a linear transformation
on the quotient space R2nN/S whose eigenvalues are those of Aveh + λBvehFveh for λ
a non-zero eigenvalue of LG.

We conclude that the quotient dynamics are stable if and only if Aveh +λBvehFveh

is Hurwitz for each λ 6= 0 in the spectrum of LG. Moreover, stability of the quotient

dynamics is equivalent to y+S → S whenever y =

(
x
hp

)
and ẏ = My. From the char-

acterization of S this means that each solution x(t) of (4) converges to formation. ¤
We now want to show that stabilizing feedback matrices indeed exist. For this we

need some preliminary calculations expressing the eigenvalues of Aveh + λBvehFveh in
terms of λ. It will suffice if we can find feedback matrices of the form Fveh = In ⊗(
f1 f2

)
. We use Routh’s criterion to develop conditions on the feedback coefficients

(gains) f1, f2 to guarantee convergence to formation.
Let q(x) = x2 + sx + p, be a polynomial where s = s1 + s2i and p = p1 + p2i

are complex numbers. If µ is a root of q(x) then µ̄ is a root of r(x) = x2 + s̄x + p̄.
Therefore q(x) is stable if and only if h(x) = q(x)r(x) is. Applying Routh’s criterion
to h(x) (which has real coefficients) results in the following necessary and sufficient
conditions for stability of q(x):

s1 > 0 2p1 + s2
1 + s2

2 > 0 s1p1 + s2p2 > 0 p1s
2
1 + p2s1s2 − p2

2 > 0

We apply these conditions to the specific case at hand. We are interested in
conditions on the real scalars f1 and f2 that would make the characteristic polynomial
of A + λBF have roots with negative real part.

As before, for the entire system let u = FL(x−h), where F = InN⊗
(

f1 f2

)
and

L = LG ⊗ In. The stability problem reduces to finding f1 and f2 such that A + λBF
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is Hurwitz for each non-zero eigenvalue λ of LG. Notice that those eigenvalues have
positive real part (see Section 3). To simplify the notation we assume further that
each coordinate has the exact same dynamic equations. (The general case can be
treated similarly with one set of inequalities for each coordinate.) We get

A + λBF = InN ⊗
((

0 1
0 a22

)
+ λ

(
0
1

) (
f1 f2

))

= InN ⊗
(

0 1
λf1 a22 + λf2

)

The eigenvalues of A + λBF are the roots of polynomial q(x) = x2 + (−a22 −
λf2)x + (−λf1). Writing λ = α + βi and using the above formulas we obtain the
following necessary and sufficient conditions for the polynomial to be stable:

−a22 − αf2 > 0 (9)

−2αf1 + (a22 + αf2)
2 + β2f 2

2 > 0 (10)

a22αf1 + (α2 + β2)f1f2 > 0 (11)

−αf1 (a22 + αf2)
2 − β2f1f2 (a22 + αf2)− β2f 2

1 > 0 (12)

Since α > 0, looking at the signs of the coefficients of f1 and f2 it is easy to see
that all inequalities are satisfied by choosing f1 < 0, f2 < 0 and f2 large enough in
absolute value. We have shown the following.

Proposition 4.5 The gains f1, f2 stabilize the formation if and only if they satisfy
the four inequalities above. Moreover, the system of inequalities always has solutions.
More specifically, one such stabilizing pair can be found by choosing f1 < 0 and f2 < 0
with f2 sufficiently large in absolute value.

We can make this more explicit in the case a22 = 0, which corresponds to each
coordinate being modelled as a double integrator. The conditions become simply:

f1 < 0 (13)

f2 < 0 (14)

f 2
2

f1

< − β2

α(α2 + β2)
(15)

which can be easily satisfied for some f1, f2.
We now present the main results of the paper.

Theorem 4.6 Consider the control system given by (4). There exists a matrix Fveh

such that for every formation h the solution to (4) converges to formation h if and
only if zero has multiplicity one as an eigenvalue of the directed graph Laplacian LG.
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Proof The sufficiency follows from Theorem 4.4, and Proposition 4.5.
For the necessity assume that zero is an eigenvalue of LG of multiplicity k > 1. We

proceed as in the proof of Theorem 4.4 to construct the matrix M , the basis B, and the

space S. The difference is that now S is a proper subset of

{(
x
hp

)
: L(x− h) = 0

}
.

Convergence to formation is still equivalent to convergence in the quotient space.
However, regardless of Fveh the spectrum of the quotient map now includes at least k−
1 copies of the eigenvalues of Aveh one of which is zero (see Remark 4.2). This implies
that the quotient dynamics cannot be stabilized with the above type of feedback
laws. ¤

Combining Proposition 3.4 with the previous theorem gives the following.

Corollary 4.7 Consider the control system given by (4). There exists a matrix Fveh

such that for every formation h the solution to (4) converges to formation h if and
only if the digraph G has a rooted directed spanning tree.

5 Examples

We illustrate the main results with several numerical examples. First we assume
that a22 = 0 so each coordinate is modelled as a double integrator. In all these
examples the desired formation is specified as the vertices of a regular pentagon. The
initial position of the vehicles is marked with an ’x’ and all vehicles are lined up
in a row at the start. The final positions of the vehicles are marked with circles.
Figure 2 shows convergence to formation using the same feedback matrix but three
different digraphs, the (directed) 5-cycle, the (directed) 5-path, and the complete
graph K5. The formation drifts in space at a constant speed because vehicle 1 has
an initial non-zero velocity. Notice that while the cycle has one edge more than the
path, the former achieves formation more slowly than the latter. The corresponding
(approximate) spectra of A+BFL are (without counting multiplicities): {0,−0.22±
1.88i,−0.81± 0.45i,−1.21± 0.60i,−1.51± 1.48i} for the cycle, {0,−0.75± 0.97i} for
the path, and {0,−1.19,−6.31} for K5. We will see below that for undirected graphs
convergence cannot deteriorate when more edges are added.

In Figure 3 the same communication digraph is used (the directed cycle) with
different feedback matrices.

6 Special cases

We discuss here two categories of graphs which have special interest in applications.
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Figure 2: Form left: (directed) cycle, (directed) path, and complete graph.
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Figure 3: Cycle with different feedback gains: f1 and f2 are more negative on the
right.
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6.1 Bidirectional communications

If communication is bidirectional, then whenever vehicle i receives information from
vehicle j, vehicle j also receives information from vehicle i. This means that the
adjacency matrix of the communication graph is symmetric and so all its eigenvalues
are real.

The discriminant of the characteristic polynomial of the matrix Aveh + λBvehFveh

is (a22 + λf2)
2 + 4λf1. Thus, for a fixed f2, choosing f1 so that

(a22 + λf2)
2

4λ
< −f1

for every nonzero eigenvalue λ of LG guarantees complex (non-real) roots of the
characteristic polynomial, thereby providing the fastest rate of convergence. Thus we
have proved the following.

Proposition 6.1 Assume G is undirected. For f1 and f2 as above, the rate of con-
vergence to formation is (a22 + λ1f2)/2, where λ1 is the smallest non-zero eigenvalue
of LG.

In this case, where the graphs are undirected, the monotonicity property of λ1

(see Section 3) and the above inequality show that if f2 is fixed the convergence to
formation cannot deteriorate by adding edges.

Remark 6.2 For a fixed number N of vehicles, stabilizing gains f1 and f2 can be
chosen independently of the graph. This follows immediately from the inequalities (5).

6.2 Formations with leaders

A special situation occurs when one of the vehicles does not receive information from
any of the others. Essentially this means that the others are forced to arrange their
positions in response to the motion of that vehicle. This makes such a vehicle a de
facto leader. The motion of the overall formation is dictated by that of the leader.
Since we are always assuming that the communication digraph has a directed rooted
spanning tree, there can be at most one such leader. Since the in-degree of the
corresponding vertex is zero, the corresponding row of the adjacency matrix is zero
and the matrix D is not invertible.

In the following figures the initial position of the vehicles is marked with an “x”
and the desired formation consists of the vertices of a regular pentagon. The leader is
marked with a diamond. The communication digraph is a directed path. In Figure 4
the leader has zero initial velocities and therefore remains fixed in its position. In
Figure 5 the leader has an initial velocity (in the direction (1, 1)) and therefore the
whole formation drifts in that direction. Notice how the various vehicles have to
adjust their own path to achieve the formation.
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Figure 4: Formations with leaders. Stronger feedback laws from left to right. The
leader is indicated with a diamond.
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Figure 5: Formations with leaders. Leader drifts due to initial velocity. The leader
is indicated with a diamond.
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7 Moving in formation

Figure 6 illustrates the effect of the a22 term in the resulting formations. While these
examples use the same 2 × 2 matrix for each controlled quantity in a single vehicle,
the effect of different values for each of them should be clear from these pictures. The
dots are plotted at equal time intervals. The model still assumes that all the vehicles
have the same dynamics. For a22 = 0 the vehicles achieve a constant velocity. For
a22 < 0 the vehicles eventually stop. For a22 > 0 the vehicles uniformly accelerate.
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Figure 6: Effect of a22. From left to right a22 = 0, a22 < 0, a22 > 0

8 Concluding Remarks

We have demonstrated the close connection between spectral graph theory and one of
the current methods of control of vehicle formations. We have made explicit how to
choose stabilizing feedback gains in terms of the eigenvalues of the directed Laplacian
of the communication digraph. Furthermore, for undirected graphs we have derived
an expression for the rate of convergence to formation that is a linear function of the
smallest positive eigenvalue of the Laplacian.

We have used throughout the Laplacian D − Q. A similar approach could be
applied to the Laplacian I −D−1Q (when D is invertible). The difference is that the
matrix D, in effect, produces different scalings for the different vehicles. In the case
of in-regular digraphs, the matrix D is a scalar multiple of I and the resulting gains
are equivalent. The question of finding bounds for λ1 when G is undirected is well
studied. For the directed case we find that (for a22 = 0) the quantity β2

α(α2+β2)
is the

key indicator of stability margins.
Some generalizations seem possible. We expect that using a weighted communi-

cation digraph will equally allow for convergence to formation. The different weights
will cause the net effect of the feedback laws to be different for each vehicle. A more
significant generalization would be to allow the digraph to change. The techniques
from [10] suggest a way to deal with the problem although the flexibility in the choice
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of formations and the use of more general Laplacians complicate the convergence
studies.
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