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Abstract. We find the analytical expression for the residual entropy of the square Ising model
with nearest-neighbour antiferromagnetic couplingJ , in the maximum critical fieldHc = 4J ,
in terms of the Fibonacci matrix, which itself represents a self-similar, fractal object. The result
coincides with the existing numerical data. By considering regular self-similar fractal objects
rather than seemingly random transfer matrices, this approach opens the possibility of finding
the corresponding solutions in more complicated cases, such as the antiferromagnets with longer
than nearest-neighbour interactions and the three-dimensional antiferromagnets, as well as the
possibility of unification of results pertinent to different lattices in two and three dimensions.

The ground-state degeneracy of highly frustrated systems has attracted considerable attention
over the past decades. Almost half a century ago, in 1951, Brooks and Domb [1] estimated
that the entropy per spin of an Ising system on the square lattice with antiferromagnetic
nearest-neighbour (NN) interactionJ , in the maximum critical fieldHc = 4J , retains at the
absolute zero temperature over 50% of its maximum value ln 2. Although the numerical
value for the residual entropy has subsequently been established with high precision [2, 3],
the problem has to date defied exact solution. In contrast, the problem of the residual entropy
of an Ising antiferromagnet on the triangular lattice was analytically solved by Wannier [4]
in 1950 for the zero-field case, and by Baxter and Tsang [5, 6] in 1980 in the case of
maximum critical fieldHc = 6J . The solutions to more complicated problems, such as the
antiferromagnets with longer then nearest-neighbour interactions and the three-dimensional
antiferromagnets, have not yet been reported in the literature.

In this letter we revisit the problem of the square lattice residual entropy in the maximum
critical field, from an analytical viewpoint. We show that the Fibonacci matrix¶ of order
n represents the transfer matrix relating the possible ground states of ann × m system
with those of ann × (m + 1) system. The residual entropy can thus be represented in
terms of the leading eigenvalue of the infinite Fibonacci matrix, which is itself a self-
similar object composed of blocks of 0’s and 1’s appearing on all scales, with the fractal
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¶ The Fibonacci matrix is available as a function in the ‘linalg’ package of the Maple V algebraic manipulation
software.
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dimensiond = ln(1+ √2)/ ln[(1+ √5)/2] = 1.8316. Alternatively, the residual entropy
of an n × m system is represented in terms of any entry of themth power of thenth-
order Fibonacci matrix, where different entries correspond to different boundary conditions.
In order to test the validity of the present approach we first use a simple assumption to
analytically establish the residual entropy in the thermodynamic limit to within 2% of the
known numerical value. Then we perform the numerical analysis of the leading eigenvalues
of the first nine Fibonacci matrices, which yields the result with nine digit precision using
Maple V algebraic manipulation software with minimum computational effort.

The transfer matrix approach has already been employed in the problem of finding the
residual entropy of the square Ising antiferromagnet in the maximum critical field by Metcalf
and Yang [2] in 1978. They performed an extensive numerical transfer matrix study of finite
systems with up to 9× 15 spins, findingσ = 0.4075. It was subsequently shown [3] that
finite-size scaling can be used in conjunction with the numerical transfer matrix approach to
obtain a much higher precision result (σ = 0.407 495 101 260 68) on a personal computer.
In what follows, we modify the numerical transfer matrix approach of Metcalf and Yang
[2], to show that the transfer matrix itself is the Fibonacci matrix.

We consider the square lattice Ising model with the Hamiltonian

H = −J
∑
〈nn〉

SiSj −Hc

∑
i

Si (1)

whereJ < 0 is the antiferromagnetic nearest-neighbour interaction parameter,Si = ±1 is
the Ising spin variable at the sitei, Hc = 4|J | is the external magnetic field that exactly
compensates the energy increase produced by a single upward spin flip, and〈nn〉 denotes
summation over the nearest-neighbour pairs. The ground state of Hamiltonian (1) is highly
degenerate, it corresponds to the Neel spin configuration, as well as to all the configurations
obtained therefrom by flipping upward (in the direction of the field) an arbitrary number of
non-neighbouring downward-oriented spins. Another way of expressing this condition is to
say that a certain spin configuration corresponds to the ground state if it does not contain
any pairs of downward-oriented neighbouring spins. This statement is strictly true only in
the case of periodic boundary conditions (torus), while in the case of open boundaries it
is true only for the interior spins, the boundary spins being aligned with the field. For the
moment we will assume that boundary conditions are irrelevant, and we will consider all
such configurations for arbitrary system size.

If we denote byDnm the ground-state degeneracy of ann × m system, the residual
entropy (the configurational zero-temperature entropy) is given by

σ = lim
n,m→∞

lnDnm
nm

. (2)

To determine the ground-state degeneraciesDnm for arbitrary n andm, let us begin by
considering the special casem = 1, that is, the linear chain. Possible spin configurations
satisfying the condition of not having any pairs of downward-oriented neighbouring spins
are shown in table 1 forn = 1, 2, . . . ,6, where upward-oriented spins are depicted as 1’s,
and downward-oriented spins as 0’s. Each column (corresponding to a given chain length
n) is divided into the upper set (ending with 1’s), and the lower set (ending with 0’s). The
upper set of any given column is obtained by rewriting the whole previous column and
adding 1’s at the and, while the lower set is obtained by adding 0’s to the upper set of
the previous column. This procedure ensures both that two neighbouring 0’s will never
be encountered in the spin configurations for arbitraryn, and that all such sequences are
generated. It is also easily seen that the length of any given column (number of spin
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Table 1. Possible configurations of a chain of lengthn satisfying the condition of not containing
any downward oriented neighbouring spin pairs. Here, 1’s and 0’s are used to represent the
+1 and−1 spins, respectively. The horizontal bars divide each column into the upper and the
lower sets, ending with 1’s and 0’s, respectively (see the text for details on construction of the
table).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

1 11 111 1111 11111 111111
0 01 011 0111 01111 011111

10 101 1011 10111 101111
110 1101 11011 110111
010 0101 01011 010111

1110 11101 111011
0110 01101 011011
1010 10101 101011

11110 111101
01110 011101
10110 101101
11010 110101
01010 010101

111110
011110
101110
110110
010110
111010
011010
101010

configurations) is equal to the sum of the lengths of the two previous columns, and is thus
given by Fibonacci numbersfn†.

Let us now consider adding a new chain in the configurationγ ′ to an n × m system
ending with a chain in configurationγ . Both γ and γ ′ belong to the set offn valid
chain configurations (depicted in table 1 forn = 1, 2, . . . ,6). The new spin configuration
will be ‘valid’ (in the sense of not having two neighbouring downward spins) ifγ andγ ′

are ‘compatible’ (also in the sense of not having two neighbouring downward spins). The
transfer matrix (or ‘compatibility’ matrix)Fn can thus be defined [2], such thatFn(γ, γ ′) = 1
if γ andγ ′ are compatible, andFn(γ, γ ′) = 0 otherwise. Considering the fact that all the
fn−1 ‘upper’ spin configurations end with 1’s and all thefn−2 ‘lower’ spin configurations
end with 0’s, and utilizing the structure of columns in table 1, we will now demonstrate
that the transfer matrixFn has the block form

Fn =
(
Fn−1 Gn−1

GT
n−1 0

)
(3)

whereGn−1 represents anfn−1 × fn−2 submatrix ofFn−1. More to the point, the block
Fn−1 in the upper left corner comes from the fact that compatibility of the configurations
in the upper set is not affected by the trailing 1’s, and thefn−2 × fn−2 zero matrix in the

† The usual definition of the Fibonacci sequence isfn+2 = fn+1+ fn with f0 = 0 andf1 = 1, so that the actual
sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .. Since the first number encountered in the chain ground-state degeneracies
is 2 (associated with the chain size ofn = 1), we modify this definition by mappingn+ 2→ n, so thatf1 = 2,
f2 = 3 etc. A similar definition is employed by mappingn + 1→ n in the case of associated Pell numbers, so
that qn+2 = 2qn+1 + qn with q0 = 1 andq1 = 3.
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lower right corner comes from the fact that the configurations in the lower set are always
incompatible to each other because of the trailing 0’s. TheGn−1 matrix represents the
compatibility matrix of configurations from the upper set with those from the lower set.
The trailing 1’s are compatible with the trailing 0’s, and apart from the trailing spins the
lower set is identical to the (upper) subset of the upper configuration set. Forn = 1 we
have

F1 =
(

1 1

1 0

)
(4)

and the highern matrices are obtained through recursive relation (3). Equations (3) and (4)
represent the definition of the Fibonacci matrices, and the first five are shown in table 2.
The Fibonacci matrices themselves represent fractal objects, where in the thermodynamic
limit the blocks of 0’s increasing with the golden mean factor(1+√5)/2 can be found on
all length scales. To demonstrate this fact, in figure 1 we show the 987× 987 Fibonacci
matrix Fn for n = 14, where 1’s are represented by black and 0’s by white pixels.

Table 2. Fibonacci matricesFn for n = 1, 2, . . . ,5 obtained through recursive relation (3). They
represent the transfer matrices between possiblen×m andn× (m+ 1) system configurations
that satisfy the condition of not having any pairs of neighbouring downward-oriented spins.

n = 1 n = 2 n = 3

(
1 1

1 0

)  1 1 1

1 0 1

1 1 0




1 1 1 1 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

1 0 1 0 0


n = 4 n = 5



1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 1

1 1 0 1 1 1 1 0

1 1 1 0 0 1 1 1

1 0 1 0 0 1 0 1

1 1 1 1 1 0 0 0

1 0 1 1 0 0 0 0

1 1 0 1 1 0 0 0





1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 1 1 0 1 1 0

1 1 0 1 1 1 1 0 1 1 0 1 1

1 1 1 0 0 1 1 1 1 1 1 0 0

1 0 1 0 0 1 0 1 1 0 1 0 0

1 1 1 1 1 0 0 0 1 1 1 1 1

1 0 1 1 0 0 0 0 1 0 1 1 0

1 1 0 1 1 0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0

1 0 1 1 0 1 0 1 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0 0 0 0

1 1 1 0 0 1 1 1 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0 0 0 0



The entryFn(i, j) of the transfer matrix corresponds to compatibility of then-spin
chain in theith configuration of table 1 with then-spin chain in thej th configuration.
Similarly, applying the transfer matrixm times, the entryFmn (i, j) of themth power of the
transfer matrix corresponds to the number of valid configurations (that is, the ground-state
degeneracy) of ann × (m + 1) system starting with the chain in theith configuration of
table 1, and ending with the chain inj th configuration. Since boundary conditions should
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Figure 1. Graphical representation of the 987× 987 Fibonacci matrixFn for n = 14 (with 1’s
represented by black and 0’s by white pixels) displaying the intrinsic fractal structure. The ratio
of the sides of emergent rectangles corresponds to the golden mean ratio(1+√5)/2, while the
fractal dimension is given byd = ln(1+√2)/ ln[(1+√5)/2] = 1.8316.

become negligible in the thermodynamic limit, from (2) it then follows that for arbitrary
boundary spin configurationsi andj the limiting value of the residual entropy is given by

σ = lim
n,m→∞

lnFmn (i, j)

nm
. (5)

Using the spectral decomposition ofFn, we finally find

σ = lim
n→∞

ln λn
n

(6)

whereλn is the leading eigenvalue of thenth-order Fibonacci matrix.
Unfortunately, while the Fibonacci matrix is well defined for arbitrary ordern, its

leading eigenvalue and the elements of its arbitrary powers do not seem to be analytically
tractable. In what follows we present an analytical approach, based on simple assumption
of statistical independence of different spin configurations, to evaluate the residual entropy
σ . Explicitly writing out the elements of thenth power of the Fibonacci matrix we have

Fmn (i, j) =
fn∑

k1,...,km−1=1

Fn(i, k1)Fn(k1, k2) . . . Fn(km−1, j). (7)

There are altogetherf m−1
n terms, each representing a product ofm elements that can be

either 0 or 1. Denoting byqn the number of non-zero elements in the Fibonacci matrixFn,
and twice applying equation (3) to yield

Fn =
 Fn−2 Gn−2 Fn−2

Gn−2 0 Gn−2

Fn−2 Gn−2 0

 (8)

we find the recursion relation

qn+2 = 2qn+1+ qn (9)

with initial conditionsq0 = 1 andq1 = 3, which is precisely the definition of associated
Pell numbers (see earlier). We now assume that the actual valuesFn(i, j) (which are either
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0 or 1) in (7) can be substituted with the probabilityqn/f 2
n of the element being non-zero,

and obtain

Fmn (i, j) ≈ f m−1
n

(
qn

f 2
n

)m
= 1

fn

(
qn

fn

)m
. (10)

Finally, using the known expressions for the Pell and Fibonacci numbers

qn = 1

2
[(1+

√
2)n+1+ (1−

√
2)n+1]

fn = 1√
5

1

2n+2
[(1+

√
5)n+2− (1−

√
5)n+2] (11)

for the residual entropy in the thermodynamic limit we find

σ = ln

(
2

1+√2

1+√5

)
= 0.400 16 (12)

within 2% error of the known numerical value.
The fractal dimension of the Fibonacci matrixFn can now be easily found. Associating

massM with qn (number of 1’s in the matrixFn) and linear sizeL with fn (number of
rows/columns inFn), from the relation

M = Ld (13)

we find the fractal dimension

d = lim
n→∞

ln qn
ln fn

= ln(1+√2)

ln((1+√5)/2)
= 1.8316. (14)

The limiting value of the residual entropyσ can be found with extremely high precision
using the leading eigenvalues of the first few Fibonacci matrices. To find the eigenvalues we
have used Maple V algebraic manipulation software on an Intel 33Mhz 80486DX processor
with 8Mb RAM. Implementing the simple Maple script

with(linalg);
lambda:=vector(10,0);
for i from 1 to 9 do

lambda[i]:=max(eigenvals(1.*fibonacci(i+1)));
od;

yields the first nine eigenvalues in roughly 20 min CPU time. Direct application of (6) to
the obtained values reveals the existence of anO(1/n) correction term in the corresponding
sequence ofσ ’s, which is effectively eliminated by considering sequencesσn ≡ ln(λn/λn−1).
The obtained numerical valuesλn andσn are shown in table 3 forn = 1, . . . ,9. Note that
the system size used (n = 9) is the same as that of [2] where convergence to only four
decimal places was found, while the result obtained here agrees up to nine decimal places
with the numerical value of [3]. It should be mentioned that the first entry forσn in table 3
is equal to our estimate (12) obtained using the assumption of statistical independence. The
other entries may be regarded as successive higher-order approximations.

In summary, we find the expression for the nearest-neighbour square antiferromagnetic
Ising model residual entropy in the maximum critical field, in terms of the Fibonacci matrix.
It is shown that the Fibonacci matrixFn represents the transfer matrix relating the possible
ground states of ann × m system with those of ann × (m + 1) system. Each element
of themth power ofFn corresponds to ground-state degeneracy of then×m system with
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Table 3. The leading eigenvalues of the first nine Fibonacci matrices with the corresponding
numerical estimates for the residual entropy.

n λn σn = ln(λn/λn−1)

1 01.618 033 989
2 02.414 213 562 0.400 161 7615
3 03.631 381 260 0.408 239 5013
4 05.457 705 396 0.407 415 3558
5 08.203 259 194 0.407 503 0940
6 12.329 882 22 0.407 494 2267
7 18.532 407 38 0.407 495 1854
8 27.855 099 10 0.407 495 0916
9 41.867 553 32 0.407 495 1023

boundary spins fixed in a particular configuration. The complicated conventional counting
procedure is thus reduced to finding the properties of a quite regular, self-similar fractal
object (the Fibonacci matrix). At this time we have not succeeded in finding the analytical
expression for the largest eigenvalue of an infinite Fibonacci matrix, that should yield a
closed form expression for the residual entropy, and thus the final solution to this 50 year
old problem [1]. Instead, we first use a simple assumption of statistical independence of
various spin configurations to deduce analytically the residual entropy to within 2% of
the known numerical value [2, 3]. Then we use the leading eigenvalues of the first nine
Fibonacci matrices to find the residual entropy (with practically no computational effort) to
nine decimal places precision. Although these results are not superior to the ones obtained
via a strictly numerical approach [3], the fact that they agree with the known numerical value
and that they stem from consideration of a regular self-similar fractal object rather than a
seemingly random transfer matrix [2], suggests that the more complicated cases, such as the
three-dimensional antiferromagnet, may become tractable via a similar approach. Moreover,
this approach opens the possibility of unification of results pertinent to different lattices in
two and three dimensions.

This work was partially supported by CNPq (Brazilian Agency).
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