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Let f be a two-dimensional area preserving twist map. For each irrational rotation number in a certain (nontrivial)
interval, there is an f-invariant minimal set which preserves order with respect to that rotation number. For large
nonlinearity these sets are, typically, Cantor sets and they are referred to as Aubry—-Mather sets. We prove that under some

assumptions these sets are ordered vertically according to ascending rotation number (“monotonicity”). Furthermore, if f

satisfies certain conditions. the right hand points of the gaps in an irrational Cantor set lie on a single orbit (**single gap™)
and diffusion through these Aubry-Mather sets can be understood as a limit of resonance overlaps (“convergence of
turnstiles”). These conditions essentially establish the existence of a hyperbolic structure and limit the number of homoclinic
minimizing orbits. Some other results along similar lines are given, such as the continuity at irrational rotation numbers of

the Lyapunov exponent on Aubry-Mather sets.

1. Introduction

Let f be an area preserving monotone twist
map on the cylinder A =S' X R. For each num-
ber a in the rotation interval I of f, Aubry [1]
and Mather [12] have constructed f-invariant sets
M, that have the given number as rotation num-
ber. These invariant sets are constructed as the
global minima of a certain action functional. The
topologically minimal sets E_ with irrational rota-
tion number are precisely the Aubry—Mather sets.

These sets are well-defined [12], lie on
Lipschitz graphs over S! and on them the dynam-
ics preserves the circular ordering [4]. They can
be smooth invariant, homotopically non-trivial
curves, so-called KAM curves. For large enough
non-linearity, though, one expects them to be
broken up into Cantor sets [3]. In fact, the param-
eter value at which a set breaks up depends to a
large extent on the number-theoretical properties

of the rotation number in question [10, 13]. These
Cantor sets are then the “remnants” of the in-
variant KAM curves of the nearly integrable case.

Aubry—Mather sets play an important role in
the global dynamics of the map, especially in
stability questions. As invariant curves, they con-
fine the dynamics of all orbits to narrow regions.
However, numerical experiments indicate, that
even as Cantor sets, these sets continue to restrict
vertical motion [11). These attempts to under-
stand this led to a geometrical construction called
“turnstiles”. The idea was to construct the stable
and unstable manifolds in the gaps of the Cantor
sets, thus capturing the area per iterate that
diffuses across the set.

In this article, we prove a number of theorems.
One of these (the monotonicity theorem) states
that under certain conditions the E , admit a
vertical ordering in the cylinder similar to ref.
[16]. Another has been conjectured before on the
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basis of numerical evidence: this is the theorem
that asserts that the diffusion through an
Aubry-Mather set can be considered as a limit of
resonance overlaps. Finally, the single gap theo-
rem, which says that under a geometric assump-
tion Aubry—Mather sets have only one gap orbit
* in them, has not appeared in the literature, as far
as we are aware.

It is often convenient to consider the rotation
number as being an element of the extended
rotation interval I™ defined as follows. Replace
each rational number p/g with the set {p/q—,
p/q,p/q +} with the natural ordering between
them. With this ordering, the ordering on I in-
duces an ordering on I*. The topology on I* is
the order topology. Notice that p/q is an iso-
lated point. We will often use I and I* inter-
changeably.

If p is rational, say p/q, then E, , will denote
a minimizing g-periodic orbit with rotation num-
ber p/q. Katok [5] proved the existence of mini-
mizing orbits that are homoclinic to Ep/q, one
advancing, E, .+ and one receding, E, - In
this work, the only C* generic, & > 1, properties
of f that we use, are the following. First of all,
E, , consists of a single hyperbolic periodic or-
bit. Second, M, ,, consists of E, , plus a single
advancing orbit, E, .+ homoclinic to E, , and
a single receding orbit, E, .-, also homoclinic to
E, ., (in the sense that gth iterates of points
move between successive points in E, ). The
proof of this is standard and an outline is given in
the appendix. (In a forthcoming work [21] we
prove uniqueness of these orbits in the case of
the standard map with large enough non-linearity
parameter.)

Hausdorff limits (Hlim) of these sets are well-
defined [12];

Hlim E,=E, .

, Hlim VE, ,,=clos(E

p/q+}’

Hlim E,~E, UE,,

=l .
atp/g— ¢ OS{EP/"_}

(1.1a)
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For w irrational
E, C HlimE,.

a—-w
In order to avoid notational complications, re-
sults will be stated and proved, where possible, in
the universal covering space of the cylinder with-
out further comment. For the lift of f, the nota-
tion F will be used.

(1.1b)

2. Monotonicity

In this section, the monotonicity result will be
proven. This result restricts the region that
Aubry-Mather sets with irrational rotation num-
ber can inhabit.

Let f be a C* (k> 1) area preserving mono-
tone twist map on the cylinder A =S' X R. Fix a
lift F: R*> - R? of f. When necessary, we will use
coordinates (x, y) on R?. Note that F commutes
with the unit translation in the x direction. Each
point p =(x,,y,) defines an orbit {F'(p)} and
the projections 7(x,, y,) on the x-coordinate are
called x;. Denote by M, the set of minimizing
points of rotation number a, i.e., lim X,/i=a.

We define the local stable and unstable mani-
folds W/“(x) and their inverse forward images
respectively as the stable and unstable manifolds
in the usual way (see for example ref. [6]).

Let V denote the foliation of A = R? by verti-
cal lines, so that F(V) and F~ (V) are the corre-
sponding images of V under F. At a point p in A,
we can now define the open cone C,=C,ucC;
bounded by F(V), and F~'(V), and contammg
V, (see fig. 1). Here v, denotes the leaf of the
fOllatIOIl V through p and — or + indicates the
downward, respectively, the upward component.
Define

i=+w»

C(p)= U CHpy
i= —o

Similarly, define tangent cone TC,=TC,u TC,
as the cone in the tangent space to p whose
boundary is formed by the tangent lines to C,.

The fundamental wisdom that underlines thls
section, is that two minimizing points, s and p,
with different rotation numbers in I7, satisfy a
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Fig. 1. The cone C,,.

geometrical inequality. Aubry’s fundamental lem-
ma [1] implies that s cannot lie in C, if its
rotation number in I is greater than or equal to
that of p. But then, of course, s cannot lie in
iterates of C, either, and the same is true for
iterates of s.

Lemma 2.1. Letpbe apointofE, . orE,  _;
the tangent to the stable and unstable manifolds
WS(p)and W4(p) at pis givenby lim,, _, ¢/ 1]
and lim, _ .}/ |t}] respectively, where

t=DF(F(p)) - ),

2 =DFM(Fe(p)) - _Y).

Proof. This follows directly from the definition of
the local stable and unstable manifolds plus the
fact that for n large enough the vector (0, — 1)
does not lie on WX(F"( p)) nor on W (F~"(p)).
The latter claim is proved as follows.

The points f"(p) and f~"9(p) are close to
two points x and y in E, .. By general hyper-
bolic theory (see also section 3) tangents to their
(local) invariant manifolds are nearly parallel to
those of x and y. But the tangents at x and y
cannot be contained in TC,, because if they
were, Aubry’s fundamental lemma would be vio-

lated since E, ,_ and E,, ,,, accumulate onto x
and y along those tangents. O

The following lemma shows that the invariant
manifolds emanating from a point p€E, ,
Ep/q_, Ep/q+ can never be very close to vertical,
and that the upper right branch is an unstable
manifold. For clarity, we number the branches
clockwise, starting from the vertical (see fig. 2).

Lemma 2.2. If.p €E, 4 Ep/,{_, orE, .. then
the first clockwise branch, W,, is an unstable one.
Moreover, corresponding branches on the orbit
of p map into each other.

Proof. The region
TC;=DF(F™'(p))(Cr1,,) VTC,
UDF'(F(p))(Cr)

forms a new local cone (each original cone has
V, in its closure). It is then easy to see that TC,,
defined in the obvious way, contains TC,_,, for
all n. By lemma 2.1, the boundary of TC,,
(g fixed) must accumulate on a stable and an
unstable direction. Observe that TC,, cannot
contain any stable or unstable directions and
further that the interior of TC, is connected.
Therefore, its boundaries can' only accumulate
onto W, and W;.

The second statement follows from the fact
that C~(p) is mapped to C(f(p)). Thus the
tangents to the boundaries at p and f(p) are also
mapped to one another. O

For each p/q+ or p/q —, separating curves
v(p/q+) or y(p/q —) on the cylinder can be
defined as follows. For each pair of neighboring
points p, and p, in E, ., pick one point s in
E, .+ (or E!,/q_) between them. Connect s to
the points p, and p, along their invariant mani-
folds. We define y(p/q +) (or y(p/q —)) as the
closed curve obtained as the union of the seg-
ments (see fig. 3). An orientation along the
curve can be defined in such a way that the
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Fig. 2. The clockwise enumeration of the invariant manifolds.

orientation has a component to the right on
the points of E, , for the construction of
Y(p/q +) and to the left for the construction of
¥(p/q —). With this orientation, there is now a
slight extension of lemma 2.2.

The curves vy are not necessarily Jordan. ‘
Clearly, v(p/q + ) separates A in an upper com- !
ponent containing +o, a lower component
containing —o and finitely many other com- |
ponents. Note, that these curves and com-
ponents depend on the choice of ¢ points
Corollary 2.3. At a hyperbolic minimizing point in Spe-- 8, in E, ., respectively, E . In the

E, 4+ the first clockwise branch is unstable and ;2 |
oriented with a component to the right, the second
is stable and oriented to the right, and so on. The
orientation is opposite for E, .-

\_\ 1

following we will make a simplifying assumption
on the character of these curves (which will be
proved to hold in the case of the standard map
with large enough k in a forthcoming work [21].

¥ (pras)

Fig. 3. Construction of the curve vy(p/q + ).
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Let G be a pair of two neighboring points a
and b of E, ., such that in the plane m(a) <
w(b). The segment y( p/q + ) that connects them
is called W¥(G) if it is an unstable segment, or
WS(G) if it is a stable one. Let 4, and ¢, be
the left boundary of C, and C, respectively and
r, and r, the right sides.

Condition 2.4. For each neighboring pair G of
points @ and b in E,,,, (a to left of b):

WHG) N (4, ud,) = if the connecting
segment is unstable,

WHG) N (r,ur,) =@ if the connecting
segment is stable.

Similarly for y(p/q — ).

We remark that some types of intersection are
a priori excluded. Suppose for example that we
are interested in an unstable connecting segment
of y(p/q +) which we parametrize, starting at
the point a, by y(¢). Let ¢(y(¢)) be the angle of
the tangent to vy(t) with the positive vertical.
Counting clockwise as positive, define ¢(y(t)) as

#(+(1)) = [ G (3(1)) a.

Ifi, isin WG)NZ, and i, in W*G) N Z,, the
remark is that ¢(i,) >0 and ¢(,)> 0.

a4

ay 1

One proves this by showing that if for example
#(i,) <0, then the inverse image under f of
W'(G) has an intersection point with the same
property. But we know that inverse images of
WH(G) eventually land in the local unstable mani-
folds to E, ,, which do not have this property.

Suppose we choose points s,,...,s, in the
construction of y(p/q + ) such that condition 2.4
holds. The figure consisting of W *(G), Z , and Z,
(see fig. 4) then separates the plane in two
components (similarly for W*G), r,, and r,).
Only one of these components contains + . The
other one is called “below ab”. We now define
“below y(p/q + ) as follows: a point x is “below

y(p/q+) if

xe€C, forsomeacE,, .

or

X € “below ab”

for some neighboring pair a and b in E, e+

“Above y(p/q+)” is the complement of {y U
“below y(p/q +)”}). One gives a similar
definition for “above v(p/q —)” and “below
v(p/q—)". We will use the symbols < and >
for “below” and “above”, respectively.

Remark. Note that the definition of above and
below vy(p/q+) is not symmetric. The same

Fig. 4. The separating sets in the plane.
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holds for v(p/q — ). Note further that in the case
that vy is a Jordon curve, this notion coincides
with the standard interpretation of “above” and
“below”.

Theorem 2.5. For any vy(p/q+), y(p/q—) for
which condition 2.4 holds, we have:

() If a>p/q, then M, > y(p/q + ) and M, >
y(p/q ), and

(D if « <p/q, then M_<~y(p/q—) and M,
<vy(p/q+).

Proof. We only prove the first half of the first
statement. The statement will follow from a
contradiction by supposing that there is a point
* €M, such that x lies on the “wrong” side of
Y(p/q +).

Suppose without loss of generality that the
segment that connects the neighboring points a,
and b, of a “gap” G, is unstable. Let xeM,
with @ >p/q. As noted before, x cannot lie in
Ca‘0 or C,j”. It remains to be proved that x is not
contained in the region S, (possibly consisting of
more than one component) bounded by WHUGy),
I, and 2, .

Iterate by f~'. Then S, is mapped into the
region bounded by W“(G,), I, and ¢, . By
Aubry’s fundamental lemma, the point x€S§,
cannot be mapped to a cone. Therefore it must
land in S, which is the region bounded by
WHG,), r,, and /bn' We can continue this, in-
ductively defining S, containing f7"(x), until, for
some n, S, lies in an e-neighborhood of a hyper-
bolic periodic point.

But this neighborhood can be chosen so small
that f9 restricted to it is very nearly linear. By
lemma 2.2, we know the orientations of the local
invariant manifolds (see fig 5). Orbits of points in
S, under f9 lie on hyperbolae. Any order
preserving orbit in S, with rotation number
greater than p/q must satisfy

m(f4(y)) >m(y).

These requirements are incompatible and thus x
cannotmap to S,,. o

Fig. 5. The region S, in a small neighborhood of a hyperbolic
periodic point.

Notice, that we can compare two irrational sets:

as well, since there are always pairs of y(p/q +)
and y(p/q —) that separate them. So, theorem
2.6 follows immediately.

Theorem 2.6. “Monotonicity”. If for all p/q +
and p/q— inl, y(p/q +) and y(p/q — ) can be
constructed that satisfy condition 2.4, then a > 8
implies E, lies above E,.

3. Hyperbolicity

Here, we prove that the invariant minimizing
sets close enough to rationals are hyperbolic (and
thus for irrational rotation numbers Cantor sets).
One expects these sets to be hyperbolic as soon
they break up (see ref. {8]). The rest of the
section is devoted to a corollary stating that the
Lyapunov exponent of such sets depends continu-
ously on the rotation number.

We start with some generalities concerning the
hyperbolic sets that we are interested in. Again,
we assume f to be generic, so that eqgs. (1.1) hold.
The set Hy = U,enE, is compact if N is a
closed interval in I*. According to Lanford [6], a
compact invariant set H is a (uniformly) hyper-
bolic set, if the tangent space of each point x of
the set is spanned by stable and unstable spaces

:
|
I
i
s

SIS .|
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and if the following holds. The tangent vectors in
the stable space must be contracted exponentially
(as u", u <1 uniformly on the set) under Df”(x),
and the same holds for vectors in the unstable
spaces under Df"(x). These requirements imply
that the local stable and unstable manifolds W(x)
and W_", tangent to the stable and unstable spaces,
are continuous as functions of x € H, and that
their diameter is uniformly bounded away from
zero [6]. That, in turn, implies, that there is a
8y >0, so that for any pair x and y in H whose
distance is less than 8,, W(x) and W"(y) have a
unique intersection point [6).

In the following, we will establish the genericity
of hyperbolicity. To do that, we use a cone field
criterion as also described in ref. {7].

Theorem 3.1. “Hyperbolicity”. Let h be a hyper-
bolic set for f, then there exists a compact
neighborhood H of h so that N7 __fi(H) is also
a hyperbolic set for f.

Proof. Since h is compact and hyperbolic, one
can construct a cone field {C .}, ., which is
mapped strictly into itself by Df. One does this
by constructing a norm on the tangent bundle
restricted to h such that Df is expanding on the
unstable bundle (choose unit vector e (x)) and
contracting on the stable bundle (choose unit
vector e(x)), see lemma 2.1 of ref. [15]. Then
choose the cone field C, as follows: a vector
v=ae(x)+belx)isin C, if la| = |b|.

By continuity of Df, we can extend this cone
field C to a cone field {C/}, .;; defined on a
sufficiently small neighborhood H of h such that
Df maps the cone field C’ on f~'(H) N H strictly
into C’ on H. Consequently, any invariant
compact set in N7 _ f'(H) is also a hyperbolic
set. ]

Corollary 3.2. (See ref. [7].) For generic f, there
exists an open neighborhood U of the rational
rotation numbers such that the collection of
minimizing sets with rotation number in U forms
a hyperbolic set.

Proof. Take H=E, ,UE, UE,  _ and pick
H as above. For generic f, the set H is hyperbolic.
()

We let A(p) denote the Lyapunov coefficient
> 1 for an order preserving minimal set E o+ Since
these sets are uniquely ergodic with invariant
probability measure u(p) (see ref. [12]), A(p) is
well defined and constant u almost everywhere.

Proposition 3.3. Let M be a hyperbolic minimi-
zing set with irrational rotation number, then
A(p) is continuous at p = a.

Proof. Let h be a hyperbolic set for f with one-
dimensional unstable bundle E". Assume EY is
orientable. Choose a continuous nowhere zero
section v of E* and consider the function

Df-v(x)
v(f(x))

D(x)=

One observes that D is continuous on h. For an
ergodic probability measure u on h, its Lyapunov
coefficient A(u) equals

Alw) =exp[lnDd,u,.

Since M, is hyperbolic, we have by theorem 3.1
that N7 _.f'(H) is also hyperbolic where H is a
sufficiently small neighborhood of M - One knows
that [12], for « irrational, N7_ __f(H) contains
nearby minimizing sets M, with invariant proba-
bility measures u(p) and that lim, _, u(p) =
u(a), in the weak topology. Consequently
lim,_, , A(p) = A(a). 0

Remark. The function D(x) is not canonical. If
one chooses a different section v'(x) = ¢(x) v(x),
then

#(x) D(x)

D) =24
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However, the Lyapunov coefficient is insensitive
to this: one easily checks that

flnD’d,u,=fln Ddgu.

Finally, a simple result that follows from hyper-
bolicity. Let x be a point in E_ where both
forward and backward images of the gap G accu-
mulate. In a neighborhood of x one can connect
these tiny gaps by local stable and unstable mani-
folds which are almost straight segments that
make a positive angle with each other. From the
accumulation of these different gaps, one con-
cludes the following.

Remark. The set E, cannot be imbedded in a C!
curve.

4. Single gap

Consider the projections of the Aubry~Mather
sets on the x-axis. By a “gap” G in E,, we mean
[4, 5] a pair of points in E, whose projections
bound an interval that contains no point of the
projection of E,_. The length |G| of the gap is
simply the length of that interval. The meaning of
F(G) is then also clear. The main result of this
section is that, under certain assumptions, E, has
only one gap orbit.

—

w'e)

Before we embark on the general course, we
first formulate the single intersection hypothesis,
which will be needed in theorem 4.3. Denote the
finite pieces of invariant manifolds to E, that
connect the endpoints of a gap J in E, by W*(J)
and W"(J). We will say that f satisfies the single
intersection hypothesis if all E, . E, /q-» and
E, ,+ are unique (true for generic f, see sec-
tion 1), and if, for a gap J in E, 4+ O E, |
WH(J) N W*(J) contains a single point (which then
has to be the minimax), see fig. 6.

Lemma 4.1. If E_ is hyperbolic, then it has at
most finitely many gap orbits.

Proof. From the generalities mentioned in section
2, one can deduce that for a hyperbolic set, there
is a 8, > 0 with the property that if x and y are
points in E_, then

if d(F'(x),Fi(y))<s forallieZ,
then x=y.

So, each gap orbit must have a gap of length
greater than 6. O

Remark. A different proof of this fact was given
by MacKay [9].

Proposition 4.2. For f generic, there is a neigh-

borhood N of p/q, such that if « € N, then E,
has one gap orbit.

w@G)

« —

Fig. 6. The single intersection hypothesis.




J.J.P. Veerman and F.M. Tangerman / On Aubry—Mather sets 157

Proof. If f is generic, then E, ., and E,, _
consist of a single homoclinic orbit (see section
1), and thus have one single gap orbit. According
to proposition 1.3, for «a close enough to p/q
(without loss of generality @ >p/q, E,_ is hyper-
bolic. Pick any gap in E, . There is an m >0,
such that all gaps in E, ,, with length greater
than 8/3 are contained in {F(G)}|=". By eq.
1.1, we can pick a so close to p/q, that
d(E,,E, ) <8/3. Then, by uniform continuity
of {f}{Z*", every gap with length greater than 8

is shadowed by a gap in E, ,, and vice versa. O

This result is somewhat unsatisfactory, since
one would like to have a statement for « fixed. In
studying the global stability of these systems, nu-
merical work indicates that the curve with rota-
tion number (1++v5)/2 (or a related dio-
phantine number, see ref. [10]) is the last one to
break up. As a consequence, one is especially
interested in the gap structure of this set, being,
as it were, a “bottleneck” for the dynamics of f.

We are now in a position to prove the main
result.

Theorem 4.3. “Single gap”. Let a be irrational. If
(a) f satisfies single intersection,
(b) Hlim,, , ,E,=E,, and

(c) E,, is hyperbolic,
then E_, has only one gap orbit.

Remark. To prove the result for a single a, it is
enough to require that f satisfy a local variant of
the single intersection hypothesis.

Remark. Numerical work suggests that (a) holds
for the standard map. The more general case is
commented upon after the proof. As stated
before, (c) has been proved only in a restricted
setting [3], but appears to hold more generally.
One suspects that (b) is generically true, see
ref. [2].

Proof. We will assume from now on that there
are two independent gaps in E, and eventually

deduce from that a contradiction with the single
intersection hypothesis.

By assumption (c), we can choose an interval
K* in I'* of rotation numbers p such that the set
E = UE, (union over K™) is uniformly hyperbolic.
By assumption (b), we can choose the interval K*
so that in addition we have:

Hdist(E,,E,) <8 < §,, (4.1)

where 3, is a lower bound for the diameter of the
local invariant manifolds (see section 3) to E,
with p €K*. Thus each E,  ,,E, ,_ in E is
contained in the local stable and unstable
manifolds to E, ,,. Also each gap orbit in E must
have a gap which is larger than §,. Denote the

two “big” independent gaps in E_, by G, and H,,.

According to eq. (4.1), we can uniquely define by
taking G, and H, to be approximating gaps in
E, Ifp is rational, rational +, or rational—, then,
of course, we have that there exists an m(p) with

f™(G,)=H,. (4.2)

By the continuity of f, it is clear that m(p) has to
become unbounded as f— a.

The question we address now, is: How does
m(p) change as a function of p in K*? From
relation (1.1b) and the continuity of f, it tran-
spires that if w € K" is irrational, then either
m(w) = = or m(p) is continuous at w.

As a consequence, m(p) can make finite jumps
only at rational values of p. This situation is
depicted in fig. 7, where m(p/q —) is not equal
to m(p/q+). Because m(p/q) is unique, we
have

m(p/q+)=m(p/q—) +kq. (4.3)
Without loss of generality, we take

m(p/q—)>0.

We will now argue that k is negative. Suppose,
then, that k is positive. Relations (4.1) and (4.2)
together with the well ordered character of E,

AT
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(a) Goc Ho¢
e R — I | — - -
Gp/q«'- Hp/(p
’———’\ — - —
~— .
~ — —
H
Q-
Gpig- p/q
(b) Go¢

o,
s,

Gp/q-

Fig. 7. The local invariant manifolds with rational rotation number of the gap G and their m(p/q - )th image, drawn if (a)

m(p/q+)>0and (b) m(p/q+)<0.

imply that f™®/9°XG, . ,) lies in a local
unstable manifold. Upon iterating this m(p/q —)
times back to the original gap, as in fig. 7, one
encounters a contradiction (namely, that points
have left the local unstable manifold under the
application™of f~'). So k is negative.

If m(p/q+)>0, then (recall that m(p/q —)
is positive) (4.3) implies that |m(p/q+)| <
Im(p/q —)I. So, in order to allow m(p) to become
unbounded, we need

m(p/q—)>0 and m(p/q+)<0.

This is the situation sketched in fig. 7b, and it is’

here that the final contradiction with single

intersection arises. It can be seen as follows that
in this case W*(H,, ,,_) and W*(H,, ) intersect
at least two times. Under forward iterates, the
number of intersections involving the local stable
manifolds along with the relative orientations (use
corollary 2.3 to determine the orientations) is
conserved. One concludes that the point marked
p in the figure is mapped under f™*/97) (with
m(p/q —) > 0) to the point labelled p’, with the
orientation as indicated. So

p e Wu(fm(p/q—)(Gp/q_))
N WS(frn(p/q—)(Gp/q+))
= Wu(Hp/q—) N Ws(f_kq(Hp/q+))’
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where k is negative. Let a’ be the image under
fm#/47), Since W*(G,, ,,..) does not intersect the
a-p (by single intersection) its image under
fm™r/47) does not intersect a'-p’. Therefore, if
W“(Hp/q_) intersects p’, it is caught in an
unstable “lobe” of f™”?/47XH, ,,) and must
intersect the local stable manifold to E, ,, again
in order to leave the “lobe”. By uniform hyper-
bolicity W"(H,,,_) then must intersect
f™r/?-XH, ,,.) another time. The intersections
with W*(H, ) follow by the hyperbolicity of
the two thus constructed points (and hence the
existence of their local unstable manifolds). O

From the last paragraph of this proof, it is
clear that it is sufficient to replace condition (a)
in the theorem by the requirement

(a*) W(H,) N W'(H,) is bounded away (uni-

formly in K*) from the endpoints of H .
This requirement appears to be borne out [17] by
extensive numerical experiments for the standard
map. (If this were not so, one would have even
longer and thinner lobes formed by W*(H,, /q_)
as the H, ,_ accumulate on the gap H,) We
suspect that single gap is a persistent property for
an open neighborhood of maps around the stan-
dard map but can only prove that for large values
of the non-linearity parameter [21].

5. Turnstiles

Let a be an irrational rotation number in I and
assume that E_ is hyperbolic. This section is
dedicated to proving that the leakage of orbits
through an Aubry-Mather set can be understood
in terms of overlap criteria. It is somewhat specu-
lative in nature, since we have to assume all the
conditions that are required for theorem 4.3 to be
true. Nevertheless, as stated, there is good reason
to believe that the result holds for an open set of
maps containing the standard map. This confi-
dence is partly based on numerical results by
various authors, especially MacKay, Meiss and
Percival [11]. We will thus proceed to elaborate
on some of the consequences of the theorem.

We define turnstiles as follows [11]. Let G
denote a gap in E,. Connect the endpoint of
f™(G) with a straight line segment X’,. Similarly,
connect the endpoints of f~"(G) with a straight
line segment A“. Clearly, f*"(\}) and f7"(\})
connects the endpoints of the gap G.

Note, that by hyperbolicity and endpoints of
every gap G are connected by a branch of stable
manifold, and by a branch of the unstable mani-
fold (the future and past iterates of G collapse
the gap). We will denote finite branches that
connect a gap J by W*(J) and W*().

Proposition 5.1.

() Hlim f~(x3) = W3G),

{i—

(i) Hlim f*'(\}) = W*(G).

i— o

Proof. 1t suffices to prove (i) only. Because the
gaps f'(G) do not overlap, the sum of their
lengths is less or equal to one. So there is an N
such that the length [f¥*(G)| <e for all i>0.
Then, by uniform hyperbolicity, for each i the left
and the right endpoint of f~¥*/(G) have to lie on
the same local stable manifold. But then we also
have Hlim f~'(Ny ;) = W(f(G)), because Ny,
is transversal to the local stable manifold of f~'.

a

As in section 3, we can define a hyperbolic set
H that contains E, with p in N, a neighborhood
of «. We now take {p;/q,} to be a sequence in N
with « as its limit. Define G;*/~ as the gaps in
E,,- and E, . that have limit G (as [ - ).

The main result of this section is

Theorem 5.2. “Convergence of turnstiles”. Let f
satisfy the same conditions as in theorem 4.3,
then

(@ Hlim W¥G;") = W(G),
(i) Hlim WG,) = Wi(G),
(i) Hlim W4G;") = W¥(G),
() Hlim W(G,) = WH(G).

[—o®
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Proof. 1t suffices to prove the first statement only.
Since we are dealing with gaps G;* and H? only,
we will drop the unnecessary superscripts + and
s on them.

By the single gap theorem (4.3), we can choose

one concludes that (i) is true, if and only if
W*(H,) converges to W*(H), but that follows
directly from the fact that uniform hyperbolicity
implies that local stable and unstable manifolds
vary continuously as function of their base-point.

an integer N such that So the theorem is proved. a
j=+N

Y I (G) I >1—¢ /2. This theorem immediately implies that the dif-
j=-N fusion through an Aubry—Mather set can be un-

By egs. (1.1) and the continuity of f it follows
that, for i sufficiently large,

derstood as a limit of “resonance overlaps”. The
way to see this is to construct curves vy(p,/
q;+), with p,/q; 1 @, as in section 2, except that
now we take s; to be the left endpoint of the gaps

J=+N G,, defined as in the proof of the previous theo-
Y IF(G)I>1-e. theorem. The other points needed in the
j=—-N

So, if H; =f*"?M(G,), its length and that of its
forward images are smaller than e. Thus, by
uniform hyperbolicity, its endpoints lie on the
same local stable manifold. Let H =f*2N(G).
Then, by taking 2N (N fixed) inverse iterates,

construction are taken to be the g, — 1 images of
s; (see fig. 8). Iterate the area B, below y(p,/q; +)
once, and it is clear that one can define a region
I} with

f"(lf) >y(p/q;+) and I <vy(p/q,+)-

gap G

P gs 22 0 FYNN

endpoint of G

(P;/a,+)
0+

pointin E
Pyl

Fig. 8. Resonance overlaps.
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Similarly, a region O;" can be defined by

O/ <vy(p;/q;+) and f*'(O/)>~(p,/q;+).

Theorem 5.2 immediately implies that I
converges in the Hausdorff limit to I and O to
O, and I and O are the areas enclosed by W*(G)
and WY(G). The corresponding statement holds
for y(r,/s;—), if we define O; and I; in a
similar vein and if s; now accumulates to the
right endpoint of the gap G. By convergence of
turnstiles, it follows, that the ‘resonance
overlaps” O;"N O;” and I;'NI; limit on O and I,
respectively. We summarize this loosely with the
following corollary:

Corollary 5.3. Under the conditions of theorem
4.3, the diffusion through an Aubry—Mather set is
a limit of resonance overlaps, if E_ is hyperbolic.

If one assumes that E_ is hyperbolic whenever
it is a Cantor set, it is also clear that the above
proves the following (geometric) criterion for the
non-existence of an invariant circle with rotation
number a (compare ref. [12], whose result is
more general but less geometric).

Corollary 5.4. 1f E_ is hyperbolic whenever it is a
Cantor set, then, under the conditions of theorem
4.3, HlimO; N O; converges and has positive
area if and only if E_ is not (contained in) an
invariant circle.

6. Concluding remarks

We have argued that one of our main results,
the single gap theorem, holds for f satisfying a
number of conditions (see theorem 4.3). It is not
hard to find a counter-example. Suppose f is a
twist map for which the single gap theorem holds
and let [14] g=f?, then we have the equality
E (f)=E,,(g) (as sets). If G and f(G) are gaps
in E_(f), they can never be mapped into each
other by g. Moreover, if E_(f) is hyperbolic, then
so is E,, (g), and under small perturbations of g’

or g, E, (g') retains the same number of gap
orbits. (Note that g + €, for € small enough, does
not satisfy requirement a* at the end of section
4.) One can conclude, therefore, that theorem 4.3
certainly will not hold generically.

This counter-example is also of interest in con-
nection with the monotonicity theorem. Note that
in our definition of ‘“above” and ‘“below”, we
have assumed that E, & E, 4o and E, .+ are
unique for all p/q €1 (true for generic f). This
does not hold for the map g. As we let € run
through zero, we can witness that the minimizing
sets jump. And so, our definition 2.4 also yields
curves y(p/q+) and y(p/q—) that jump. A
similar comment is valid for the convergence of
turnstiles theorem.

The hyperbolicity of the Aubry—Mather sets in
a Birkhoff zone is a very powerful tool (see sec-
tion 3). We expect it to hold in a general situa-
tion. It would be useful to have a proof for a
more general case than the one discussed in
ref. [3].

Appendix

The lift F of the twist map has a generating
function h satisfying

F(x,y)=(x,y) iff y=-98h(x,x"),
y' =0h(x,x").

Proposition A.1. For CX-generic (k> 1) h, the

global minima E E E are unique.

p/q’ ~p/qa-> —p/a+

Proof. The Kupka-Smale theorem for area
preserving maps (see ref. [19]) implies in this
context that generically there are a finite number
of periodic orbits of given type. Moreover, if they
are hyperbolic, two fundamental domains of a
stable and an unstable invariant manifold
associated with these these orbits intersect finitely
many times, and the intersections are transversal.
This implies that there are finitely many orbits of

type E or E

p/q- p/a+:
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For p/q fixed, let {¢,} be a (globally) minimizing
orbit of type E, . Consider the collection C of
sequences {x}{=%_ of type E, .. If {n;} in C is
an orbit, then each interval (¢, ¢, o) close enough
to a point in E, . contains exactly one of the n;

and none of the ;. We have

Z[h(ni’ni+l) —h(é‘:i’fi+1)] = 0.

We change
h—=h(x,x")=h(x,x)+¢(x),

where ¢(x) is a “bump” function which is positive
on the interval (¢, £,, ) for some fixed i but has
vanishing first and second derivatives on ¢, and
&i+q- Now {£} is a unique minimizing orbit. This
proves that the property of having a unique global
minimum of type E, ,+ is dense.

For p/q fixed, suppose that fundamental
domains of stable and unstable manifolds to E p/a
intersect finitely many times (open and dense).
Then there are finitely many orbits of type E, .
Since the intersections are transversal, their
number is conserved under small perturbations.
The value of the above sum then also changes
continuously. Therefore, uniqueness is an open
property. m]
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