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ABSTRACT

A variety of methods for developing quasi-optimal intelligent control systems using
reinforcement learning techniques based on adaptive critics have appeared in recent years.
This paper reviews the family of approximate dynamic programming techniques based on
adaptive critic methods and introduces a new hybrid critic training method.
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INTRODUCTION

A variety of Adaptive Critic Design techniques for training neuro-controllers have
appeared in the literature recently, falling into model-based methods such as Dual
Heuristic Programming (DHP), and non-model-based methods such as Action Dependent
Heuristic Dynamic Programming (ADHDP) or Q-learning (Barto, et al. 1983, Werbos
1990, 1992, Santiago & Werbos, 1994, Prokhorov, Santiago & Wunsch 1995, Prokhorov
& Wunsch 1997). The DHP method has been shown to be much more efficient for neuro-
controller training and to produce superior designs to the non-model-based methods.
However its implementation relies on having an explicit differentiable model of the
plant's dynamics and the critic function implicitly estimated by the method is not
guaranteed to be integrable.

This paper reviews the family of approximate dynamic programming techniques based on
adaptive critic methods and introduces a new hybrid critic training method that guarantees
the integrability of the critic function while capturing the performance of the model based
training method. The performance of the hybrid method is compared to the HDP and
DHP methods on a highly nonlinear multivariable discrete time benchmark problem
proposed by Narendra.

                                                          
1 This work was supported by the National Science Foundation under grant ECS-9904378.
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The first section provides a brief overview of adaptive critic based approximate dynamic
programming and then delves into the details of the Dual Heuristic Programming (DHP)
technique. The second section introduces an alternative classification of critic techniques
based on the role of system models in the training process. In the following section we
review previous results on the use of partial, approximate and qualitative models for critic
based controller training. A new hybrid critic training method is then proposed, that
incorporates the more efficient and accurate model based critic training rule from the
DHP method with an HDP based critic architecture that insures the integrability of the
critic function. We describe the specifics of this critic's estimation and in the final section
compare its performance to that of a DHP critic.

APPROXIMATE DYNAMIC PROGRAMMING

Dynamic Programming is a general approach for sequential optimization applicable under
very broad conditions. Fundamental to this approach is Bellman's Principle of Optimality
(Bellman 1957): that an optimal trajectory has the property that no matter how an
intermediate point is reached, the rest of the trajectory must coincide with an optimal
trajectory as calculated with the intermediate point as the starting point. This principle is
applied by formulating a "primary" utility function U(t) that embodies a control objective
for a particular context in one or more measurable variables. A secondary utility function
is then formed

,)()(
0

∞

=

+=
k

k ktUtJ γ

which embodies the desired control objective through time. This is Bellman's equation,
and the point of Dynamic Programming is to select the sequence of actions (controls) that
maximize or minimize J(t). Unfortunately, this optimization is not computationally
tractable for most real world problems, thus we are forced to consider potentially tractable
approximation methods. A useful identity based on the above equation is the Bellman
Recursion
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A promising collection of such approximation techniques based on estimating the
function J(t) using this identity with neural networks as function approximators was
proposed by Werbos (Werbos, 1990, 1992). These networks are often called Adaptive
Critics, though this term can be applied more generally to any network that provides
learning reinforcement to another entity (Widrow et al., 1973). As a practical matter, any
computational structure capable of acting as a universal function approximator can be
used in this role (i.e. neural networks, fuzzy rule structures, etc.). The gradient of the
estimated J(t) can then be used to train or tune a controller. Since the gradient is the
important aspect for controller training, some techniques use critics that estimate the
derivatives of J(t) instead of the function value itself.

The standard classification of these adaptive critic methods is based on the critic's inputs
and outputs. In Heuristic Dynamic Programming (HDP) the critic’s outputs are estimates
of the value of J(t). In Dual Heuristic Programming (DHP) the critic’s outputs are
estimates of the derivatives of J(t). In the action dependent versions of HDP and DHP,
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the critic’s inputs are augmented with the controller’s output (action), hence ADHDP and
ADDHP.

These approaches to approximate dynamic programming utilize at least two distinct
training loops, a controller training loop and a critic training loop (Lendaris et al. 1999,
Lendaris & Shannon 2000). In the neurocontrol context, the controller training loop
adapts a neural network to be an approximately optimal controller. Specifically, the
controller is trained to optimize the secondary utility function J(t) for the problem
context. Since the controller outputs control actions u(t), a gradient based learning

algorithm requires estimates of the derivatives 
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trained based on the consistency of its estimates through time judged using the Bellman
Recursion. The exact implicit relationship is a function of the type of critic used and the
structure of the primary utility function.

In the DHP method the critic estimates the derivatives of J(t) with respect to the system
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so the identity used for this critic's training is (in tensor notation)
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To evaluate the right hand side of this equation we need a model of the system dynamics
that includes all the terms from the Jacobian matrix of the coupled plant-controller

system, e.g. 
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Controller training then utilizes the chain rule and the system model to translate critic

outputs into estimates of 
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The entire process can be characterized as a simultaneous optimization problem; gradient
based optimization of the critic function approximator together with gradient based
optimization of controller parameters based on the J(t) estimates obtained from the critic.
Different strategies have been utilized to get both these optimizations to converge. A
number of authors propose alternating between optimization steps for the critic
approximator and optimization of the controller (Santiago & Werbos, 1994, Prokhorov,
Santiago & Wunsch 1995, Prokhorov 1997, Prokhorov & Wunsch 1997). In past work we
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have noted that taking simultaneous steps in both optimization processes does not appear
to introduce significant instabilities into the dual convergence problem (Lendaris et al.
1999, Lendaris & Shannon 2000). Since the simultaneous stepping approach is about
twice as fast as the alternating approach we recommend its use.

As these techniques rely on gradient based optimization of J(t), they inherently suffer
from the problem of (unsatisfactory) local optima. Global optimization of J(t) in general
is subject to the "No Free Lunch Theorem". What approximate dynamic programming
techniques offer is a tractable method for local hill climbing on the J(t) landscape of
controller parameter space. Initialized at a random point in parameter space, these
methods may be trapped by a local optimum at an unsatisfactory control law. We can
attempt to avoid this case by applying what ever problem specific knowledge is available
a priori to the choice of initial controller parameters, in the hope of being near a
satisfactorily high hill (or deep valley).

ADAPTIVE CRITIC DESIGN TECHNIQUES AND THE ROLE OF MODELS

An alternative way of distinguishing adaptive critic methods is to consider the role of
system models in the training loops of each method:

HDP
The critic estimates J(t) based on  the system state R(t). Critic training is based on the
identity
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which requires no system model to check. Controller training is based on finding the
derivatives of J(t) with respect to the control variables. In HDP we obtain these

derivatives through the chain rule 
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the derivatives of J(t) with respect to the states , obtained via backpropagation through the
critic network, with the derivatives of the states with respect to the controls using the
chain rule. This final set of derivatives comes from a differentiable model, e.g. an explicit
analytic model or a neural model. Thus HDP uses a model for controller training but
not critic training.

ADHDP (Q-learning)
Training for the critic network is the same as for HDP. Training for the controller is
simplified in that the control variables are inputs to the critic, thus derivatives of J(t) with
respect to the controls are obtained directly from backpropagation through the critic. Thus
ADHDP uses no models in the training process.
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DHP
Here the critic estimates the derivatives of J(t) with respect to the system states, i.e.
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tensor notation):
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To evaluate the right hand side of this equation we need a full model of the system
dynamics. This includes all the terms from the Jacobian matrix of the coupled plant-

controller system, e.g. 
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Controller training is much like in HDP, except that the controller training loop directly
utilizes the critic outputs along with the system model. So DHP uses models for both
critic and controller training.

ADDHP
This methods utilizes the DHP critic training process, but gets the derivatives needed for
controller training directly from the critic's output. Therefore ADDHP uses a model for
critic training but not for controller training.

One of the promising applications for adaptive critic methodologies is in adaptive control
contexts for non-stationary plants. In these contexts there will necessarily be a third
training loop that updates a differentiable model in an ongoing plant identification
process.  Any limitations experienced in this on-line adaptation context may derive from
an inability to adequately track changes in the plant, rather than from our ability to
continuously solve the approximate dynamic programming problem. Thus, understanding
the effects of model error on controller training is important.

PARTIAL, NOISY AND QUALITATIVE MODELS

Model based methods such as DHP have been shown to be much more efficient for
training neuro-controllers and to produce superior designs to non-model based methods
such as Q-learning; however, associated with this is a requirement for an explicit
differentiable model. When such a model is not already available, the cost of developing
one may well offset the benefits of increased speed and accuracy of this method. Various
strategies can be used to reduce the time and effort needed to develop a model, e.g., only
estimate a partial model, use a very rough estimation procedure, or attempt to capture only
the qualitative behavior of the system. What information must necessarily be included in a
model depends on how the model is used in the training process.
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Partial Models
By a partial model we mean a model which only explains some of the causal interactions
between state variables. A general hypothesis is that a differentiable model that includes
any subset of the state variables that would constitute an observable system should be
sufficient for DHP training. Such a model should be useable for carrying out the DHP
process, even in those situations where additional plant states might be observable, and
even when such additional state variables are used as inputs to the controller and critic
networks.

Noisy Models
Noisy models are ubiquitous in real life. A model based on regression analysis or any
other statistical estimation technique is approximate at every operating point. The
numerical values derived from such models may be considered "noisy" values in that they
are (hopefully) close to the "true" values and if properly estimated, randomly distributed
around the true values. We can perform controlled experiments to yield these kinds of
approximations by mixing noise with the "true" values derived from a known analytic
model. Two kinds of mixing are possible, additive mixing, and multiplicative mixing.

Qualitative Models
Based on the above observations, it is tempting to investigate the use of greatly simplified
qualitative models. Such models only determine the sign of the derivatives at each
operating point, positive, negative or zero. Since our current experiments are based on
plants defined by analytic equations we simply replace all positive derivatives with the
value 1 and all negative derivatives with the value -1.

Other authors have hypothesized that qualitative models should be adequate for the pole-
cart problem, as there is only a single control variable and straightforward dynamics. Our
experience has been that training with such models is generally successful, though usually
slower than training with exact models, and is capable of producing controllers of the
same quality as when training with exact models.

The size of the positive and negative values used will vary the "gain" of the training
process - thus linking this choice to the selection of learning rates for the training process.
Larger values in a qualitative model might require smaller learning rates and vice versa.

Another view of a simplified, qualitative model is that we have constructed a classifier of
the plant's qualitative behavior. Our classifier tells us whether a particular variable will
increase, decrease or remain unchanged based on the value of some other variable.
Estimating such a classifier as a practical matter should be simpler than estimating a
quantitative model for the plant. All one needs to determine are the class boundaries in
the state space. An important question to explore is with what precision must the class
boundaries be known for the qualitative model to be useful?
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PREVIOUS RESULTS WITH QUALITATIVE MODELS

Previous work using the Pole-Cart problem and Narendra's benchmark problem have
shown that the models used in DHP training can be far from perfect and still lead to
successful controller training (Shannon 1999). A variety of options exist for simplifying
system identification and modeling in the DHP context. Estimation of exact parameter
values in system models may not be as important as producing unbiased estimates. In off-
line training contexts, the "noise" in these estimated models may even be beneficial in the
controller training process, due to its tendency to anneal the critic and controller networks
out of unsatisfactory local optima.

As reported in (Shannon 1999, Shannon & Lendaris 1999), our experience has been that
training with such (imperfect) models is generally successful, though usually slower than
training with exact models, and is capable of producing controllers of the same quality as
when training with exact models. Narendra's problem is more interesting than the Pole-
Cart problem in this context as it is Multiple-Input-Multiple-Output (MIMO) with
significant non-linearity and time delays and requires following an a priori unknown
reference trajectory.

Further experiments with Narendra's system suggested that one could make do with very
rough models. To demonstrate this, we took the earlier developed qualitative model and
introduced a substantial "don't know" zone between classes. Results with these models
were comparable to those using the exact class boundaries, with equivalent RMS error on
the test trajectory and on the best performance. This showed that successful training is
possible using only qualitative information for those regions of state space in which the
plant's dynamics are unambiguous.

A HYBRID ADAPTIVE CRITIC

Based on our experiences using simplified system models with model based techniques,
we believe that the trade off between the efficiency and accuracy gains of model based
critic training methods and the cost of developing simple system models tilts heavily
towards using model based methods whenever possible. Our proposed critic training
method allows a scalar valued (HDP type) critic to be trained using the first order
Bellman recursion normally used for DHP critic training. This gives us a real, finite
valued J function approximation together with the more accurate derivative estimates
associated with the DHP method. The critic is trained to make consistent λ estimates. As
these estimates are obtained from the critic via backpropagation, the weight update
process is based on "propagating" error signals from the network's inputs rather than from
the network's outputs.

Hybrid Training Equations
A single hidden layer, feed-forward neural network's output can be expressed as
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where f() is the output layer activation function and g() the hidden layer activation
function. The partial derivatives of the output are then
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which are easily evaluated via backpropagation. Instead of adjusting the network weights
to minimize output error, we instead minimize the error for the network's partial
derivatives. The update equations are given by
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The critic is trained by generating J(t) and J(t+1) estimates, computing the associated

partial derivatives 
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The network weights are then adjusted to make the recursion error as small as possible
using a delta rule, e.g.
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COMPARING HYBRID CRITIC PERFORMANCE TO HDP AND DHP

The Narendra benchmark system (Narendra & Mukhopadhyay 1994) is defined by the
state equations:
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The observable states are often taken to be x1(t) and x2(t). The plant is stable at the origin
with constant control values. Linearized around the origin, it is controllable, observable
and of minimum phase. A standard reference signal for evaluating controller performance
is:
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Utilizing the reference signal, and recognizing the time delays in the system, we crafted
the primary utility function
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functions and have bias terms. Training of both networks is performed simultaneously.

Baseline DHP training is carried out using a random reference signal generated by
selecting values from the interval [-1.5, 1.5] via a uniform distribution every four time
steps. This procedure generates a random, stair-step signal that provides persistent
excitation for training. The performance of the trained controller is evaluated after 40,000
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training steps using the sinusoidal reference trajectory given above. This evaluation is a
generalization test, as the controller never sees a non-random reference trajectory during
the training process. Controllers trained by this method vary in performance, with an
average RMS error of 0.26 (over at least 100 designs) and with the better controllers
producing RMS error of about 0.22.

The HDP method is significantly less effective on this problem. Trained controller
performance has twice the tracking error, average RMS error ranging from 0.60 to 0.70
with training requiring upwards of 250,000 steps.

The same HDP critic network trained using the hybrid method produces controller
performance identical to the DHP method. The average RMS error of 0.27 obtained for
multiple training runs is statistically indistinguishable from the DHP results, while the
best controllers obtained from raw training again producing an error of about 0.22.
Training time for the hybrid case was 50% longer than for DHP (60,000 steps).

CONCLUSION

Our hybrid critic training method allows us to do model based critic training with a critic
that estimates the secondary utility function. Previous model based critic training methods
have only been used with critics that estimate the partial derivatives of the secondary
utility function. Another feature of adaptive critic based approximate dynamic
programming techniques is the potential to use the critic function as a guarantor of system
stability, e.g. (Prokhorov 1997, Prokhorov & Feldkamp 1999). This is directly practical if
the critic function estimates the secondary utility rather than the derivatives.

Our belief is that adaptive critic techniques are ideally suited for neuro-fuzzy
implementations (Shannon & Lendaris 20000). Fuzzy controllers and models more easily
allow the incorporation of a priori knowledge, while neural networks may be more natural
as function approximators in the critic role. It is also important to notice the applicability
of these techniques to adaptive control problems. For non-stationary plants, the controller,
critic and model can all be continuously update on-line to track changes in the plant's
dynamics (Lendaris & Shannon 2000).
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