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Dealing with vector analysis, formulas sometimes get very long and cumbersome. To help
us some, we start by shortening the notation. Let f : R3 → R be a smooth function, then the
three components of the argument of f will be called x1, x2, and x3. The partial derivatives
with respect to, say, x2 at the point (a1, a2, a3) is thus given by:

∂f(a1, a2, a3)

∂x2
.

This will be simplified if we replace (a1, a2, a3) by (a) and for each i ∈ {1, 2, 3} we write ∂f
∂xi

by
∂i. The above expression can now be shortened to:

∂2f(a) .

Similarly, the components of a smooth vector field F will be denoted by Fi, where i is equal to
1, 2, or 3. Finally, we will also leave out the bold notation, since, hopefully there will be no
confusion between points in R3 and components of the coordinates of those points.

First, let us review the basic notion of a differential form. We will suppose all functions
we deal with are sufficiently smooth (usually continuous second derivatives suffices). Start with
a function f : R3 → R. Such a function is also called a 0-form. The gradient of a function f , or
a 0-form, is a vector field, or a 1-form. “Differentiating” f in this setting is called “calculating
df” or, with more sophistication, calculating or taking its exterior derivative. (See the formula
given at the heading of these notes.)

The Gradient.
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The gradient ([3] [Section 16.1]) is given by:

df = ∂1f dx1 + ∂2f dx2 + ∂3f dx3 . (0.1)

In vector-form this is sometimes written as

∇f =

∂1f∂2f
∂3f

 .

To deal with integrals, it is more convenient to write a gradient as a 1-form. The 1-form is
what is needed in a line integral: If

∫
c
h is a line integral along the curve c, then h is a 1-form.

How to Compute the Exterior Derivative.

Now suppose we are given a vector field g = (g1, g2, g3). Notice that each of the three
components are like functions on R3. It will be easier if we think of this as a 1-form g =
g1 dx1 + g2 dx2 + g3 dx3. The differential or ‘exterior derivative’ of this 1-form will be a 2-form.
So,

dg = dg1 dx1 + dg2 dx2 + dg3 dx3 .

Calculating as before, for the first component we have

dg1 = ∂1g1 dx1 + ∂2g1 dx2 + ∂3g1 dx3 .

We substitute this and similar expressions for the second and third components of g back into
the equation. Just doing it for the first component gives:

dg = (∂1g1 dx1 + ∂2g1 dx2 + ∂3g1 dx3)dx1 + dg2 dx2 + dg3 dx3 .

So now we have worked out dg1, but the terms dg2 and dg3 remain as they were. Let’s first see
what happens to the terms that we worked out so far.

Rules for Exterior Differentiation.

To proceed we need a few rules. We calculate using the rules of normal differentiation plus a
few others, that we will mention in passing.

Rule 1: The product of dx1dx1 is zero. The same holds for dxidxi for any i.

Rule 2: Interchanging dxi and dxj results in multiplication by -1. So, dx2dx1 = −dx1dx2.

Both rules are very reasonable. In R3, one can think of dxi as an infinitesimal vector or a
tangent vector, as depicted in Figure 0.1. Expressions like dx1dx2 or dx1dx2dx3 are then to be
thought of as determinants whose columns are given by the vectors dxi, that is: little oriented
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Figure 0.1: Left: two tangent vectors in R2 or R3 and the oriented surface area they represent.
Right: the same for three tangent vectors and the oriented volume they represent.

volumes. See Figure 0.1. Thus dx1 dx2 forms a little surface area and dx1dx2dx3 a volume. In
linear algebra, oriented n-dimensional volumes are represented by determinants. And the same
holds for expressions like dxi · · · dxj in Rn. As in linear algebra, the determinant of matrix with
2 identical columns is zero, which explains rule 1.

Similarly, swapping two columns in a determinant causes its determinant to be multiplied
by −1. This explains rule number 2. Looking at it that way, we see that f(x) dxi dxi =
−f(x) dxi dxi by rule 2, and so f(x) dxi dxi must be zero. Hence, rule 2, together with the idea
that these expressions behave like determinants, implies rule 1.

Back to our Computation.

The above rules give that ∂1g1 dx1dx1 = 0 and ∂2g1 dx2dx1 = −∂2g1 dx1dx2 and so

dg = (−∂2g1 dx1 dx2 + ∂3g1 dx3 dx1) + dg2 dx2 + dg3 dx3 .

We treat the remaining terms dg2 dx2 and dg3 dx3 in exactly the same way.

Exercise 1. Complete this calculation and show that it gives:

dg = (∂2g3 − ∂3g2)dx2 dx3 + (∂3g1 − ∂1g3)dx3 dx1 + (∂1g2 − ∂2g1)dx1 dx2 . (0.2)

What we obtained in (0.2) is a 2-form because it is appropriate for calculating surface
integrals. Such a 2-form has the following general form:

h = h1 dx2 dx3 + h2 dx3 dx1 + h3 dx1 dx2 .

We can interpret (h1, h2, h3) as a vector field. Thus h1 is orthogonal to the surface element
dx2dx3, h2 is orthogonal to dx3dx1, and h3 to dx1dx2. Thus, we can summarize the expression
as h · dS where dS is the vector orthogonal to the surface.

There is one more thing. Note that we had to make choices. Do we list the first term in
(0.2) as (∂2g3 − ∂3g2)dx2 dx3 or as −(∂2g3 − ∂3g2)dx3 dx2? Answer: the first. Here is why. In
R3, we always use the convention known as the right-hand rule [3] [Sections 12.2 and 12.4]. If
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h1 is positive, it must represent a vector in the direction of dx2 × dx3 where × represents the
usual cross-product ([3] [Section 12.4]).

Note that the first term (h1 dx2 dx3) consists of three factors, the first of whose indices is
a 1. The first index in the second term is a 2, and so forth. The successive indices in one term
are obtained by counting forward and setting 4=1. For example, h3 dx1dx2. Thus the groups
of indices in the different terms are cyclic permutations of (1, 2, 3).

The Curl.

You can easily recognize the formula for the curl ([3] [Section 16.1]) of a vector field in (0.2).
In vector form the curl of g is usually written as

∇× g =

∂2g3 − ∂3g2∂3g1 − ∂1g3
∂1g2 − ∂2g1

 .

The Divergence.

Now let us start with the above 2-form and differentiate it, just as we did with the other ones,
we arrive at a 3-form. We obtain a 3-form which is called the divergence ([3] [Section 16.1])of
h:

dh = (∂1h1 + ∂2h2 + ∂3h3) dx1 dx2 dx3 . (0.3)

In vector notation this becomes:

∇ · h = ∂1h1 + ∂2h2 + ∂3h3 .

k-cells.

With all of this in mind, many complicated theorems can be handily summarized. They just

Figure 0.2: Right: a nice map from the square to a surface is a 2-cell. Left: a nice map from a
solid ball to a volume is a 3-cell. See Definition 0.1.
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boil down to 3 theorems. We state them a little bit more generally than needed in the course,
just in case you run into these things in the future. You should think of n and ` as typically,
but not necessarily, being 2 or 3. We first need another definition.

Definition 0.1 A set U in Rn is a k-cell if it is the image of a “nice”1 map from a k-
dimensional ball or cube into Rn. Intuitively, a k-cell is a k-dimensional shape that has no
holes of any kind.

Any ball or cube (their interiors included) in Rn is an n-cell. In Rn, the complement of
a ball is not an n-cell. In R3, the surface of a doughnut (or torus) is not a 2-cell, and neither
is the sphere is.

Exercise 2. Show that R2 (or R3) itself can be considered an k-cell. (Just map the point (r, φ)
in the unit disk with polar coordinates to (r/(1− r), φ). This maps the open unit disk in R2 to
all of R2. Do the same for R3.)

d2 = 0 Always.

At first, this heading seems very strange. But it turns out it is related to the fact that for any
“regular” surface or volume in R3, the boundary of the boundary is empty. In fact, the same
is true for a regular volume in any dimension. We give two examples in Figure 0.3.

Figure 0.3: Left: the boundary of the disk D is a circle C = ∂D, but the boundary of C is empty.
Right: the same for the solid torus whose boundary is a torus (surface), but the boundary of
the torus is empty.

A 3-form in R3 has the following general form:

k = k dx1 dx2 dx3 .

In R3 we cannot get a 4-form, since any 4-form must have four distinct dx’es which is impossible
in R3. (But it is possible in dimension greater than three!) So for any 2- or 3-form h in R3, we
certainly have that d2h = 0. More generally, we have the following result.

Theorem 0.2 If h is a smooth `-form in Rn. Then d2h = 0.

1By “nice”, I mean differentiable and with differentiable inverse. But the point of these notes is more to get
the intuition across than to convey the precise definitions. So “nice” will do for these notes.
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This theorem can be easily checked for the cases discussed here (in R3). As noted above,
we only need to check it for 0-forms and 1-forms. Starting with the forme, the gradient or
exterior derivative of a 0-form f(x) is

∂1f dx1 + ∂2f dx2 + ∂3f dx3 .

and exterior derivative (curl) of this is

(∂2∂3f − ∂3∂2f)dx2 dx3 + (∂3∂1f − ∂1∂3f)dx3 dx1 + (∂1∂2f − ∂2∂1f)dx1 dx2 .

You can see easily that then the whole expression is zero since, by Clairaut’s Theorem, ∂i∂jf =
∂j∂if ([3] [Section 14.3]).

On the other hand, if you start with a 1-form g1 dx1 + g2 dx2 + g3 dx3, you take the curl
first, and then you add up the ∂i of the ith components of the curl, you get

[∂1(∂2g3 − ∂3g2) + ∂2(∂3g1 − ∂1g3) + ∂3(∂1g2 − ∂2g1)] dx1dx2dx3 .

Using Clairaut again, we see that this also vanishes.

Exercise 2. For a smooth k-form h in R3, show that d2h = 0. First for 2- and 3-forms, then
do the above computation explicitly for 0- and 1-forms.

The Two Main Results.

The general proof of these main results are more complicated and we will not give it here.
We just remark that [3] gives separate proofs for each individual case that can occur in R3.
However, with a little more background one proof suffices; not just for all cases in R3 but in
any dimension.

Theorem 0.3 Suppose that h is a smooth `-form defined on an `-cell S in Rn for non-negative
integers ` < n. If dh = 0, then h is the exterior derivative of an (`− 1)-form f , that is: there
exists an f on S such that df = h.

Theorem 0.4 (Stokes’ Formula) (Gauss-Green-Kelvin-Ostrogradski-Stokes) Suppose h is an
`-form on Rn and the (` + 1)-form dh is its exterior derivative. Suppose further that S is a
closed `-cell in Rn with boundary ∂S, then we have∫

S

dh =

∫
∂S

h .

These are the three principles discussed in Calculus V. The theorems are often used in
conjunction, as we will now discuss by way of examples.
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Integrals in R1.

Suppose that g is a smooth function on an interval I = [a, b]. We consider the 1-form g(x) dx
in R1. Since dx dx = 0, the derivative of that form is zero, and so, by Theorem 0.3, there is
another function f so that

df = g(x) dx .

Supposing we can find that function f , then by Stokes (Theorem 0.4),∫ b

a

g(x) dx = f(b)− f(a) . (0.4)

The left side of this equation is the 1-form df = g dx integrated over the interval I = [a, b]. The
right hand side is the “integral” over the 0-form f over the boundary ∂I of I. The boundary
of I, of course, consists of the points a and b. The “integral” of a 0-form f over ∂I is defined
as f(b)− f(a).

Simple Line integrals in Rn.

Let us start with a line integral, and suppose we want to calculate
∫
c
F · dr where c is some

curve connecting a and b. What we do is the following: Find out if ∇ × F is zero. If it is,
then, by Theorem 0.3, there is a function or 0-form f so that ∇f = F . Namely g = F · dr is a
1-form. So dg corresponds to taking the curl. If it is zero, there is a 0-form f so that df = g.
Since f is a 0-form, its ’d’ corresponds to the gradient. Supposing we can find this function or
0-form f , the integral can be evaluated as before:∫

c

F · dr = f(b)− f(a) .

(Recall that c goes from a to b.) Notice that the value of the integral does not depend on what
path you took to get from a to b!

Boundary integrals in R2.

Suppose now that c is a curve enclosing a cell S, so that ∂S = c. See Figure 0.4. Suppose we
wish to evaluate the integral I =

∫
c
f1 dx1 + f2 dx2. Denote the 1-form f1 dx1 + f2 dx2 by h,

then by Theorem 0.4∫
∂S

h =

∫
S

dh or

∫
c

f1 dx1 + f2 dx2 =

∫
S

(∂1f2 − ∂2f1) dx1dx2 ,

because from the rules given before, we derive

d(f1 dx1 + f2 dx2) = (∂1f2 − ∂2f1) dx1dx2 .
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c
S

Figure 0.4: The curve c encloses a 2-cell S in R2.

Interlude.

These three results really tell the whole story. Nothing changes in higher dimension, except
how you write out the details of differential forms and their derivatives in any given set of
coordinates. So say you want to compute the exterior derivative of a 2-form k in R3. It can
can be written as

k = f1 dx2dx3 + f2 dx3dx1 + f3 dx1dx2 .

Since it has 3 components, we naturally think of it as a vector field f = (f1, f2, f3). Computing
the exterior derivative is the same as computing the curl of the vector field f . Any 3-form in
R3, however, can be written as

k = f dx1dx2dx3 ,

and so we can think of it as a function. From a physical perspective this may make sense. But
mathematically, this is not as logical as you may think. For instance, in R4, the 2-forms form a(
4
2

)
-dimensional space. This is because there are

(
4
2

)
= 6 combinations of dxidxj where i and j

are distinct elements of {1, 2, 3, 4}. Thus in R4, the 2-forms do not correspond to vector fields
in R4! It is easy to see that the largest dimensions in which all n-forms correspond to vector
fields or functions (in that dimension) is 3!

The following diagram serves as a guide between forms and their derivatives and their
corresponding vector fields/functions in R3.

d d d
0-forms −→ 1-forms −→ 2-forms −→ 3-forms

grad curl div

Historically, however, the unified and abstract view I present here came long after most
special cases cases were proved one by one. The first one was equation (0.4) in the 17th century
(by Gregory, Barrow, and Newton). We now know this statement as the fundamental theorem
of calculus. Most of the 2 and 3 dimensional cases followed in the 19th century (Stokes, Kelvin,
and others). Especially in the science, these cases are still referred to to by their old individual

8



names (divergence theorem, Green’s theorem, et cetera). It was only in 1945 that a unified
version was proved and written by Élie Cartan [1]. These proofs are much more advanced than
we can present here. The most readable introduction that I know of is [2][Chapter 5].

We now give some other examples of integrals in R3.

An Integral in R3.

Suppose you need to calculate an integral
∫
S
k where k is, say, a 2-form in R3, and S a surface

bounded by some curve c = ∂S (see Figure 0.5).∫
S

k =

∫
S

f1 dx2dx3 + f2 dx3dx1 + f3dx1dx2 .

Suppose that dk = 0. This corresponds to the divergence of the associated vector field being
zero, or

∂1f1 + ∂2f2 + ∂3f3 = 0 .

Then there is a 1-form g such that dg = k. This means that k can be expressed as the curl of
another field. By Stokes’ Formula, the integral

∫
S
k may now be evaluated as the line integral

along the boundary of S of the 1-form g. Theorem 0.4 gives∫
S
dg =

∫
∂S
g or∫

S
f1 dx2dx3 + f2 dx3dx1 + f3 dx1dx2 =

∫
c
g1 dx1 + g2 dx2 + g3 dx3 ,

where ∇× g = f .

c

S

Figure 0.5: The curve c is the boundary of a surface S in R3.

One More Integral in R3.

Suppose you want to calculate
∫
V
GdV where GdV is a 3-form in R3 and V is a 3-cell in R3

whose boundary is the surface S = ∂V (as in Figure 0.6). Note that the exterior derivative of a
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3-form in R3 is always zero, so we can write GdV as the “d” of a 2-form F dS: GdV = d(F dS).
In traditional vector analysis terms

G = ∇ · F .

Therefore by Stokes’ formula,
∫
V
dF =

∫
∂V

F or∫
V

GdV =

∫
V

∇ · F dV =

∫
S

F · dS .

As mentioned before, this 2-form is interpreted as a vector field orthogonal to the surface.
As a simple example going in the other direction, consider the integral∫

S

x1 dx2dx3 .

At first glance, it might look like you’re in for an afternoon of computations. That is, until you
realize that the exterior derivative of the 2-form is the 3-form dx1dx2dx3 or the usual volume.
So the answer is: the volume of the cylinder (area of circle times height).

V

S

Figure 0.6: The surface S is the boundary of the volume V in R3. V contains the origin.

In Spite of That, Yet Another Integral in R3.

Suppose you want to compute the integral I of F ·dr where F is the smooth vector field (F1, 0, 0)
and r(t) for t ∈ [0, 1] is the parametrized boundary of the surface S given by (see Figure 0.7)

S(x1, x2) = (x1, x2, f(x1, x2)) ,

for x ∈ [0, 3] and y ∈ [0, 2]. Since F has only one component and r(t) = (x1(t), x2(t), x3(t)), we
may compute I as follows

I =

∫
∂S

F1 dx1 =

∫ 1

0

F1(x1(t), x2(t), f(x1(t), x2(t)))ẋ1(t) dt .
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Figure 0.7: The surface S with parametrized boundary r(t) is a graph over the x− y plane.

On the other hand, by Stokes, we may also compute this another way, namely

I =

∫
S

d(F1 dx1) =

∫
S

−∂2F1 dx1dx2 + ∂3F1 dx3dx1 .

But since dx3 = ∂1fdx1 + ∂2fdx2 and dx21 = 0, we get

I =

∫ 2

0

∫ 3

0

(−∂2F1 − ∂3F1∂2f) dx1dx2 .

A Simple Extension of the Theory.

Earlier we stipulated that the regions we consider need to be cells. It is possible to get around
that if the region in question can tiled into regions that are cells.

Suppose we want to integrate
∫
S
f dS where S is the shaded region in R2 in Figure 0.8.

S is the union of S1, S2, S3 and S4, each of which is a cell. Clearly,∫
S

f dS =

∫
S1

f dS +

∫
S2

f dS +

∫
S3

f dS +

∫
S4

f dS .

Since the exterior derivative of f dS is zero (there are no 3-forms in R2), there is a g such that
d(g1 dx1 + g2 dx2) = f dS in each of the four pieces. Thus for each i in {1, 2, 3, 4}:∫

Si

f dS =

∫
∂Si

f dc .

Now if we sum up the four contributions, then the green line integrals in Figure 0.8 cancel.
Thus we are left with ∫

S

f dS =

∫
c

g ds .
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c

S

Figure 0.8: The shaded region S is built up from cells. The line integrals along the green sides
cancel.

Note the opposite orientation on both circles.
As an example in R3, consider ∫

S

er
r2
· dS ,

where er is the unit vector in the outward radial direction, r is the radius, and S is the cylinder
surface of Figure 0.6. Again, this might seem like a painful computation. But in actual fact,
the answer is fairly simple. Consider a little sphere S` around the origin inside V . The solid
region W between the cylinder surface and the little sphere can be tiled by cells. The boundary
of W is the union of S and −S`. The negative is to indicate that (as before) the orientation of
the two surfaces are opposite. By Stokes, we get∫

S

er
r2
· dS −

∫
S`

er
r2
· dS =

∫
W

div
(er
r2

)
dx1dx2dx3 .

But by example 4 [3] [Section 17.3], the divergence of that vector field is zero! But that means
that the integrals over S and S` are equal. However, the latter is very easily computed, because
the integrand er

r2
is constant on the surface of a sphere. Since the surface area of a sphere of

radius r is 4πr2, we obtain ∫
S`

er
r2
· dS =

4πr2

r2
= 4π .

In fact we could have taken any surface that contains the origins and we would have gotten the
same answer.

How about taking a similar surface that does not contain the origin? Then, of course,
the divergence is well-defined everywhere inside that surface and equals zero. So this time,
applying Stokes immediately returns the answer zero for the integral.
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