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1 Introduction

Vector calculus provides the mathematical foundations for modeling various physical pro-
cesses and problems from applied sciences. These lecture notes introduce some of the fun-
damental applications to conservation laws, including conservation of mass, conservation of
energy, and conservation of momentum, and their mathematical representation through par-
tial differential equations (PDEs).

Figure 1. PDEs are used to study processes of high-impact to our society and environment.
On June 2020, NASA-NOAA’s satellites captured images of the large light brown plume of
Saharan dust over the North Atlantic Ocean. The dust was transported across the Atlantic
and, eventually reached North and South America. Credits: NASA/NOAA.

1.1 Notation and terminology

In many practical applications we consider processes that evolve in a spatial region repre-
sented by variables x, y, z (such as a ball, the interior of the classroom, Earth’s atmosphere)
and time represented by the variable t, u = u(x, y, z, t). For example, we may be interested in
the time-evolution of the temperature of a heated object or inside a classroom, atmospheric
pollutant concentrations over the Portland metro area, air humidity or wind velocity.

Notational convention: the partial derivatives of the function u are denoted

∂u

∂x
= ux,

∂u

∂t
= ut,

∂2u

∂x2
= uxx,

∂2u

∂x∂t
= uxt , . . . (1)

A partial differential equation (PDE) is an equation that involves an unknown function u of
several variables (x, y, z, t, ..) and some of its partial derivatives

E(x, y, z, t;u, ux, uy, uz, ut, uxx, . . . ) = 0 (2)

The order of the PDE is the order of the highest partial derivative in the equation and a
function u that satisfies equation (2) is called a solution to the PDE.

https://www.nasa.gov/feature/goddard/2020/nasa-noaa-s-suomi-npp-satellite-analyzes-saharan-dust-aerosol-blanket
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An example of a first order PDE for a function of two variables u(x, t) is

ut + 3ux = 0 (3)

HW: Notice that u(x, t) = x− 3t is a solution to (3). Find other solutions to this PDE.

An example of a second order PDE for a function of two variables u(x, t) is

ut = uxx (4)

HW: Notice that u(x, t) = e−tsin(x) is a solution to (4). Find other solutions to this PDE.

Equation (3) may be used to model transport of substance at a constant speed, whereas (4)
may be used to model diffusion processes such as movement of substance or energy from a
region of high density to a region of low density, as illustrated in Fig. 2 below.

Figure 2. Left figure: Illustration of the transport process modeled by PDE (3). Right figure:
illustration of the diffusion process modeled by PDE (4).

1.2 Some concepts from vector calculus and integral identities

For a function u = u(x, y, z) defined on a region V ⊂ R3, the gradient of u is the vector of
partial derivatives,

∇u =
∂u

∂x
î +

∂u

∂y
ĵ +

∂u

∂z
k̂ (5)

If α = α1î + α2ĵ + α3k̂ denotes a unit vector in R3, (|α| = 1), the directional derivative of u
in direction α is given by

∂u

∂α
= α · ∇u = α1

∂u

∂x
+ α2

∂u

∂y
+ α3

∂u

∂z
(6)
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If θ denotes the angle between the vectors α and ∇u then

∂u

∂α
= |∇u| cos θ (7)

where |∇u| =
√
u2x + u2y + u2z is the norm (length) of the gradient vector. The largest rate of

change of u (the largest directional derivative) is equal to |∇u| and occurs in the direction
of the gradient (that is when the angle θ = 0).

If F = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂ is a vector field on V , the divergence of F is
defined to be the scalar field

div F ≡ ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
(8)

In particular, by taking F = ∇u in (8), we have

∇ · ∇u ≡ ∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= uxx + uyy + uzz (9)

The expression ∇2u is called the Laplacian of u and is obtained by taking the divergence of
the gradient. Often, the Laplacian it also denoted ∆u.

HW: For smooth scalar functions u(x, y, z) and v(x, y, z), verify the following identity

∇ · (u∇v) = ∇u · ∇v + u∇2v (10)

Recall the vector form of Green’s theorem for flux∮
∂D

F · n ds =

∫∫
D
∇ · F dA (11)

where D is a region in the two dimensional space whose boundary ∂D is a simple closed
curve, n denotes the outward unit normal vector to the boundary, and F is a vector field
whose domain contains D. In particular, given a smooth function u defined in D, we take
F = ∇u in Green’s theorem (11) and use (9) to obtain the following identity:∮

∂D
∇u · n ds =

∫∫
D
∇ · ∇u dA =

∫∫
D
∇2u dA (12)

Notice that the left side term in (12) is the integral of the directional derivative ∇u ·n (also
known as the outer normal derivative) over the closed curve ∂D, whereas the right side term
in (12) is the area integral of the Laplacian ∇2u over the region enclosed by ∂D.
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We also recall the Divergence Theorem∫∫∫
V
∇ · FdV =

∫∫
S

F · dS =

∫∫
S

F · n dS (13)

where S is a closed and piecewise smooth surface that encloses the three-dimensional region
V ∈ R3, oriented by normal vectors pointing outward of V and n is the outward unit normal
vector to S. In particular, given a smooth function u(x, y, z) defined in V , we take F = ∇u
in the Divergence theorem (13) and use (9) to obtain the following identity:∫∫∫

V
∇2u dV =

∫∫
S

∇u · n dS (14)

Therefore, for any smooth function u, the flux of the gradient of u through a closed surface
S is equal to the volume integral of the Laplacian of u over the region V inside the surface.

HW: Use identity (10) and the divergence theorem (13) to derive Green’s first and second
integral identities: If u and v are smooth scalar functions then

∫∫∫
V
u∇2v dV =

∫∫
S

u∇v · n dS −
∫∫∫

V
∇u · ∇v dV (15)

∫∫∫
V
(u∇2v − v∇2u) dV =

∫∫
S

(u∇v − v∇u)) · n dS (16)

By taking v = u in the equation (15) above we obtain the following identity:∫∫∫
V
u∇2u dV =

∫∫
S

u∇u · n dS −
∫∫∫

V
|∇u|2 dV (17)

HW: Given a region V ⊂ R3 with boundary represented by the closed surface S, show
that there is at most one smooth function u(x, y, z) that has prescribed values of its Laplacian
inside V and has prescribed values on the boundary S

∇2u(x, y, z) = f(x, y, z), for (x, y, z) ∈ V (18)

u(x, y, z) = g(x, y, z), for (x, y, z) ∈ S (19)

where f : V → R and g : S → R are given functions.

Hint: Use (17) to show that the difference u = u1 − u2 between any two functions u1 and u2
that satisfy both (18) and (19) must be the null (identically zero) function.

The vector calculus concepts and differential and integral identities reviewed in this section
provide the necessary tools for deriving the partial differential equations of mathematical
physics. Fundamental examples are provided next.
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2 Conservation Laws

”Nothing comes from nothing.” (Aristotle’s Physics).

Fundamental conservation laws of nature such as conservation of mass, conservation of
energy, and conservation of momentum are mathematically expressed through an equation
known as the continuity equation.

2.1 Conservation of mass

”For any system closed to all transfers of matter and energy, the quantity of mass is conserved
over time.”

ρt +∇ · (ρv) = 0 (20)

We begin the presentation with the conservation of mass first derived for a one-dimensional
gas dynamics problem and then extended to regions in two- and three-dimensional space.

2.1.1 One-dimensional model

Consider a gas flowing in a tube where properties such as the gas density and velocity may
change in time and space but are assumed to be constant through each cross section of the
tube, as illustrated in Fig. 3.

Figure 3. Illustration of the one dimensional mathematical model for gas flow in a tube
with constant cross section area A. The density and velocity are functions of time and the
x-coordinate only and, at any given time, are constant through each cross section.

Let ρ(x, t) and v(x, t) denote the density of the gas and the velocity of the gas respectively,
at location point x and time t and let A denote the area of the cross section of the tube. The
mass of gas in any region of the tube determined by the horizontal segment [x1, x2] at time t is
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mass in [x1, x2] at time t = M(t) = A
∫ x2
x1
ρ(x, t)dx

At any given time t, the rate of flow, or flux of gas past the cross section at point x is

mass flux at (x, t) = Aρ(x, t)v(x, t)

Assuming that mass can change only because of gas flowing across the endpoints x1 or x2,
the rate of change in the mass of gas within the region from x1 to x2 is

dM

dt
=

d

dt

{
A

∫ x2

x1

ρ(x, t)dx

}
= Aρ(x1, t)v(x1, t)− Aρ(x2, t)v(x2, t) (21)

and after simplification by the constant A, we obtain the integral form of the one-dimensional
mass conservation law,

d

dt

∫ x2

x1

ρ(x, t)dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t) (22)

By integrating (22) in an arbitrary fixed time interval [t1, t2]∫ x2

x1

ρ(x, t2)dx−
∫ x2

x1

ρ(x, t1)dx =

∫ t2

t1

[ρ(x1, t)v(x1, t)dt− ρ(x2, t)v(x2, t)]dt (23)

In addition, we assume that both ρ(x, t) and v(x, t) are continuously differentiable func-
tions. Using the integration rules

ρ(x, t2)− ρ(x, t1) =

∫ t2

t1

∂

∂t
ρ(x, t)dt (24)

ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t) =

∫ x2

x1

∂

∂x
(ρ(x, t)v(x, t))dx (25)

and after replacing in (23) we obtain∫ t2

t1

∫ x2

x1

[
∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t))

]
dxdt = 0 (26)

Since the time interval [t1, t2] and the region [x1, x2] are arbitrary, the equation above
implies that at any time t and point x we must have

ρt(x, t) + (ρ(x, t)v(x, t))x = 0 (27)

which is the differential form of the one-dimensional mass conservation law.



D. N. Daescu Mth 255 Calculus V: Supplementary Lecture Notes 7

2.1.2 Conservation of mass in higher dimensions

Consider the problem of modeling the time and space evolution of the density ρ(x, y, t)
of a substance flowing in a two dimensional domain Ω ∈ R2 with a velocity field v =
(v1(x, y, t), v2(x, y, t)). For example, in weather prediction we are interested in the transport
of the water vapor density in the atmosphere at a given altitude level and over geographical
region, as illustrated in Figure 4.

Figure 4. Conservation of mass may be used to study the time evolution of moisture in the
atmosphere transported by the wind velocity field. At any given time, the rate of change in
the mass inside any region D is equal to the flux of mass across the boundary ∂D.

For any selected subregion D of the domain Ω, the total amount (mass) of substance in
D at a given time t is expressed as the area integral of the density,

M(t) =

∫∫
D
ρ(x, y, t) dA (28)

The time rate of change of the mass in the domain D must be equal to the mass flux across
the boundary ∂D (entering or leaving the domain), as illustrated in Figure 4,

d

dt

∫∫
D
ρ(x, y, t) dA = −

∮
∂D

ρ(x, y, t)v(x, y, t) · n(x, y) ds (29)

where n(x, y) denotes the outward unit normal vector to the boundary ∂D. Notice that the
flux is outward (loss of mass) across those boundary regions where v(x, y, t) ·n(x, y) > 0 and
inward (gain of mass) across those boundary regions where v(x, y, t) · n(x, y) < 0, thus we
have inserted the minus sign in front of the boundary integral.

Equation (29) is the the integral form of the mass conservation law. Using the Green’s
theorem for flux (11), we may express the right side term in (29) as an area integral over D,

d

dt

∫∫
D
ρ(x, y, t) dA = −

∫∫
D
∇ · (ρ(x, y, t)v(x, y, t)) dA (30)
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If we further assume that the density ρ(x, y, t) is continuously differentiable function, then
using Leibniz integral rule we may write (30) as∫∫

D

∂

∂t
ρ(x, y, t) dA = −

∫∫
D
∇ · (ρ(x, y, t)v(x, y, t)) dA (31)

and since the equality above holds for any region D, we obtain the differential form of the
conservation of mass in two dimensions expressed as the partial differential equation

∂

∂t
ρ(x, y, t) +∇ · (ρ(x, y, t)v(x, y, t)) = 0 (32)

The three-dimensional case

The derivation of the PDE for the conservation of mass in a three-dimensional domain
Ω ∈ R3 proceeds in a similar fashion as above. In the 3D case, the density is a function of
four variables (3D space and time), ρ = ρ(x, y, z, t), and the velocity field includes a vertical
component, v = (v1(x, y, z, t), v2(x, y, z, t), v3(x, y, z, t)). For any selected subregion V ∈ Ω,
the mass of substance in V at a given time t is given by the volume integral of the density,

M(t) =

∫∫∫
V
ρ(x, y, z, t) dV (33)

Figure 5. Conservation of mass has very important applications in geosciences and environ-
mental studies. At any given time, the rate of change in the mass inside a region V is given
by the flux of mass across the closed boundary surface S.

The time rate of change of the mass in the domain V is equal to the mass flux across the
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closed surface S representing the boundary of the domain V ,

d

dt

∫∫∫
V
ρ(x, y, z, t) dV = −

∫∫
S

ρ(x, y, z, t)v(x, y, z, t) · n(x, y, z) dS (34)

where n(x, y, z) denotes the unit normal vector to the boundary S pointing outward of V .
Equation (34) is the integral form of the equation for conservation of mass in three dimen-
sions.

Using the divergence theorem (13), the surface integral in the right side of (34) is ex-
pressed as the volume integral of the divergence of the mass flux vector,∫∫

S

ρ(x, y, z, t)v(x, y, z, t) · n(x, y, z) dS =

∫∫∫
V
∇ · (ρ(x, y, z, t)v(x, y, z, t)) dV (35)

By replacing (35) in (34) we obtain

d

dt

∫∫∫
V
ρ(x, y, z, t) dV = −

∫∫∫
V
∇ · (ρ(x, y, z, t)v(x, y, z, t)) dV (36)

Assuming that the density ρ(x, y, z, t) has continuous partial derivatives in time and space,
we may express (36) as

∫∫∫
V

∂

∂t
ρ(x, y, z, t) dV = −

∫∫∫
V
∇ · (ρ(x, y, z, t)v(x, y, z, t)) dV (37)

and since the equality above holds for any region V of the domain Ω, we obtain the differ-
ential form of the conservation of mass in three dimensions expressed as the PDE

∂

∂t
ρ(x, y, z, t) +∇ · (ρ(x, y, z, t)v(x, y, z, t)) = 0 (38)

HW: Use the product rule to show that (38) may be expressed as

ρt + v · ∇ρ+ ρ∇ · v = 0 (39)

The material (substantial, total) derivative is defined as

Dρ

Dt
≡ ∂ρ

∂t
+ v · ∇ρ (40)

and with this notation we may write the conservation of mass equation (38)/(39) as

Dρ

Dt
+ ρ∇ · v = 0 (41)
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A flow is called incompressible if the total derivative is zero, Dρ
Dt

= 0. Since ρ > 0, from (41)
it follows that an incompressible flow must have a divergence-free velocity field

Dρ

Dt
= 0 ⇔ ∇ · v = 0 (42)

HW: Consider two densities ρA(x, y, z, t) > 0 and ρB(x, y, z, t) > 0 that are each solutions
to (38). Show that the ratio µ = ρA/ρB solves the PDE

µt + v · ∇µ = 0 (43)

2.2 The continuity equation

In the previous section we derived the equation of the conservation of mass for a fluid with
density ρ and flowing with velocity vector v. This is a particular example of a more general
equation known as the continuity equation that is presented next in a three dimensional
domain.

Consider a quantity ψ with generic unit measure denoted SI (standard international)
that evolves in time in a three dimensional region of interest Ω. For example, ψ may rep-
resent the mass (unit measure kg), energy (unit measure J) or momentum (unit measure
kg ·meter/s) of an object. The amount of ψ per unit volume is given by the volume density
ρ(x, y, z, t) with unit measure SI/m3. For example, a mass density may be expressed in
units of kg/m3, whereas an energy density may be expressed in units of J/m3 (joules per
cubic meter). The magnitude and direction of the flow of the quantity ψ is described by the
flux vector field Φ(x, y, z, t) that measures the amount of quantity ψ flowing per unit time,
through a unit area. At any given time t, the amount of quantity ψ inside an arbitrary fixed
region V is expressed as the volume integral of the density,

∫∫∫
V
ρ(x, y, z, t) dV (44)

The total amount of quantity ψ flowing per unit time across the boundary S of the region
V is given by the surface integral of the flux vector field,

−
∫∫

S

Φ · dS = −
∫∫

S

Φ(x, y, z, t) · n(x, y, z) dS (45)

where n = (n1(x, y, z), n2(x, y, z), n3(x, y, z)) denotes the unit normal vector to the boundary
S pointing outward of V . The minus sign taken in front of the surface integral in (45) reflects
the fact that Φ ·n represents the flux outward of V : a positive value of the integral indicates
that there is a net loss of the quantity ψ over the boundary surface S and therefore, a
negative time rate of change in the amount of φ inside the domain V . We further assume
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that in Ω, the quantity ψ may be also locally generated (for example, through infusion of
substance, sources of energy, or body forces) or removed (for example, through deposition or
chemical reaction processes, evaporation, etc) and denote by f(x, y, z, t) the rate at which
ψ is produced per unit volume. The measure units for f are of SI ·m−3s−1; positive values
f(x, y, z, t) > 0 indicate that ψ is locally generated at point (x, y, z) and time t (thus f is a
source term) whereas negative values f(x, y, z, t) < 0 indicate that ψ is locally removed at
point (x, y, z) and time t (thus f is a sink term). The net rate at which ψ is being generated
inside the volume V at time t is given by the volume integral∫∫∫

V
f(x, y, z, t) dV (46)

From (44), (45), and (46), the time rate of change in the amount of ψ within the volume V
is expressed as

d

dt

∫∫∫
V
ρ dV = −

∫∫
S

Φ · n dS +

∫∫∫
V
f dV (47)

which is the integral form of the continuity equation.

Assuming that the flux Φ is a continuously differentiable vector field, the divergence
theorem may be used to express the surface integral (45) as a volume integral∫∫

S

Φ · n dS =

∫∫∫
V
∇ ·Φ dV (48)

If we further assume that the density ρ(x, y, z, t) is a continuously differentiable function,
then (47) may be expressed as

∫∫∫
V

∂ρ

∂t
dV = −

∫∫∫
V
∇ ·Φ dV +

∫∫∫
V
f dV (49)

Since (49) holds at any time t and in any region V of the domain Ω, we obtain the PDE

ρt +∇ ·Φ = f (50)

which represents the differential form of the continuity equation.

Notice that the equation for conservation of mass (38) is a particular case of the general
continuity equation (50) and corresponds to the flux specification Φ = ρv and without
source/sink terms (f = 0).
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2.3 Diffusion processes, the heat equation

”diffusion: the spreading of something more widely.” (Oxford Dictionary).

In this section we use conservation of thermal energy to derive a second order PDE, the
heat equation that is used to model the time evolution of the temperature of an object. It
is also a mathematical model to a fundamental physical process known as diffusion which
represents the movement of a quantity from a region of higher concentration to a region of
lower concentration. A one dimensional illustration of the diffusion process was given in Fig.
2 and a two dimensional illustration is shown in Fig. 6 below.

Figure 6. Diffusion represents movement of a quantity from higher density to lower density.
The initial density profile is shown in the top figures as a surface (left) or contour lines
(right). The bottom figures show the density profile at a later time, after diffusion started.

Along with its fundamental applications in physics, chemistry, geosciences and engineer-
ing, diffusion is a very important process in many areas of applied sciences such as biology
(spreading of a disease), sociology (diffusion of a population or ideas), economics, finance
(the Black-Scholes model), or high-tech industry (signal and image processing). For exam-
ple, image blurring may be achieved through diffusion, as shown in Fig. 7 below.
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Figure 7. Image blurring through diffusion. Each pixel of the image has associated a value
(typically from 0 to 255, or scaled to values between 0 and 1) that represents its gray scale
intensity. High values are associated with ”hot” (high density) regions whereas low values
are associated with ”cold” (low density) regions. The diffusion process applied to an image
(top figure) transfers the gray scale intensity from high values to low values and produces a
blurred image (bottom figure).

2.3.1 Conduction of heat in a one-dimensional rod

Consider a rod of constant cross-sectional area A, oriented in the x-direction, from x = 0 to
x = L. Consider

e(x, t) ≡ thermal energy density

which represents the amount of thermal energy per unit of volume. In addition, assume that
e(x, t) is constant across any section and no thermal energy can pass through the lateral
surface. In any finite segment [a, b] of the rod, the total heat energy is

total heat energy in [a, b] =
∫ b
a
e(x, t)Adx

The heat flux is the amount of thermal energy per unit time flowing to the right per unit
surface area.
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φ(x, t) = heat flux

Heat energy flowing through the side edges at time t: φ(a, t)A− φ(b, t)A.
In addition, we consider heat sources

Q(x, t) = heat energy per unit volume generated per unit time

Heat energy generated inside the rod region [a, b] at time t:
(∫ b

a
Q(x, t)dx

)
A.

Conservation of heat energy

d

dt

∫ b

a

e(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

Q(x, t)dx (51)

Equation (51) represents the integral form of the conservation law of heat energy. If in
addition, e, φ are differentiable, from (51) it follows that∫ b

a

(
∂e

∂t
+
∂φ

∂x
−Q

)
dx = 0 (52)

Continuity of the integrand in (52) implies

∂e

∂t
= −∂φ

∂x
+Q (53)

which represents the differential form of the conservation law of heat energy.

Temperature and thermal energy

Notations:
u(x, t) = temperature of the rod
c(x) = specific heat (the heat energy that must be supplied to a unit mass of a substance to
raise its temperature one unit)
ρ(x) = mass density (mass per unit volume)
The thermal energy is the energy it takes to raise the temperature from a reference temper-
ature 0◦ to its actual temperature u(x, t).

e(x, t) = c(x)ρ(x)u(x, t) (54)

Replacing (54) in (53), it follows

c(x)ρ(x)
∂u

∂t
= −∂φ

∂x
+Q (55)

Fourier’s law of heat conduction

φ = −K0
∂u

∂x
(56)

where the coefficient K0 is the thermal conductivity of the material.
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Heat equation

By replacing (56) in (55), it follows

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
+Q (57)

If c, ρ,K0 are all constants and there are no heat sources (Q = 0), then (57) becomes

∂u

∂t
= k

∂2u

∂x2
(58)

where the constant

k =
K0

cρ
(59)

is called the thermal diffusivity.
Equation (58) is called the heat equation and it is also known as the diffusion equation.

A complete mathematical model requires the specification of an initial condition

u(x, 0) = f(x) (60)

and the specification of the thermal processes through the boundary of the object, which
provide boundary conditions. Examples of boundary conditions are as follows:

1. Prescribed temperature
u(0, t) = uB(t) (61)

2. Prescribed heat flux

−K0(0)
∂u

∂x
(0, t) = φ(t) (62)

∂u

∂x
(0, t) = 0 perfectly insulated boundary (63)

3. Newton’s law of cooling

−K0(0)
∂u

∂x
(0, t) = −H[u(0, t)− uR(t)] (64)

−K0(L)
∂u

∂x
(L, t) = H[u(L, t)− uL(t)] (65)

HW: Show that there is at most one solution to the problem

∂u

∂t
= k

∂2u

∂x2
, 0 < x < L, t > 0 (66)

u(x, 0) = f(x) (67)

u(0, t) = T1(t) (68)

u(L, t) = T2(t) (69)
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2.3.2 Heat equation in three dimensions

We consider an arbitrary bounded region V ⊂ R3, with a closed boundary surface S. At any
given time t, the heat energy in V is given by the volume integral

E(t) = heat energy =

∫∫∫
V
e(x, y, z, t) dV =

∫∫∫
V
cρu dV (70)

The time rate of change in the heat energy in V is given by the heat flowing across the
boundary S per unit time. The three dimensional heat flux vector field is denoted Φ and at
any point (x, y, z) on the boundary S we consider the unit outward normal vector n. The
amount of energy flowing out of the region V per unit surface area per unit time is given by
the outward normal component of the heat flux vector Φ · n. The total energy flowing over
the boundary surface S per unit time is

−
∫∫

S

Φ · n dS (71)

Notice that if Φ · n > 0 then the heat flux is directed outward (energy flows out of V), thus
the minus sign is inserted in front of the surface integral above. In addition, there may be
sources of energy inside the region V . Let Q denote the heat energy generated per unit time
per unit volume. The total energy generated per unit time in the region V is the volume
integral ∫∫∫

V
Q dV (72)

The conservation of heat energy in the region V implies

d

dt

∫∫∫
V
cρu dV = −

∫∫
S

Φ · n dS +

∫∫∫
V
Q dV (73)

Next we use the divergence theorem (13) in the right side of (73) to obtain

d

dt

∫∫∫
V
cρu dV = −

∫∫∫
V
∇ ·Φ dV +

∫∫∫
V
Q dV (74)

which may be written as ∫∫∫
V

[
cρ
∂u

∂t
+∇ ·Φ−Q

]
dV = 0 (75)

Since V was arbitrary, from (75) we obtain the continuity equation for thermal energy

cρ
∂u

∂t
= −∇ ·Φ +Q (76)

The Fourier’s law of heat conduction is used to express the heat flux in terms of the tem-
perature

Φ = −K0∇u (77)
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where the coefficient K0 is given by the thermal conductivity of the material. Replacing (77)
in (76) we obtain the PDE for the temperature

cρ
∂u

∂t
= ∇ · (K0∇u) +Q (78)

If Q ≡ 0 and the coefficients c, ρ,K0 are constants, then (78) becomes (see definition (9))

∂u

∂t
= k∇2u (79)

where k = K0/cρ. Equation (79) is the heat (diffusion) equation in 3D.

A complete mathematical model to the time evolution of the temperature in a domain
Ω ∈ R3 requires the specification of the initial state as an initial condition

u(x, y, z, 0) = f(x, y, z) (80)

and the specification of the thermal processes through the boundary surface S of the object,
that provide boundary conditions. Some common types of boundary conditions are as follows:

1. Prescribed temperature: u(x, y, z, t) = T (x, y, z, t) on some region of boundary surface

2. Prescribed flux: −K0∇u · n = Φ on some region of boundary surface

In particular, insulated boundary condition is: −K0∇u · n = 0

3. Newton’s law of cooling: −K0∇u · n = H(u− ub) on some region of boundary surface

Steady-state equation. Notice that if the temperature of the object has reached a steady-
state (equilibrium), then the time derivative in (79) is zero and we obtain the steady-state
temperature equation known as Laplace’s equation

∇2u = 0 (81)

Changing the coordinates. In many practical applications (e.g. engineering, geophysical
problems) it is more appropriate to work in a different coordinate system such as

polar coordinates (2D) : x = r cos θ, y = r sin θ (82)

spherical coordinates (3D) : x = r sin γ cos θ, y = r sin γ sin θ, z = r cos γ (83)

cylindrical coordinates (3D) : x = r cos θ, y = r sin θ, z = z (84)

HW: Derive the expression of the Laplacian ∇2u in polar, spherical, and cylindrical coordi-
nates.
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2.4 Advection-diffusion equation

Advection and diffusion are important physical processes in the study of atmospheric or wa-
ter pollutants. For example, when pollutants such as smog from wild fires or a chemical plant
are released in the air their spread through the atmosphere is determined both by transport
with the wind field (advection) and also diffusion processes such as molecular diffusion given
by particle movement from high concentrations to low concentrations or turbulent air move-
ment (eddy diffusion).

Figure 8. The fate of atmospheric pollutants is determined by various physical processes such
as advection, diffusion, emissions, chemical transformations, and soil depositions. Aircraft
and NASA’s Aqua satellite images show the devastating wild fires in Oregon during August
- September of 2020. Credit: NASA

If ρ(x, y, z, t) denotes the concentration of pollutant expressed in molecules per unit
volume (e.g., molec·m−3), the combined advection and diffusion processes may be represented
through the following specification of the flux vector field (unit measure of molecules per unit
area per unit time (e.g., molec ·m−2 · s−1)

Φ = ρv −K∇ρ (85)

where v denotes the wind velocity field (unit measure of m · s−1) and K is the diffusion
coefficient (unit measure of m2 · s−1). 1 By replacing the flux (85) into the continuity
equation (50), we obtain the advection-diffusion equation

ρt +∇ · (ρv)−∇ · (K∇ρ) = f (86)

where f represents the emission (source) or deposition (removal) rate of pollutant and has
unit measure of molecules per unit volume per unit time (e.g., molec ·m−3 · s−1).

1In practice, the diffusion coefficient is a three-dimensional matrix used to specify the diffusions coefficients
in x-, y- and z-directions.
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2.5 Conservation of momentum

”momentum: the quantity of movement of a moving object, measured as its mass multiplied
by its speed.” (Oxford Dictionary).

Momentum is defined to be the mass of an object multiplied by the velocity of the object,

momentum = mv

and has the unit measure of kilogram meter per second (kg ·ms−1). Notice that momentum is
a vector quantity having the same direction as the velocity vector and its magnitude directly
proportional to the mass: of two objects that are moving at the same velocity, the heavier
object has a greater momentum magnitude.

In section (2.1) we used the law of conservation of mass to derive the equation (38) for
the evolution of the density ρ(x, y, z, t) of a fluid moving at a velocity v(x, y, z, t). To study
the fluid’s motion, equation (38) must be completed with equations that describe each com-
ponent of the velocity vector field v(x, y, z, t). This is achieved using the law of conservation
of momentum which is a fundamental concept of physics along with the law of conservation
of mass and the law of conservation of energy

”The momentum of an isolated system remains constant.”

The conservation of momentum states that momentum is neither created nor destroyed,
but only changed through the action of forces, as described by Newton’s second law of motion

F = ma = m
dv

dt
(87)

Consider an arbitrary fixed volume (control volume) V ⊂ R3 of the three dimensional
region of interest and let S denote the closed boundary surface of V . At any given time t,
the total momentum associated with the fluid (particles) inside V is given by the volume
integral of the momentum density ∫∫∫

V
ρv dV (88)

When material flows through the surface S, it carries both mass and momentum. The
momentum flux across the boundary surface S is the vector quantity (units of kg ·ms−2)∫∫

S

ρv(v · n) dA (89)

where n denotes the unit normal vector to the boundary S pointing outward of V . Using
Newton’s second law of motion, the time rate of change in momentum inside the control
volume V at time t is expressed as

d

dt

∫∫∫
V
ρv dV +

∫∫
S

ρv(v · n) dA = F (90)

where F denotes the total instantaneous force acting on V at time t. The forces acting on
the fluid are of two types: body forces and surface forces, as illustrated in Fig. 9.
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• Body forces, such as gravity, acting on all the particles throughout V ,

Fg =

∫∫∫
V
ρg dV (91)

where g = (0, 0,−g) denotes the gravitational acceleration vector pointing vertically
downward and with magnitude given by the gravitational acceleration constant g ≈
9.81m s−2.

• Surface forces that act on the surface S of the volume V e.g., forces caused by the fluid
pressure, p(x, y, z, t) > 0 that produce a flux of momentum across the boundary, in the
direction of the normal vector n,

Fp = −
∫∫

S

pn dS (92)

Figure 9. Body forces such as the gravity force ρg act on the fluid particles inside the control
volume, whereas surface forces such as the pressure force −pn act on its surface.

By replacing F = Fg + Fp and the force expressions (91) and (92) into equation (90), we
obtain the integral form of the conservation of momentum equation

d

dt

∫∫∫
V
ρv dV +

∫∫
S

ρv(v · n) dA =

∫∫∫
V
ρg dV −

∫∫
S

pn dS (93)

Notice that (93) represents a system of three equations, one equation associated to each
component of the momentum vector. Specifically, the equation for the ith component is

d

dt

∫∫∫
V
ρvi dV +

∫∫
S

ρviv · n dA =

∫∫∫
V
ρgi dV −

∫∫
S

pni dS, i = 1, 2, 3 (94)
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2.5.1 Euler equations and Navier-Stokes equations

The conservation of momentum may be expressed as a system of PDEs. Using the divergence
theorem, the surface integrals in (94) may be expressed as volume integrals for example, in
the equation for the x-component (i=1), we obtain∫∫

S

ρv1v · n dA =

∫∫∫
V
∇ · (ρv1v) dV,

∫∫
S

pn1 dS =

∫∫∫
V

∂p

∂x
dV (95)

From (94) and (95) the momentum equation associated to the x-component is written∫∫∫
V

∂(ρv1)

∂t
+∇ · (ρv1v) dV = −

∫∫∫
V

∂p

∂x
dV +

∫∫∫
V
ρg1 (96)

Since (96) holds for any control volume V , we obtain the partial differential equation

∂(ρv1)

∂t
+∇ · (ρv1v) = −∂p

∂x
+ ρg1 (97)

Using the product rule in the left side of (97) and after arranging the terms, we obtain

∂(ρv1)

∂t
+∇ · (ρv1v) =

(
∂ρ

∂t
+∇ · (ρv)

)
v1 + ρ

(
∂v1
∂t

+ v · ∇v1
)

(98)

Recall the equation for the conservation of mass (38),

∂ρ

∂t
+∇ · (ρv) = 0 (99)

which is used to simplify (98) to

∂(ρv1)

∂t
+∇ · (ρv1v) = ρ

(
∂v1
∂t

+ v · ∇v1
)

(100)

By replacing (100) in (97), we express the conservation of momentum equation associated
to the x-component as

ρ

(
∂v1
∂t

+ v · ∇v1
)

= −∂p
∂x

+ ρg1 (101)

Following the same procedure, we obtain the y- and z- momentum equations2

ρ

(
∂v2
∂t

+ v · ∇v2
)

= −∂p
∂y

+ ρg2 (102)

ρ

(
∂v3
∂t

+ v · ∇v3
)

= −∂p
∂z

+ ρg3 (103)

2Recall that for the gravitational force we have g = (0, 0,−g), thus g1 = 0, g2 = 0, g3 = −g
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In summary, the conservation of momentum is expressed by the system of nonlinear partial
differential equations (101), (102), (103). This system of equations may be written in vector
format as

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ ρg (104)

The nonlinear PDE system (99) and (104) is also known as Euler equations.

The momentum equations (104) neglect the fluid viscosity force, an internal force that is
caused by the molecular interactions. An extra term is introduced in the right side of (104)
to account for the viscosity force µ∇2v, where the coefficient µ denotes the viscosity of the
fluid. The resulting system of equations is known as the Navier-Stokes equations,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ ρg + µ∇2v (105)

The following courses provide further study of PDEs and their practical applications:

• MTH 322: Applied Partial Differential Equations

• MTH 427/428: Partial Differential Equations I, II


	Introduction
	Notation and terminology
	Some concepts from vector calculus and integral identities

	Conservation Laws
	Conservation of mass
	One-dimensional model
	Conservation of mass in higher dimensions

	The continuity equation
	Diffusion processes, the heat equation
	Conduction of heat in a one-dimensional rod
	Heat equation in three dimensions

	Advection-diffusion equation
	Conservation of momentum
	Euler equations and Navier-Stokes equations



