
HAUSDORFF DIMENSION OF BOUNDARIES OF SELF-AFFINETILES IN IRNJ. J. P. VeermanDepartamento de matem�atica, UFPE, Recife, Brazil�December 29, 1995AbstractWe present a new method to calculate the Hausdor� dimension of a certain class of fractals: boundariesof self-a�ne tiles. Among the interesting aspects are that even if the a�ne contraction underlying theiterated function system is not conjugated to a similarity we obtain an upper- and and lower-bound for itsHausdor� dimension. In fact, we obtain the exact value for the dimension if the moduli of the eigenvaluesof the underlying a�ne contraction are all equal (this includes Jordan blocks). The tiles we discuss playan important role in the theory of wavelets. We calculate the dimension for a number of examples.1 IntroductionThe object of this study is a class of self-a�ne (or self-similar) sets generated by self-a�ne pairs. In whatfollows, we abbreviate this to pair.De�nition 1.1 A pair (M;R) is a linear isomorphism M : IRn ! IRn with all eigenvalues outside the unitcircle together with a �nite subset R of IRn.The space of closed and a priori bounded subsets of IRn will be denoted by H(IRn). Endow this space withthe usual Hausdor� distance between two compact sets (the in�mum of � such that an �-neighborhood ofeach one of the two sets contains the other). This distance induces a topology on H(IRn) with respect towhich H(IRn) is a complete compact metric space. In H(IRn), we de�ne� : H(IRn)! H(IRn)by �(A) def� [r2RM�1(A+ r) :Such systems are a�ne examples of what are known as iterated function systems (see [2]). It is easy to provethat � is a contraction (see [13]) and its unique �xed point is a compact set which we denote by �(M;R).�e-mail: veerman@dmat.ufpe.br 1



Hence we obtain that � is `self-a�ne' (or `self-similar'):� = [r2RM�1(� + r)or M� = [r2R(� + r) : (1.1)These equations express the fact that the union of certain translates of � equals a rescaled version of �, andimmediately yields useful insights. In particular, assume that R contains less than m = jdetM j elements.Since the (Lebesgue) measure �(�) on both sides of equation (1.1) must be the same, we have that (recallingthat � is bounded) that �(�) = 0. On the other hand, if R contains more than m = jdetM j elements, wesee that if �(�) > 0, then the translates must intersect in sets of positive measure.An equivalent de�nition of � is to consider it as the set of expansions on the base M using the set ofdigits R, or �(M;R) = fx 2 IRnjx = 1Xi=1M�iri with ri 2 Rg : (1.2)By substitution, one checks immediately that this set is the (unique) solution to equation (1.1) (as wasobserved in [11]).Now we restrict our attention to a particularly interesting subclass of pairs, the class of standard pairs(in accordance with the nomenclature of [19]). Suppose that R contains m = jdetM j exactly elements.This subclass of pairs is a boundary case in the sense that in equation (1.1), the (Lebesgue) measure onboth sides can be positive, but only if the sets on the right hand side intersect in sets of measure zero.De�nition 1.2 A standard pair (M;R) is a pair such that the isomorphism M preserves ZZn (that is: itsmatrix has integer entries) and the set R is contained in ZZn and is a complete set of coset representativesof ZZn=MZZn (R contains one representative in ZZn of each the classes ZZn=MZZn).By performing a translation we may assume that R contains the origin. When (M;R) is a standard pair,it is easy to see from equation (1.2) and the coset property that intersections of positive measure cannotoccur. In fact, it also follows that there is always a solution to (1.1) of positive measure (see [1] and also[26] and [19]).Denote by ZZ[M;R] the smallest M -invariant sublattice of ZZn that contains all points d = r1 � r2where r1 and r2 are elements of R. Here smallest set means that it contains no subset satisfying the samerequirements.De�nition 1.3 A standard primitive pair is a standard pair with ZZ[M;R] = ZZn.De�nition 1.4 Let N : IRn ! IRn be a linear isomorphism preserving ZZn and �N : IRn ! IRn=NZZn thecanonical projection. A compact set A of positive Lebesgue measure is called a tile by NZZn if �N : A !IRn=NZZn is a bijection for Lebesgue almost every point of A.When the matrix N is not speci�ed (as in most of this paper), we assume it to be the identity. In thiscase, we see that a tile is a compact set such that the union of its translates by ZZn covers IRn, but any twotranslates by distinct elements of ZZn may intersect in sets of measure zero only.The study of these tiles has important applications in various areas of mathematics. In fact, interest inthese objects originally arose (see [10] and references therein), because they are intimately related to certaintypes of wavelets (Haar bases) (see [5] for a discussion of wavelets). Connections with number theory (see[20] and dynamical systems (see [26]) have been made by other authors.2



The main result here was proved by Lagarias and Wang and by Conge, Herv�e, and Raugi. To state itwe need the following de�nition �rst.De�nition 1.5 A standard pair (M;R) is called exceptional if there exists an integer matrix P 2 GL(n;ZZ)such that� PMP�1 is a 'block-triangular' matrix  A B; C ! and� P (R) is of so-called quasi-product form (the de�nition is rather complicated, see [21]).A regular standard pair is one that is not exceptional.Here is the result of Lagarias and Wang [21], and of Conge, Herv�e, and Raugi [4].Theorem 1.6 If (M;R) is a regular standard pair then �(M;R) is a tile by ZZ[M;R]. If (M;R) is anexceptional standard pair, then �(M;R) is also a tile, though possibly by some other lattice.Lagarias and Wang based their proof upon an earlier work by Gr�ochenig and Haas [9], who proved aone dimensional version of this result. The proof by Gr�ochenig and Haas was given a much more geometricavor and was substantially simpli�ed in [25].The object of the current work is to study the Hausdor� dimension (for the de�nition, we refer tosection 2 of this work) of the boundary ��(M;R) of �(M;R). In [11], it was proved that this boundary hasLebesgue measure zero (see also [19]). In the present work, we turn once again to the work by Gr�ochenigand Haas. The calculation of dimension usually involves a counting argument. The counting procedure usedin lemma 3.1 is related to results of Gr�ochenig and Haas (see [9], lemma's 4.4 and 4.6).To state our main result formally, we need some notation. First, de�ne the (direct) sum of two sets Aand B as follows: Z = A+B def� fzjz = a+ b; a 2 A; b 2 Bg :The di�erence set D is given by R � R. We will make use of a notion similar to D that retains theinformation of how many times a point d 2 D occurs as a di�erence in (the �nite) set R. Let � : IRn ! IRbe the characteristic function of R. (The value of � is 1 on points of R and 0 elsewhere, so that R is thesupport of �.) Now de�ne the di�erence function @ : IRn ! IR as@(d) def� Xr2R �(r)�(r + d) = card fr1; r2 2 R j r1 � r2 = dg :For instance, @(0) equals jdetM j, because 0 = r � r for all elements r in R. Note that D = supp (@).Denote S def� f�� �g \ ZZn ; (1.3)that is, the set of integer di�erences contained in �. Note that S and D are not equal! Let IRS be the spaceobtained by associating a �bre IR to each point of S. De�ne a linear map T : IRS ! IRS, the transitionoperator, whose matrix elements are given by:Tij def� @(i�Mj) ; (1.4)3



where i and j are in S. Note that this matrix is the transpose of the one de�ned in [9] as contact-matrixand in [26] as transition operator, and �rst considered in [3]. The choice we make here is more natural inview of the calculations done in the next sections.Let us consider this transition operator in some more detail. First of all, 1mT is a non-negativestochastic matrix:Xj2S Tij =Xj2S @(i�Mj) = Xj2ZZn @(i �Mj) = Xr2R �(r)0@ Xj2ZZn �(r + i�Mj)1A = m : (1.5)The second equality follows from the de�nition of S: i being in S implies that if j 62 S, then i �Mj 62 D.The last equality is implied by the fact that R is a complete set of coset representatives. Thus T has leadingeigenvalue m with associated eigenspace E1 = �(1; 1; � � � 1). (In fact, if � is a tile, then all other eigenvalueshave modulus smaller than m see for example [11]).There is also a useful symmetry in the problem, namely, by its de�nition, @(d) = @(�d) and S = �S.It follows immediately from equation (1.4) that T�i�j = Tij . Thus T preserves the subspace E+ of symmetricvectors (vi = v�i) as well as the subspace of anti-symmetric vectors (vi = �v�i) in IRS . (Vectors in IRS arewritten as components vi where i 2 S.)We decrease the dimensionality of the system by `quotienting out' this symmetry. Let S+ � S be suchthat of each pair x 2 S and �x 2 S, precisely one is contained in S+. Let v+ denote the restriction of v toIRS+ . It is now easy to calculate the a�ne map T+ : IRS+ ! IRS+ induced by T acting on E+. Indeed,(T+v+)i = (Xj2S Tijvj)+ = Xj2S+�f0g(Tijvj + Ti;�jv�j) + Ti;f0gvf0g= Xj2S+�f0g(Tij + Ti;�j)vj + Ti;f0gvf0g= Xj2S+�f0g(@(i�Mj) + @(i+Mj))vj + @(i)vf0g :Notice that T+ is a square matrix of dimension jSj+ 12 and one of its eigenvalues is m. The reader havingtrouble with these de�nitions can see them illustrated in an easy case (example 7.1).The modulus of the eigenvalue ofM that is closest to the unit circle will denoted by m� (its reciprocalis the spectral radius of M�1). Recall that m = jdetM j. Note that 1 � mn� � m.De�nition 1.7 An eigenvalue � if T is called special of it is real and is contained in [mn�1� ;m).Here is our main result.Theorem 1.8 Let (M;R) be a regular standard pair. The associated matrix T always has at least onespecial eigenvalue and:1) The Hausdor� dimension of �� satis�esn+ ln�� lnmlnm� � Hdim(��) � ln�lnm� ;4



where � is the leading special eigenvalue of T (which is the next-to-leading eigenvalue of T ).2) Let V be an open ball intersecting the boundary of �. The Hausdor� dimension of �� \ V isn+ ln�p � lnmlnm� � Hdim(�� \ V ) � ln�plnm� ;where �p is a special eigenvalue of T .Remark: In fact, the result also appears to hold for exceptional standard pairs, but we do not pursue thishere. Note that our result depends on the choice of V , that is: T might have more than one special eigenvalue,in which case the dimension of the boundary may not be constant. We will give an example of this in section7 (example 7.8).The most interesting case arises when the eigenvalues of M are equal in modulus. We then havemn� = m, and the above inequalities become equalities.Corollary 1.9 Let (M;R) be a regular standard pair and suppose that all eigenvalues of M are equal inmodulus.1) The Hausdor� dimension of �� satis�es:Hdim(��) = ln�lnm� ;where � is the leading special eigenvalue of T (which is the next-to-leading eigenvalue of T ).2) For an open ball V intersecting ��, we haven� 1 � Hdim(�� \ V ) = ln�plnm� < n ;where �p is a special eigenvalue of T .In [14], Kenyon obtained an equality for the Hausdor� dimension similar to the one in the �rst partof the corollary. The di�erence is that in his case � is the principal eigenvalue of the transition operatorof a Markov partition (in the usual sense) for ��. Our matrix T is certainly not a transition matrix of aMarkov partition, since it contains integers greater than one. Moreover, Kenyon's result does not includean algorithm to calculate the Markov transition operator from the initial data (M;R). On the other hand,our transition operator is easily calculated (see section 7, where we calculate the dimension of �� in variouscases). In addition, Kenyon's result is much more restricted than ours for various reasons. First of all, heassumes that M is conformal, which in our corollary is not necessary (think of Jordan matrices). A moreserious restriction is that he assumes that � is homeomorphic to a ball in IRn. This is generally not thecase. A non-trivial set in one dimension, for example, cannot be connected. Thus his result excludes theone-dimensional tiles. In higher dimension, � may have a complicated topology: in [11] an example of aconnected set with in�nitely many holes is given, or even one with in�nitely many components, each ofwhich has in�nitely many holes (see also example 7.8).There is yet another approach to the calculation of the Hausdor� dimension for fractals generated byiterated function systems. This goes by means of a Mauldin-Williams graph (see [23]). This technique isalso based on partitioning the boundary in a �nite number of pieces and determining which ones are mappedwhere by the contractions of the iterated functions system. This sort of knowledge is not a priori present for5



the fractals under discussion here. In addition, the technique also requires the contractions to be conjugateto similarities.Techniques by which one can calculate the Hausdor� dimension of a set that is invariant under asystem of transformation that are not similarities are rare. We know of only the socalled Sierpinski Carpets(see [24], also explained in [7]). Here the transformations are diagonal matrices with integer entries. Thereis also an expression for the Hausdor� dimension of more general sets, sometimes called Falconer's Formula.One can �nd this formula in [7]. This formula holds `almost always', but its proof does not indicate whatthe exceptional cases are (but see [12]).Let d�p denote the size of the largest Jordan block associated with �p. Denote the dimension of ��\Vby � = ln�plnm� (1.6)Denote the size of the largest Jordan block associated with m� by dM . Suppose X is a set of Hausdor�dimension �. Denote by H�(X) the Hausdor� outer measure of the set X (for the de�nition, see section 2).Our calculations needed for the above results also yield the folloeing information.Theorem 1.10 Let (M;R) be a regular standard primitive pair and suppose all eigenvalues of M have equalmodulus.1) If dM = d�p = 1, then: H�(�� \ V ) <1 :2) If d�p � 1 � (n� �)(dM � 1), then H�(�� \ V ) > 0 :3) If d�p � 1 > (n� �)(dM � 1), then H�(�� \ V ) =1 :The set-up of this article is as follows. In section 2 we discuss elementary notions concerning the set��. Essentially, we decribe how to construct it. Then in the next section, we describe the operator T and itsproperties. This serves to facilitate the counting argument already mentioned. These counting argumentswill then be spelled out in the next two sections. The �rst of these, section 4, gives the upper bound for ourdimension estimate, and in section 5 we derive the lower bound. In section 6, we prove the result concerningthe regularity of the boundary (if M has eigenvalues of equal modulus). Finally, in section 7, we calculatethe dimension of the boundary of several tiles.In all subsequent sections, we will assume, without loss of generality, that (M;R) is a standardprimitive pair. We give the reduction to that case here.Lemma 1.11 Let (M;R) be a standard pair. Then �(M;R) is conjugate to a tile �0 = �(M 0; R0), where(M 0; R0) is a standard primitive pair.Proof: Let B be a matrix such that BZZn = ZZ[M;R]. Clearly, M preserves BZZn. Thus M 0 = B�1MBhas integer entries. Further, R0 = B�1R � ZZn is a complete set of coset representatives [25]. It is easy tosee that �0 = B�1�.The lattice BZZn is a generalization of the notion of greatest common divisor (see also [25]).6
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2 Construction of the BoundaryIn this section, we describe the construction of the boundary. It also serves to collect most of the de�nitionsand notation (in so far not already discussed in the introduction) in addition to some elementary results.Throughout this work, we will denote Lebesgue measure by � and the �-neighborhood of a set A byN�(A). The diameter of a set U is denoted by jU j.Of the many de�nitions of dimension [22], Hausdor� dimension has been one of the mathematicallymost fruitful ones (see [7]). We give the de�nition and refer to [6] and [7] and references therein for furtherreading.For a set F � IRn, de�ne Hs�(F ) = inffX jUijsg ;where the in�mum is over all countable covers of F whose individual sets have diameters less than �. Thes-dimensional Hausdor� outer-measure is given by:Hs(F ) = lim�!0Hs�(F ) :There is a unique number � � 0 such thatif s < � then Hs(F ) =1if s > � then Hs(F ) = 0 :This number is the Hausdor� dimension of F . Part of the importance derives from the fact that it isan invariant under bi-Lipschitz homeomorphisms. A set is called an s-set if its s-dimensional Hausdor�outer-measure is positive and �nite. This property is also invariant under bi-Lipschitz homeomorphisms.Lemma 2.1 For all x 2 �, we have that for all � > 0�(N�(x) \ �) > 0 :Proof: By de�nition of �, for any given �, there is a k such that xk +M�k� � N�(x) for some xk 2Pki=1M�iR.Corollary 2.2 � is the closure of its interior.Proof: Recall that �� has measure zero and use the previous lemma.Now we de�ne �(2) = fx 2 �jx+ fZZn � f0gg \ � 6= ;g : (2.1)Recall that we assume that (M;R) is a regular standard primitive pair. Thus by theorem 1.6, �(M;R) is atile by ZZn.Lemma 2.3 We have �(2) = �� :8



Proof: First, let x 2 ��. Then, for all � > 0�[fN�(x) + ZZng \ �] = �N�(x)�[N�(x) \ �] 6= �N�(x) :Thus for all � > 0, [N�(x) + fZZn � f0gg \ � is non-empty.Now let x 2 �(2). There is y 2 x+ fZZn � f0gg in �. Pick some small �0 such thatN�0(x) \N�0(y) = ;For all � < �0 we then have �[(N�(x) \ �) [ (N�(y) \ �)]covers �[N�(x)] at most once (modulo sets of measure zero). By the previous lemma, N�(x)\� and N�(y)\�have positive measure. Thus, for all � > 0, neither has full measure.We de�ne: �k def� kXi=1M�iR = �k(f0g) : (2.2)�k is the k-th generation approximation to � and as an element of H(IRn) it is the k-th iterate of f0g.Notice that since 0 2 R, �k � �. Similarly, recall the de�nition of the set S (equation (1.3)) and de�ne�k def� fx 2 �kj9i 2 S � f0g;9j 2 S � f0g such that x+ i+M�kj 2 �kg ; (2.3)the k-th generation approximation to the boundary of �. Ek is the k-th generation `�lled-in' approximationto the boundary of �: Ek def� �k +M�k� : (2.4)Lemma 2.4 We have �k � N3�k(��)where �k = jM�k�jProof: If x 2 �k, then y = x + i +M�kj 2 �k. So, both x and y are in �. Then N�k(y) contains anopen set A � � lemma 2.1. The set A� i � N3�k(x) is not contained in �. Since x 2 �, N3�k(x) must alsocontain points of the boundary.We now construct a sequence of maps �k : H(IRn)! H(IRn) whose �xed points Fk will also approachthe boundary of �: �k(X) def� M�kX +�k ; (2.5)and Fk def� �(Mk;Mk�k) : (2.6)Note that �kFk = Fk. 9



Lemma 2.5 We have �� � Fk � Ek :Proof: The second inclusion follows immediately from the de�nitions of Ek and Fk.Suppose x1 2 ��, then by lemma 2.3, we may suppose that x1 2 �(2). We will show that x1 can bewritten as x1 =XM�kivi; where vi 2Mk�k :By iterating equation (1.1), we see that there is a v1 2Mk�k withx1 2M�k(� + v1) :Thus there is an x2 2 � such that x1 =M�k(x2 + v1) :Since x1 2 �(2), there are x1 2 � and v1 2Mk�k such that for some x2 2 �x1 =M�k(x2 + v1) ; x1 � x1 = j1 2 S � f0g :Now observe that v1 � v1 =Mk(x1 � x1) + x2 � x2 :Since v1 � v1 2 ZZn, we also have v1 � v1 =Mkj1 + j2 ;Note that v1 � v1 2 Mk(�k � �k). This set contains no elements of Mk(ZZn � f0g) (see [11]). Recall thatj1 2 S � f0g. Thus j2 2 S � f0g. Thus v1 2Mk�k. Moreover, we see thatx2 � x2 = j2 :Thus x2 belongs to �� = �(2). Continue by induction.The following proposition establishes that the sets we have de�ned so far converge to �� in theHausdor� topology.Proposition 2.6 One hasHlim k!1Fk = Hlim k!1�k = Hlim k!1Ek = �� :Proof: Combining lemmas 2.4 and 2.5, we have�k � N3�k(��) � N3�k(Fk) � N3�k(Ek) :By de�nition of the Hausdor� distance, the Hausdor� distance between the two sets �k and Ek is exactlyjM�k�j, which implies the proposition.
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3 The Transition MatrixHere we derive how the transition operator counts the number of points in the k-th level approximation ofthe boundary. Again, we assume that � is a tile (for example, when (M;R) is a regular standard primitivepair, according to theorem 1.6). This implies that the leading eigenvalue of T , discussed in equation (1.5)is simple (see [9] or [25]).Consider the transition matrix T : IRS ! IRS as de�ned in the introduction. For an open set V withdiameter smaller than one and a non-negative integer k de�ne the contact-matrix (we borrowed the namefrom [9]) as follows.T (k; V )ij def� ( card fx 2 �kjx 2 V or x+ i+M�kj 2 V g if i; j 2 S � f0g0 else (3.1)In this de�nition, we say that x is a basepoint for the di�erence i+M�kj.Note that we have approximately T (k + `; V ) � T `T (k; V ) :The fact that this is not exact, is due to boundary e�ects whose relative error decreases exponentially (thisis worked out precisely in proposition 3.2). By applying T to T (k; V ), one sees that(T `T (k; V ))f0g;j = (T `T (k; V ))i;f0g = 0 :Thus for all `, the angle between the span of the columns of T `T (k; V ) and E1 = �(1; 1 � � � ; 1), the eigenspaceassociated with the leading eigenvalue m, is bounded from below. Since, as remarked just after equation(1.5), the leading eigenvalue is simple, the growth-rate of T `T (k; V ) is less than m.Since we will be doing a lot of counting, de�ne the following counter for a non-negative integer matrixC: kCk =Xij cij :For a given ball B, we can now express the growth-rate of card (�k+`\B) in terms of the growth-rateassociated with the matrix T . This is done in the following two results.Lemma 3.1 We have kT (k;B)k2 cardS � card (�k \B) � kT (k;B)k2 :Proof: The �rst inequality follows from the fact x 2 �k \ B can be the basepoint of at most 2 cardSdi�erences.The second inequality follows from the de�nition of �k: each x 2 �k \ B is the basepoint of somedi�erence and its negative (by the de�nition of �k).Proposition 3.2 Let Br be a ball of radius r intersecting ��. Fix a constant � > 0 and choose k such thatjM�k�j < �r. Then (T `T (k;Br(1��)))i;j � (T (k + `;Br))i;j � (T `T (k;Br(1+�))i;j :11



Proof: Suppose �k \ B contains N = T (k;B)ba basepoints of the di�erence a +M�kb. Then �k \ B +Pk+`i=k+1M�iR containsXb2S card 0@fa+M�kb+ k+X̀i=k+1M�iRg \ fa+M�k�`c+ k+X̀i=k+1M�iRg1A � T (k;B)ba ==Xb2S card (fb+ X̀i=1M�iDg \ fM�`cg) � T (k;B)ba =Xb2S(T `)cbT (k;Br)babasepoints of the di�erence a+M�k�`c. There is a discrepancy due to the fact that �k\B+Pk+`i=k+1M�iR 6=�k+`\B. Points may `seep' across the boundary of B. By assumption, points that do so, lie within a distance�r of the boundary.Lemma 3.3 Let V be a ball.1) the growth-rate (in `) of kT `T (k; V )k is determined by a real positive eigenvalue.2) If V is su�ciently large, then this eigenvalue is the next-to-leading eigenvalue of T .Proof: To prove the �rst statement, recall the de�nition of the T -invariant (symmetric and anti-symmetric)splitting of IRn in the introduction: IRn = E+�E�, and the operators T+ and T� which are just the linearmap T restricted to these respective spaces. Let v = v+ + v� be the j-th column of T (k; V ). The j-thcolumn of T `T (k; V ) is (T+)`v+ + (T�)`v� :By the previous proposition, one sees that the components of this vector are non-negative for all `. Thusthe growth-rate must be determined by an eigenvalue of T+.A similar argument shows that this eigenvalue is real positive. Let Ei denote the eigenspaces of T+,ordered in such a way that the associated eigenvalues �i satisfy: j�ij � j�i+1j. Denote T jEi by Ti. Now,consider the smallest integer j for which the span of the columns of T `T (k; V ) intersects Ej in a linearsubspace of positive dimension. The growth of some column v = vj +P�>j v� where v� 2 E�, is dominatedby (Tj)`vj. Suppose that the eigenvalues ��>j are less in modulus than �j. Then for ` big enough the entriesof (Tj)`vj have to be positive, since its contribution dominates the count of the number of di�erences.To prove the second statement, consider the following splitting:IRn = E1 �E? :If V su�ciently big, it will contain �. In this case, T (k; V ) counts all di�erences in �k except the ones equalto zero. Thus for any vector v, we have thatT (k; V )v = T (k; V )(v1 � v?) = T kv? :Finally, we state a lemma that we will often use12



Lemma 3.4 Let A : IRn ! IRn a linear map and E� the invariant space associated with an eigenvalue ofmodulus �.1) There is a polynomial p such that for all x 2 E�C1�kjxj � jAkxj � C2�kp(k)jxj :The degree of p is one less than the size of the biggest Jordan block associated with A.2) For a given x 2 E�, we have that there is a polynomial p of degree less than the size of the biggest Jordanblock associated with A such that C1�kp(k) � jAkxj � C2�kp(k) :Proof: Bring A into Jordan form.
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4 The Upper Bound for the DimensionIn this section, we calculate the upper bound of the dimension of �� \ V where V is an arbitrary open ballintersecting the boundary of a tile �. We do this by showing there is a sequence of sets Ek with ��\V � Ek.The upper bound we calculate equals limk!1 HdimEk.The main tool we use to give an upper estimate for the dimension of a set is one that follows almostdirectly from proposition 9.6 in [7]. For completeness we include the proof.Notice that by lemma 3.4, there is a polynomial p of degree dm� such that jM�k�j � Cp(k)m�k� .Proposition 4.1 Let (A;Q) be a pair as described in the introduction (not necessarily standard) and denotethe spectral radius of A�1 by a�1� . ThenHdim�(A;Q) � ln card (Q)lna� :Proof: Cover �(A;Q) by hypercubes whose sides have length �k = jA�k�j � Cp(k)a�k� . To do so, we needat most ( cardQ)k hypercubes. Let � = ln card (Q)lna� and d any positive number. Then the �+d dimensionalHausdor� outer measure of � satis�es:H�+d�k (�) � Cp(k)�+da�k(�+d)� ( cardQ)k= Cp(k)�+da�kd� ;which tends to zero as k tends to in�nity (and �k to zero). Thus for all positive d, the � + d-dimensionalHausdor� outer measure of � is zero. The proposition follows immediately from the de�nition of theHausdor� dimension.Corollary 4.2 Let (M;R) be a regular standard primitive pair and suppose that Q is a subset of [k�1i=0M iR.Then Hdim�(Mk; Q) � ln card (Q)k lnm� :Remark: This estimate becomes exact ifM is conformal and the pair (M;R) satis�es the open set condition(see [6]). As remarked in the introduction, �(M;R) is a tile whose boundary has measure zero. Thus itsinterior has positive measure. The open set condition now holds for the pair (Mk; Q) with the interior of �as the open set.Notice that by lemma 3.4 there is a polynomial q of degree d�p � 1 such thatkT `T (k; V )k � Cq(`)�p̀ :Lemma 4.3 There is a polynomial q such thatC1q(k)�kp < card (�k \ V ) � C2q(k)�kp ;where �p is a special eigenvalue (next-to-leading if V big enough).14



Proof: Let V+ denote the �r-neighborhood of V and V� the ball whose �r-neighborhood is V . Then byresults 3.1, 3.3 and 3.2 kT ` � T (k; V�)k � card (�k+` \ V ) � kT ` � T (k; V+)k :The result follows from applying lemmas 3.3 and 3.4 to this formula.Theorem 4.4 The matrix T has at least one special eigenvalue. Let �p be the largest of these, thenHdim(�� \ V ) � ln�plnm� :Proof: We have by lemma 2.5 �� \ V � Fk \ V :Thus, Hdim(�� \ V ) � lim infk!1 Hdim(Fk \ V ) :Now apply corollary 4.2 and lemma 4.3 to the de�nition of Fk (equation (2.6)) to see thatlim infk!1 HdimFk � lim infk!1 card (�k \ V )k lnm� = ln�plnm� :By lemma 3.3 we that �p is real and positive. By the remark after equation (1.5), we know that 0 < �p < m.Since the boundary of an n-dimensional volume must have dimension at least n � 1, we have �p � mn�1� .Thus �p is a special eigenvalue.
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5 The Lower Bound for the DimensionIn this section, we calculate the lower bound for the Hausdor� dimension of �� \ V , where V is an openball intersecting the boundary.The technique we use consists putting a probability measure � on �� \ V where V is an open ball. Iffor r small enough the measure contained in a ball of radius r does not exceed Crs, then s is a lower boundfor the Hausdor� dimension [7]. The following result is a minor extension of this.Proposition 5.1 Let � be a probability measure on a set X. If for all d > 0 there exists a Cd > 0 such thatfor all x 2 X limr!0 �(Br(x))r��d � Cd :Then H��d(X) � �(X)Cd :And thus Hdim(X) � �.Proof: Let fUig be a cover of X and suppose that xi 2 Ui \X. Then�(Ui) � �(BjUij(xi)) < (Cd + �)jUij��d ;provided jUij < � and � small enough. By summing, one obtains:Xi jUij��d > �(X)Cd + � :The de�nition of Hausdor� dimension implies that for all d > 0Hdim (X) � � � d :We now de�ne a probability measure �k on �k \ V . For any open set U � V :�k(U) = card (�k \ U)card (�k \ V ) : (5.1)Presumably, the measures �k converge exponentially fast to a limiting measure �. However, the localstructure of �k is di�cult to control. Instead, we simply use the Banach-Alaoglu theorem (see [8]).Proposition 5.2 There is a subsequence f�kig that converges to a probability measure � on �� \ V .Proof: Let X = [k(�k \ V ). Then X is compact and �k(X) = 1. By the Banach-Alaoglu theorem, theremust be a subsequence of the �k converging to a measure �. By using proposition 2.6, we see that � hassupport in �� \ V .We will now use proposition 3.2 to devise a method to count the growth rate with k of the numberof elements of �k contained in a ball B. This will enable us to calculate estimates for the measures �k andthus to determine the �-measure contained in a ball of radius r. Without loss of generality, we may alsotake V to be a ball. 16



Proposition 5.3 Let � be the probability measure just constructed. Fix a small constant � > 0. Then thereis a K > 0 such that if k satis�es jM�k�j < �r ;then for a ball of radius r intersecting �� \ V�(Br) < Krnmk�kp 1q(k) ;where �p is a special eigenvalue (next-to-leading if V big enough).Proof: Let V� be the ball whose �r-neighborhood equals V , denote the �r-neighborhood of Br(x) by B+,and assume that B+ � V�. Combining the hypotheses and the results 3.1, 3.3, and 3.2, we seecard (�k+` \ V ) � kT ` � T (k; V�)kcardS :Using the opposite inequalities, we arrive atcard (�k+` \Br) � kT ` � T (k;B+)k :Now, since (�k+` \B+) � (�k+` \ V�), the growth rate (in `) of T ` � T (k;B+) is dominated by the growthrate of T ` � T (k; V�). Thus, recalling the de�nition of the measure � in proposition 5.2, and lemma 3.1:�(Br) � limi card (�k+`i \Br)card (�k+`i \ V ) � cardS kT (k;B+)kkT (k; V�)kBy lemma 4.3, we know that kT (k; V�)k � C�kpq(k) :Furthermore, kT (k;B+)k � vol(B+)vol(M�k�) = Crnm�k :Putting the estimates together yields the result.To simplify notation, put � = n+ ln�p � lnmlnm� : (5.2)Theorem 5.4 Hdim(�� \ V ) � �.Proof: In accordance with the previous proposition, we can choose k such thatjM�k�j < �r � jM�(k�1)�j : (5.3)By bringing M�1 in Jordan normal form applying lemma 3.4, we conclude that there are a constant C anda polynomial p of degree dM � 1 such that C1p(k)m�k� < jM�(k�1)�j � C2p(k)m�k� . By using this andequation 5.3, we calculate the dependency of k on r:C1��1p(k)m�k� < r � C2��1p(k)m�k� : (5.4)17



By proposition 5.1, we will be done if for all positive d small enoughlimr!0 �(Br(x))r��d � Cd :We calculate, using the previous proposition and equation (5.2):�(Br(x))r��d < Krnmk��kp 1q(k)r�nr� ln�plnm� r lnmlnm� rd =Kmk��kp m ln rlnm� � � ln rlnm�p rd 1q(k) :Now using equation (5.4), one easily checks thatmk+ ln rlnm� � mk�k+ lnp�ln �+lnC2lnm� = C3p lnmlnm� :�k+ ln rlnm�p � �k�k+ lnp�ln �+lnC1lnm�p = C4p ln�plnm� :So �(Br(x))r��d � K2p lnm�ln�plnm� q�1rd :Thus the rd-term dominates.
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6 The Hausdor� Outer MeasureIn this section we give some results about the �-dimensional Hausdor� outer measure of �� \ V . Theseresults are essentially corollaries of the calculations done before. We will deal only with the case where theeigenvalues of M have equal modulus. Thus mn� = m (6.1)Proof of theorem 1.10: From the proof of proposition 4.1 and lemma 4.3, we have thatH��k(�� \ V ) � Cp�m�k�� q�kp= Cp�q :Thus H�(�� \ V ) � C :For the second and third statements, we see that the proof of theorem 5.4 together with equalities(6.1) and (1.6) imply that H�(�� \ V ) � �(�� \ V )pn��q�1 ;and recall that p has degree dM � 1 and q has degree d�p � 1.
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7 Some ExamplesWe illustrate the ideas in this work by calculating the dimension of the boundary of a self-a�ne tile in anumber of examples.We begin with an trivial example that can be understood without calculation.Example 7.1 The interval [0; 1] is the invariant set for (M;R) = (2; f0; 1g). It is easy to check thatD=f-1,0,1g with 0 appearing with multiplicity 2, that is: @(0) = 2 . The set S is given by f�1; 0; 1g andS+ = f0; 1g. Thus the transition matrix and the reduced transition matrix are given byT = 0B@ 1 1 00 2 00 1 1 1CA ; T+ =  2 01 1 ! :We follow the convention that the ordering of coordinates on which T+ (T ) acts is the same as the orderingin S+ (S). So the upper right entry of the T+ multiplies vf0g;f1g, and so forth. Since the only specialeigenvalue (de�nition 1.7) equals 1, the dimension of the boundary equals ln 1ln 2 = 0.Now let us look at some non-trivial examples.Example 7.2 Let (M;R) = (3; f0; 4; 11g). Then Hdim �� \ V � ln 2:84 � � �ln 3 � 0:87 � � � .Proof: Check that S+ = f0; 1; 2; 3; 4; 5g :With the same convention as before (noting that D consists of the numbers -11, -7, -4, 0, 4, 7, and 11, and@(0) = 3), T+ = 0BBBBBBB@ 3 0 0 0 0 00 1 1 0 1 00 0 1 2 0 00 3 0 0 0 01 1 0 0 0 10 0 1 1 1 0
1CCCCCCCA :Using Maple, we �nd that the only special eigenvalue is approximately 2.84.We now exhibit examples in one dimension whose boundaries have dimension approximating (but notequal to) 0.Example 7.3 For m � 4, let (M;R) = (M; f0; 2; 3; � � �m� 1;m+ 1g). Then Hdim(�� \ V ) = ln 3lnm .
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Proof: We easily see that S+ = f0; 1g. For the function @ the following holdsd @(d)0 m1 m� 3m� 1 1m+ 1 1else 0Thus T+ =  m 0m� 3 3 ! :Here is a family of examples such that their boundaries have dimension converging to (without beingequal to) 1.Example 7.4 Let m � 4 be even. Let(M;R) = (m; f0; 2; 4; � � � (m� 4); (m � 2); (m+ 1); (m + 3); � � � (2m� 1)g) :Then Hdim(�� \ V ) = ln[(m� 1) + ((m� 1)2 + 8)1=2]� ln 2lnm :Proof: Again, it is easy to see that S+ = f0; 1; 2g. Concerning @, we only need the following information:d @(d)0 m2 m� 2m� 2 2m� 1 m=2� 1m+ 1 m=2m+ 2 0else 0Thus TT+ = 0B@ m 0 00 m� 1 1m� 2 2 0 1CA :The only special eigenvalue is (m� 1) + ((m� 1)2 + 8)1=22 .We have not been able to �nd any one-dimensional examples in which the leading special eigenvalueis associated with a Jordan block.In studying the dimension of boundaries of tiles in two (or more) dimensions, three new aspects arise.In the �rst place, not all expanding map are (conjugate to) similarities. So we may obtain estimates ratherthan equalities. That this is inevitable is clear from the following example slightly modi�ed from [7].21



Example 7.5 Let N > 2 and(M;R) =   2 00 N ! ; f(0; 0); (�2�;N � 1)g! :We calculate the dimension of � (not its boundary). When � = 0, this gives Hdim(�) = ln 2lnN . When� 6= 0, we have Hdim(�) = 1.Proof: See example 9.10 in [7].A second problem is that, although the algorithm that determines the set S+ terminates after a �nitenumber (but not a priori bounded) number of steps, this calculation isn't nearly as straightforward as in theone-dimensional case. In fact, to check that a given set is indeed S+ is an elementary but very longwindedcalculation, which we leave to reader in the examples below. In the following examples, all eigenvalues ofM have equal modulus.Example 7.6 The case where m = 2 in two dimensions. As explained in [11], there are (modulo a�necoordinate transformations) only six cases. The following three are representative.i) M =  0 �21 0 ! ; ii) M =  0 �21 1 ! ; iii) M =  0 �21 2 ! ;and in all three cases R = f(0; 0); (1; 0)g.We have that in the three respective cases, the Hausdor� dimension assumes the values 1, ln 1:5 � � �ln 2 , andln 1:7 � � �ln 2 .Proof: In the three cases D = f(0; 0); (�1; 0); (1; 0)g, the point (0; 0) having multiplicity 2. Note that(M;R) generates the same set � as (M2;MR+R). In the �rst case, we obtain the system  �2 00 �2 ! ; f((0; 0) [ (1; 0)) + ((0; 0) [ (0; 1))g! :It is easy to see that the associated set � is, in fact, the unit square (by explicit substitution, for example).In the second case: S+ = f(0; 0); (1; 0); (0; 1); (1;�1)g ;and T+ = 0BBB@ 2 0 0 01 0 0 10 2 0 00 1 1 0 1CCCA :The characteristic polynomial is ��3 + �+ 2, whose only zero is � � 1:5 � � �.In the third case: S+ = f(0; 0); (1; 0); (1;�1); (1;�2)g ;22



and T+ = 0BBB@ 2 0 0 01 0 0 10 1 1 00 0 2 0 1CCCA :The characteristic polynomial is ��3 + �2 + 2, whose only zero is � � 1:7 � � �.Finally, we conclude by calculating the dimension of the boundaries of the two tiles depicted in �gures2 and 3 of [11]. Here, the aspect arises that M may also have Jordan blocks.Example 7.7 Let (M;R) =   2 10 2 ! ; f(0; 0); (1; 0); (0; 1); (1; 1)g! :Then Hdim(�� \ V ) = 1.Proof: One checks that S+ = f(0; 0); (1; 0); (0; 1); (1;�1)g ;and T+ = 0BBB@ 4 0 0 02 2 0 02 0 1 11 1 0 2 1CCCA :
Remark: Notice that bothM and T+ have a Jordan block of size 2. So it is unclear whether �� is an s-set.Example 7.8 Let  3 00 3 ! ; f(�1;�1); (0;�1); (1;�1); (�2; 0); (0; 0); (2; 0); (�1; 1); (0; 1); (1; 1)g! :Then Hdim(�� \ V ) = 1 or Hdim(�� \ V ) = ln 5ln 3 .Proof: We have S+ = f(0; 0); (1; 0); (2; 0); (0; 1); (1; 1); (1;�1)g ;and T+ = 0BBBBBBB@ 9 0 0 0 0 04 5 0 0 0 04 4 1 0 0 02 4 0 3 0 04 2 0 2 1 04 2 0 2 0 1

1CCCCCCCA :There are now two special eigenvalues, namely 3 and 5.Remark: This last result is in fact easy to verify by inspection of the �gure.23
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