
 Abstract

A variety of alternate training strategies for implementing
the Dual Heuristic Programming (DHP) method of approx-
imate dynamic programming in the neuro-control context
are explored. The DHP method of controller training has
been successfully demonstrated by a number of authors on
a variety of control problems in recent years, but no unified
view of the implementation details of the method has yet
emerged. A number of options are here described for
sequencing the training of the Controller and Critic net-
works in DHP implementations. Results are given about
their relative efficiency and the quality of the resulting con-
trollers for two benchmark control problems.

1. Introduction
Dual Heuristic Programming (DHP) is emerging as a poten-
tially very useful and powerful method for designing con-
trollers. The present paper gives a new installment on a
continuing effort to develop better understanding of the
underlying mechanisms of the DHP methodology, particu-
larly related to issues of implementation with neural net-
works. For previous installments, see [2][3][4].

The aspect of DHP discussed relates to the various strate-
gies one might use to implement the underlying iterative
equations. We describe the DHP training process via a
framework containing two primary feedback loops:

1. The controller training loop. The process of interacting
with the controller in a supervised learning context, training
it to minimize the performance measure J(t) of the control
problem, based on data from the critic [called λ(t+1)].

2.The critic training loop. The process wherein the critic
neural network learns to approximate the derivatives of the
performance measure J(t), which are used in the controller
training loop.

2. Review of DHP Process
The Dual Heuristic Programming (DHP) method is a neural
network approach to solving the Bellman equation [5]. The
latter entails maximizing a (secondary) utility function:

(eq. 1)

The term  is a discount factor ( ) [assumed to be
1 in this paper] and  is the primary utility function,
defined by the user for the specific application context.The
usual application context for the DHP method is control [5],
for which J(t) is also referred to as a performance measure.
It is useful to observe that the Bellman-type optimization
going on in the DHP method refers to the process of
designing the controller (actionNN herein).

Two neural nets are used: the actionNN functioning as the
controller, and the criticNN used to design (via training) the
actionNN. A third NN could be trained separately to copy
the plant if an analytical representation is not available for
determining needed partial derivatives. The criticNN’s role
is to assist in developing/designing a controller that is
“good” relative to optimizing a specified utility function,
which is crafted to express the objective and constraints of
the control application. In the DHP method, the criticNN
estimates the gradient of J(t) with respect to the plant states;
the letter λ is used as a short-hand notation for this gradient
(vector), so the output of the criticNN is designated λ.

A detailed description of the computational steps of the
DHP are given in [2][3][4]. For an abstracted description
here, we refer to Figure 1. The amorphous shape represents
the “inner parts” of the DHP system, comprising the Plant,
the actionNN, the criticNN, the Utility Function, plus other
components.The upper dotted line in Figure 1 represents
the Controller Training Loop, and the lower dotted line rep-
resents the Critic Training Loop. The common calculations
(inside the amorphous shape) for both loops entail inputting
the Plant state information R(t) to the actionNN, it gener-
ates the control signal u(t) for input to the Plant, which gen-
erates R(t+1) for input to the criticNN, which generates
λ(t+1), the key data used in both training loops.
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Figure 1. Abstract representation of the DHP Process.

2.1 The Training/Update process.
A variety of strategies are possible for performing the DHP
process, based on different approaches to coupling and
sequencing the Controller Training Loop and the Critic
Training Loop. Standard strategies include simultaneously
running both loops, what we have called the Classical strat-
egy (Strategy 1) in [2][3][4], and running the loops sequen-
tially, called the Flip/Flop strategy [7]-[12]. We previously
introduced a method for decoupling the loops while running
them simultaneously, which we here call the Shadow Critic
(Strategy 4 in [1][2][3]). In this paper, we introduce two fur-
ther shadow strategies: the Shadow Controller and the
Double Shadow strategies. 

In the following descriptions, it is assumed that the data
needed [λ(t+1)] for executing a cycle through either or both
of the training loops has been calculated by criticNN.

S1: Classical Strategy. Run both loops simultaneously. 
In Figure 1., this means that after λ(t+1) is calculated, both
of the training paths are traversed, so the actionNN (control-
ler) and the criticNN are updated in each iteration. 

S2: Flip/Flop Strategy.
Run loops sequentially (2-stage process). 
Stage 1. After λ(t+1) is calculated, only the lower loop is

traversed, not the upper loop. This is repeated for a desig-
nated number of iterations (an epoch), and then changed to
stage 2 (from “flip” to “flop”).

Stage 2, After λ(t+1) is calculated, only the upper loop is
traversed, not lower loop. This is repeated for a designated
number of iterations (an epoch), and then changed to stage 1
(from “flop” to “flip”). 

S4: Shadow Critic Strategy. 
Introduce a copy of the criticNN in the lower loop.

Run both loops simultaneously. In this case, however, for
the lower loop, train the copy of the criticNN for an epoch,

and at the end of each epoch, upload the weight values from
the copy (which has been playing the role of shadow critic)
into the active criticNN, and continue the process, epoch at
a time.

S5: Shadow Controller Strategy. 
Introduce a copy of the actionNN in the upper loop.

Run both loops simultaneously. In this case, however, for
the upper loop, train the copy of the actionNN (controller)
for an epoch, and at the end of each epoch, upload the
weight values from the copy (which has been playing the
role of shadow controller) into the active actionNN, and
continue the process, epoch at a time.

S6: Double Shadow Strategy.
Make use of the NN copies in both training loops.

Run both loops simultaneously. In this case, however, train
the NN copies in both the upper and lower loops for an
epoch, and at the end of each epoch, upload the weight val-
ues from the copies into their respective active NNs. 

In principle, the straight-forward approach to iterating the
underlying DHP equations (strategy S1) should work just
fine, albeit a great deal of difficulty may be incurred in dis-
covering values of operating parameters that yield a conver-
gent DHP process. We can only speculate that difficulties of
this type motivated development of the “Flip/Flop” strategy
-- characterized above as running only one training loop at a
time and periodically switching between loops. As reported
in [3][4], this latter strategy entails longer training times.
This is explained by noting that while information about
both the critic and controller is available at each iteration,
since each loop is put on “hold” while the other is learning,
this information is not being used to its fullest. 

The shadow methods were conceptualized to explore the
additional possibilities for decoupling and sequencing the
loops, as captured in strategies S4, S5 & S6. Historically, the
Shadow Critic method received our attention first, and is
described in [2][3][4], though not by that name. The
Shadow Controller Strategy and the Dual Shadow strat-
egy are presented here for the first time.

2.2 Summary of notation used to designate strategies.
Five alpha-numeric designators are used in the remainder of
this paper for the strategies used in the experiments:

Designator S3 is not used for historical purposes (cf. [2]).

Controller Training Loop

Critic Training Loop

DHP system “innards”
λλ(t+1)

S1 Simultaneous/Classical Strategy

S2 Flip-Flop Strategy

S4 Shadow Critic Strategy

S5 Shadow Controller Strategy

S6 Double Shadow Strategy



3. Benchmark problems used for comparisons
Two platforms are used for the present explorations: 1) The
benchmark pole-cart problem [1][2][3][4] and 2) one of the
Narendra benchmark problems [6].

3.1 Pole-Cart benchmark problem.
This benchmark problem was originally described in [1],
and appropriate to the present context is described in [2].

3.2 Selected Narendra benchmark problem [6].
This plant is a non-linear multiple-input-multiple-output
discrete time map. Our treatment with DHP follows the gen-
eral line used in [11]. The plant has three state variables and
two controls. The state equations are:

The observable states of the system are defined to be x1(t)
and x2(t). This plant is stable at the origin with constant con-
trol values, but highly unstable otherwise. The linearized
system at the origin is controllable, observable and of mini-
mum phase. For the purpose of implementing DHP as
cleanly as possible in this example, all the state variables are
assumed accessible, and all state equations known. For
other treatments of this system, see [6] and [9].

The selected control objective is to track a reference input.
One of benchmark reference trajectories (signals) pro-
posed in [12] for judging controller performance is

(a periodic signal, with period 300).

3.2.1 Definition of Utility function.
For this system we use the following utility function:

Other treatments of this benchmark problem in the literature
[11] use a more elaborate utility function, which turns out
introducing further time delays into the training process.
While the more complex utility function works fine, our

simpler one produces essentially the same results with less
computational overhead. [Indeed, this is an example of a
suggestion made in [3][4] that there is often substantial ben-
efit to paring down U(t) to contain the minimum number of
terms necessary to accomplish the task (what these are,
however, are not always easy to determine a priori).]

3.2.2 Controller implementation.
A basic controller implementation, assuming accessibility
of all the state variables, has five inputs and two outputs; we
endow it with six hidden elements. The inputs are the three
state variables of the plant: x1(t), x2(t), x3(t), along with the
next target values  and . The outputs are
the u1(t) and u2(t). All the processing elements have hyper-
bolic-tangent activation functions and include bias terms.
Scaling factors selected for the state variables are as fol-
lows: x1(t): 1.6; x2(t): 1.6; x3(t): 4.0. The controller outputs
are not scaled.

3.2.3 Critic implementation.
The basic critic network has four inputs: ,

, , and ; and two outputs

 and 

Again, we use 6 hidden layer elements with hyperbolic-tan-
gent activation functions, and include a bias term in each
element. The scaling factors indicated above for the control-
ler are used to scale the critic inputs.

3.2.4 Model implementation.
For the Jacobian of our analytic model, we use:

with all other terms (of the Jacobian) being zero.
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3.2.5 Training strategies.
1) Training for this system is complicated by the necessary
delay in evaluating the quality of the controller’s actions,
due to delays in the plant and delays incorporated in U(t).
The plant must be allowed to evolve two time steps into the
future before all the critic’s inputs are available. So we
resign ourselves to always correcting errors that are two or
three time steps old at the time we make weight updates.
After waiting two time steps at the beginning of the training
process for enough history to be generated, the training can
begin. The implementation looks very much like that for the
pole-cart problem with the exception of the time subscripts.

2) The weights for both the controller and the critic net-
works are updated using a basic gradient descent method.
Momentum terms are used in both cases with a coefficient
of 0.015. No derivative offset value is used in either of the
weight update processes. A variety of controller and critic
learning rates were used; results reported here are based on
controller and critic learning rates of 0.003 and 0.01.

3) Each training trajectory is created by a sequence of ran-
dom numbers, taken uniformly from the interval [-1.5, 1.5]
and holding each value fixed for four time steps. Thus the
target jumps to a random pair of values, dwells there for four
time steps and then jumps again (equivalent to upsampling a
random signal by a factor of four using zero order interpola-
tion). Such a scheme for generating training stimuli (trajec-
tories) is motivated by the desire to have excitations across
the range of possible system states and targets, while at the
same time giving the controller a chance to iteratively refine
itself (for 4 time steps) at a specific excitation before (ran-
domly) moving on.

4) Training is performed for a total of 40,000 time steps,
after which all adaptation is halted (a factor of 5 to 20 fewer
steps than reported in the cited literature), and the controller
network’s ability to track Narendra’s benchmark sinusoidal
reference signal given above is tested.

3.2.6 General controller results for Narendra problem.
Illustrations of using the selected Narendra benchmark tra-
jectory (Section 3.2 above) to test controllers trained in the
above manner are shown in [5] (results for other of the
Narendra test signals are also shown in [5]). For those illus-
trations, no adaptation occurs during the test, and the con-
troller never saw the test signal during training (recall, it was
trained on a piecemeal random trajectory). The control qual-
ity is equivalent to that reported in [11] which also used
DHP, and to that reported in [12] which used a non-critic
approach. The examples shown were trained using strategy
S1; however, equivalent results were obtained using strate-
gies S2 and S4 (though the S2 strategy typically trains twice
as long to yield equivalent results). Additional results for
strategies S5 and S6 were obtained for the present study.

4. Comparison Results
Based on our prior experience [4], it was known that param-
eter values resulting in a convergent DHP process for strat-
egy S2 (it requires the smallest learning rates) also resulted
in convergent DHP process using strategies S1 and S4 (and
the present work showed this to hold also for strategies S5
and S6)-- but not always the other way around. Accordingly,
for the present set of experiments, a set of parameter values
was determined that yielded a convergent DHP process
using the S2 strategy, and those same values were used for
all the remaining strategies. Certain of the parameters were
modified intentionally for the comparison experiments.
Thus, the only variant within each set of experiments was
the strategy used for doing the DHP process.

The “baseline” set of experiments were crafted using a set of
values for each of the operational parameters (e.g., learn
rates, sampling rates, epoch sizes, etc.) selected that were
determined empirically to yield reasonably fast convergence
of the DHP process using strategy S2, and at the same time,
a demonstration that a sequence of 100 trials with different
randomized initial weights all converged. These are referred
to as the “nominal” parameter values below.

In general, however, one will not have the a priori knowl-
edge about such a set of nominal parameter values for the
DHP process. Accordingly, the design approach for the
present set of experiments was to individually adjust
selected parameters away from the nominal values, and
determine whether any of the strategies do better or
worse than the others as a function of such changes. 

The above nominal parameter values were used to generate
Baseline data for each of the 5 strategies tested (all the strat-
egies converged using this set of parameter values). For
each strategy, 100 training sessions were conducted for each
parameter change, each with different initial random weight
values. The performance measures were averaged over the
100 sessions. 

Adjustments away from nominal for four operational
parameters were made for these experiments: Halving of
Learning Rate, Doubling the Epoch Length, Doubling the
Controller Sampling Rate, and Doubling Size of Hidden
Layers (increase complexity of NN). The Baseline settings
and these four changes comprise 5 experimental protocols.

4.1 Pole-Cart.

4.1.1 Speed of Learning.
We used “number of drops” in the training process as a
proxy measure for “speed of system learning”. The latter is
deemed an important measure for on-line applications.

The general result is that S2 is only half as fast as the
other strategies, and the other strategies are all equiva-



lent on this measure. This result held in all five experi-
mental protocols, i.e., when cut the learn rate in half,
when double the epoch length, when double the control-
ler sampling rate, and when double size of the controller
network.These results consistently held on over 1000
simulation experiments carried out. 

As an aside, we report that for all the training strategies,
when halving the learning rate, the expected result of slow-
ing down the system learning by a factor of two (as demon-
strated by doubling the number of drops) was corroborated;
doubling the epoch length had no significant effect on speed
of system learning; doubling the controller sampling rate
had the effect of speeding up the learning, manifesting a
reduction in the number of drops to about 66% of Baseline;
and doubling size of hidden layers also had effect of speed-
ing up the learning, manifesting a reduction in the number of
drops to about 80% of Baseline.

4.1.2 Quality of Controller:
By virtue of the Baseline design (assured convergence of
training process), all test runs yielded zero drops on the
Training set, and with one exception yielded zero drops on
the Generalize set as well.

A proxy measure used for the quality of the resulting con-
troller was to sum up values of the squared deviation of the
pole angle from the desired value, and separately, the
squared deviation of distance from origin along the track
over the full duration of the testing sequence (cf. [2][3]).
The test process comprised a set of step responses, and the
squared differences from the desired values were summed
over the entire test period. This is essentially a combined
proxy measure of rise time, overshoot, and ringing -- usual
measures for quality of control.

In general, controllers first learn to balance the pole (get it to
vertical and keep it there), then learn to control the cart posi-
tion. This is because the cart starts out in the desired position
(origin) and doesn’t move much until the controller starts
pushing the cart around to control the pole.

Two sets of measure were obtained: one using the Training
Set for the test process, and one using the Generalize Set for
the test process. Within each of the five experimental proto-
cols, there is little distinction between the 5 strategies
based on the angle measure, either for the Training Set or
the Generalize Set (except that a drop for one of the offset
angles in the Generalize Set yielded an outlier). However,
there are distinctions between the 5 strategies based on
the distance measures.

In all cases, either strategy S1 or S2 yielded the worst
performance on distance measures, usually by a factor of
about 5 (sometimes much greater) over those yielded by
strategies S4, S5 and S6.

When double the epoch length: S2, S5 & S6 each yield
better controllers, achieving best average quality of dis-
tance control.

4.2 Narendra benchmark problem.

4.2.1 Speed of Learning.
Assessment of this system was based on adding up the
squared error between the desired output and the actual out-
put over a consecutive set of 1000 steps; these were calcu-
lated over a 40,000 point trajectory, yielding 40 consecutive
measure points. The 40 points for each of the five strategies
were plotted on the same graph, with one graph for each of
the five experimental protocols. Assessment was made by
comparing these sets of plots. 

The general result is identical to that obtained with the
Pole-Cart, namely, S2 is only half as fast as the other
strategies, and the other strategies are all equivalent on
this measure. Again, this result held in all five experi-
mental protocols

4.1.2 Quality of Controller:
The quality of the controller for this benchmark problem is
based on adding the squared error of following the Narendra
benchmark sinusoidal signal described earlier. 

The general result is that all controllers yielded by each
of the strategies were roughly equivalent on this measure
with the exception of S2, which consistently scored 25%-
30% worse on this measure; also, for the experiment in
which the epoch size was doubled, the results for strate-
gies S5 & S6 were degraded to those of S2.

A parallel to the observation made of the Pole-Cart that the
controllers first learn to balance the pole and then learn to
control the cart position, in the present context, the control-
lers uniformly, for all strategies and all protocols, first learn
state variable 2 and then learn state variable 1.

No specific statements can be made yet, but it appears that
strategies S5 and S6 as a pair are distinguishable, based on
the empirical observations made so far. More substantive
statements will await theoretical explorations -- which will
be undertaken based on the tendencies observed.

5. Conclusions
These explorations are at root about determining the effects
of decoupling the two training loops in the DHP methodol-
ogy. Strategy S1 (“classical”) may be characterized as fully
coupled, whereas strategy S2 (Flip/Flop) may be character-
ized as fully decoupled. Strategies S4, S5 and S6 occupy
positions between these two extremes.

One clear conclusion is that strategy S2 (Flip/Flop) should
never be considered a preferred strategy. It always takes
(nominally) twice as long to train up than any of the other



strategies, and never yields a better controller than, say,
strategy S6. So if one is inclined to use S2, our recommen-
dation is to use S6 instead. There are fewer computations
involved in strategy S2, since one of the training loops is
always on hold; but the improved speed and performance of
the other strategies would argue that this would be a false
saving.
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