
Many policy problems are hard to sort out . A situation may require a
sequence of interrelated decisions that is more complex than the mind can
readily encompass . More often it is difficult to decide, what is the best
choice because the outcomes that result from the required decisions
depend in part on chance events ; the decision maker is not in full control .
Perhaps the uncertainty stems from nature ; he does not know, for example,
the level to which the spring runoff will carry the river . Perhaps he cannot
be sure how many people will take advantage of a new job-training
program. Like it or not, he cannot foresee the future : he must take his
chances . Since the early 1960s, businessmen have increasingly used a
method of analysis called decision analysis for tackling problems where
decisions must be made sequentially and where uncertainty is a critical
element. The application of decision analysis to problems in the public
sector lagged by about a decade, mainly because the estimation of
probabilities and the valuation of outcomes proved difficult . But decision
analysis has increasingly become a valuable tool for analyzing and formu-
lating public policies . It has been employed to address such diverse
problems as prescribing appropriate treatment for a sore throat, choosing
the site for a new airport for Mexico City, and deciding whether the U .S .
should proceed with commercial supersonic flight .

Decision analysis in effect provides us with a road map for picking our
way through confusing and uncertain territory . Equally important, it gives
us a technique for finding the best route . Without further ado, let's look at
the bare bones of the method, so that you will have a general understand-
ing of what decision analysis is all about and how it works . We will then
gradually introduce variations on the basic model that will greatly expand
the range of situations to which it can be applied .'

' A lucid introduction to the field is Howard Raiffa's Decision Analysis (Reading, Mass . :
Addison-Wesley, 1968) . We strongly recommend . i t to those who desire a more comprehensive
treatment of decision analysis .
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The Decision Tree: A Descriptive Model

Most of the public policy issues for which decision analysis is useful are
complex, far too complex to use in introducing the subject . Consequently,
we will start with a deliberately trivial problem, culled from the 1974
sample examination for Administrative Officers of the U .S . Foreign
Service :

The officer in charge of a United States Embassy recreation
program has decided to replenish the employees club funds by
arranging a dinner. It rains nine days out of ten at the post and he must
decide whether to hold the dinner indoors or out . An enclosed pavilion
is available but uncomfortable, and past experience has shown turnout
to be low at indoor functions, resulting in a 60 per cent chance of
gaining $100 from a dinner held in the pavilion and a 40 per cent
chance of losing $20. On the other hand, an outdoor dinner could be
expected to earn $500 unless it rains, in which case the dinner would
lose about $10 .

(Where this damp and dismal post might be located escapes us .)
The first step in using decision analysis to attack the officer's problem

is to diagram the sequence of decisions and chance events that he faces .
The particular type of diagram that is used is called a decision tree . In
Figure 12-1 we have drawn the decision tree for this situation ; you may
want to try to figure it out for yourself before reading on .

Indoors

.b

Attendance lair
+ 100

To understand the tree, we begin, quite logically, with the first
decision the officer faces : Should he hold the party indoors or outdoors'? At
the left we draw a square, or decision node, to indicate that at this point a
decision must be made . We then draw two lines branching out of the
decision node to show his two possible choices, and label them Indoors
and Outdoors . Next we ask "What happens if we follow along the upper
branch, in other words, if he holds the dinner indoors?" The answer isn't
much help : "It all depends ." In fact, we are told that it all depends on
chance, on how well people turn out for the dinner . Hence at the end of the
Indoors branch we draw a circle or chance node, to indicate that at this
point an uncertainty must be resolved one way or another . At this chance
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node there are two possibilities : The party may be moderately successful
("attendance fair"), or it may be an utter disaster ('attendance very
poor"). Hence we draw two branches for these possible results, and label
them accordingly . Moreover, for this decision problem we know the
probabilities of these possible outcomes, for we are told that there is a 60
percent chance of the former and a 40 percent chance of the latter . These
numbers are recorded along the appropriate branches . Finally, we are also
told that the gain from a moderately successful dinner is $100, while very
poor attendance will result in the loss of $20 . These are the ultimate
outcomes or payoffs for each possible combination of choice and chance ;
they are shown at the tips of the branches .

Similarly, the two possibilities for an outdoor affair, their probabilities,
and their payoffs are shown emanating from the lower chance node . The
tree thus summarizes all the essential information that is available . Note
very carefully the order in which events occur : the decision must be made
before the decision maker knows what the weather will be . Hence the
decision node must precede the chance nodes . The appropriate sequencing
of decision and chance nodes always requires close attention when a
decision tree is drawn .

The problem as set forth has obviously been drastically simplified; the
officer might have additional options, including doing nothing, or other
weather possibilities, such as "threatening ." He could try to secure a long-
range weather forecast, or even pay some extra amount for the option of
delaying his decision until a few hours before the affair . It is the
formulation and diagramming of the problem that we are concerned with
now, not realism .

A decision tree is, then, a flow diagram that shows the logical

combination of choice and chance .

If you fully understand these simple principles for constructing a decision
tree, you have already mastered the essence of the method . Yet despite
their simplicity, it would be difficult to overemphasize the usefulness and
importance of decision trees . As we have found with almost every type of
model, the foremost advantage is the discipline imposed by the model . It
requires us to structure the problem, break it into manageable pieces, and
get all its elements down on paper-tasks that appear deceptively easy .
Frequently they turn out to be very difficult . And even when it is hard or
perhaps impossible to assign objective probabilities to chance events or to
quantify outcomes in physical units, the effort of drawing the tree correctly
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Fig. 12-1 4. Payoffs, which summarize the consequences of each possible
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provides valuable insights into the complexity of a problem . A corollary
advantage is that a decision tree helps us communicate assumptions and
valuations to others ; it is a tool that facilitates sensible policy discussion .

Some Further Clarification
Decision trees must be constructed to show all events that can possibly
occur at a chance node, and all options that might be pursued at a decision
node . Moreover, these events and options must be defined in such a way
that they don't overlap . (The technical phrase for this state of affairs is
"mutual) exclu ' and collectively exhaustive.") For example, if we
wis ed to consider the weather possib(htles fo Foreign Service officer
less simplistically, we might add temperature categories "hot" and "cold ."
But it would be wrong merely to modify the chance nodes by adding hot
and cold branches, as in Figure 12-2 . Rather we would have to show four
possibilities, as in Figure 12-3 .

Rainy

Fig. 12-2

	

Fig. 12-3

Alternatively, we could diagram this as the two successive chance
events of Figure 12-4 . Or we could put the "sunny-rainy" chance node on
the tree before the "hot-cold" node . In some contexts only one version of
the tree will make sense ; this is particularly likely to be true when there is a
well-defined, chronological sequence. In others there may be little reason
to prefer one version to another and the choice will depend on whatever
seems most logical in terms of the information available .

Similarly, the possibilities for action must be mutually exclusive and
collectively exhaustive . As a homely example, if you are trying to decide
whether to wear a raincoat or carry an umbrella, the alternatives presum-
ably are not mutually exclusive . The correct diagram is then Figure 12-5 .

sunny

Wear ralnioal

Hot and rainy

Carry umbrella

Wear raincoat and carry umbrella

Wear/carry neither

Fig. 12-4

	

Fig. 12-5

The above examples are deliberately commonplace, yet the point we
are making is applicable to all decision problems, however complex .
Decision analysis forces you to think carefully about

1 . The true nature of the decision problem ;

2. The role of chance ; and
3. The nature of the sequential interaction of decisions and chance

events .
When the course of action may be carried on at various levels, the use

of a decision tree becomes more cumbersome . For example, suppose you
are trying to decide what sum of money to carry with you on an extended
foreign trip, and how much of it to carry as cash and how much in
travellers' checks . A limitless number of combinations are possible . If you
are to use decision analysis to tackle this problerp, you must, as a practical
matter, narrow the problem down to a finite number of discrete choices .
You might, for instance, construct the relevant part of the tree as in Figure
12-6 . When you are satisfied that you have determined the right branch for

100", cash

1

('arry $5000

Carry $4000
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Carry $1000

Fig. 12-6
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you, you may want to try an amplified version of that branch to refine your
choice .

Obviously, an analyst who is determined to keep his blinders on will
not find his performance improved by mindlessly sketching a decision tree .
But we have discovered that with a little experience, just drawing that first
square on a piece of paper encourages most people to think more
systematically about the matter at hand . To be sure, the exact shape the
tree should take is sometimes far from obvious, as you will discover when
you find yourself up against an amorphous problem whose ramifications
seem endless . Yet the more difficult it is to develop the model, the more
useful it is likely to prove . A decision made without an appropriate model
in mind almost certainly will reflect confusion in thinking .

A Representative Decision Problem with Testing : The Choice of Generators
Earlier in this book we considered choices among alternative dam projects,
all of which generated electricity and at the same time provided water for
irrigation . In the real world the performance characteristics of irrigation
systems and power plants _are uncertain and variable, and may change from
year to year over the extended lifetime of a project . For purposes of
illustration we will suppress some of the engineering facts of life and look
at a much simplified problem .

Suppose that the choice among dam projects has been narrowed to a
particular dam and power plant configuration that will produce a known
amount of water for irrigation . The only decision remaining is the choice of
generators for the power plant . Assume for convenience that at the end of
a year the earth will open and swallow up the whole project .' The final
stages of development have recently been completed on a new and much
more efficient type of generator, but that type has not yet been tested in
conjunction with a dam of this kind . The costs of the old type and this new
one are identical . A plant equipped with conventional generators will
produce electricity worth $5 million a year . Such a plant will supply only a
very small proportion of the region's electricity ; any excess or deficiency
can be sold or bought at a constant price . The output of the new type of
generator is uncertain but it is estimated that there is a .3 chance that
operating difficulties will develop so that it can be run only at low capacity,
in which case it will generate only $3 million of electricity per year .
Correspondingly, there is a .7 chance that the new type of generator will
work well, in which case it will produce $8 million of electricity . (it might
be more realistic to postulate a whole distribution of outcomes, but that
would further complicate the problem while offering few compensating
gains in insights into the decision analysis technique .) It is possible to build
and test a prototype generator at a cost of $ .5 million. The tests would

z You have already studied benefit-cost analysis and discounting so you know how a stream
of benefits over time would be handled in practice . How to aggregate the consequences in
future time periods is a separate issue that has no bearing on the point we arc now trying to
make .
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predict the reliability of the new technology with complete accuracy .
Before reading on, you should structure this problem for the decision
maker in the form of a decision tree . (Don't forget to deduct the cost of the
prototype from the payoff wherever appropriate .)

We'll return to this problem shortly ; at the moment we want only to
give you a little practice in tree drawing . If you wish to check your work,
the tree is shown in Figure 12-7 . Decision nodes are indicated by numbers,
chance nodes by letters . Note carefully the effect of the test on the
probabilities at chance nodes C and D, and also that the cost of the test has
been included in the payoffs for the appropriate branches .
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Fig. 12-7 (Payoffs are in millions of dollars .)

You will find that in many discussions of decision analysis costs are
entered as "tolls" at the point where they occur . This is one logical way to
handle them, and it certainly helps us visualize the problem more accu-
rately . We follow this practice only in part . The symbol d is entered on

the tree to show the point in the decision process at which an additional
cost is incurred ; the dollar costs are subtracted to give the net payoffs,
which appear on the right at the tips of the branches . It is never wrong to
carry the costs out to the tips of the tree in this manner, and in situations
where the decision maker is not risk neutral (a matter we'll get to shortly)
all costs must be carried out to the tips . It therefore seems simpler in this
abbreviated treatment of decision analysis to establish uniform rules .

Used as descriptive models, decision trees have great intuitive appeal,
for they are easy to understand, readily discussed, and applicable to almost
every choice we face in the real world . Trees arc also an invaluable
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normative model, for whenever it is possible to assign values to probabili-
ties and payoffs we can use the tree to determine the preferred course of
action . We turn now to consideration of decision analysis as a normative
tool that facilitates effective choice .

Decision Analysis : Folding Back and Choosing the Preferred
Course of Action
The decision tree lays out the decision process for us so that we may
visualize it in its entirety ; it does not directly define the preferred course of
action. If we try to reach a decision by working along the tree from left to
right, following the logical sequence of choice and chance, we can . hardly
get started . Indeed, beginning that way would undo much of the value of
drawing the tree in the first place . The embassy officer can't decide
whether to hold his party indoors or out, because he doesn't know how to
evaluate the uncertain consequences of either choice . For the same reason,
the designers of the power plant can't decide whether or not to test the new
generator . To evaluate the choices facing either decision maker, we must
start at the right, with the tips of the trees, and work backward along the
branches . This process is easier to understand (or at any rate it's easier to
describe) if we work through some concrete examples first and talk about
general principles afterward .

Working Backward Under Certainty : The Land Bequest
Let's start with a decision problem that has the simplest structure possible .
Suppose you are the mayor of a small city . You are trying to decide what
to do with a parcel of land recently bequeathed to the city . One group of
citizens contends that the land should be used for recreation, another that
it should be sold for residential construction . City planners who have
studied the situation recommend three alternative recreational uses : (1) as
a wildlife refuge ; (2) as a municipal pitch-and-putt course ; (3) as a public
park with tennis courts and a softball diamond. If the parcel is sold for
housing, the possibilities are (1) single-family houses ; (2) condominiums ;
(3) mixed-income, federally subsidized apartment buildings . A majority of
the City Council is docile and will follow your recommendation, but you
find it difficult to make up your mind as to what is the best course for the
city . The decision tree is shown in Figure 12-8 .
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In situations like this, the choice between recreation and housing is
clearer if you follow the "work backward" system . Assume for the
moment that you will recommend using the parcel for recreation and that
you are therefore at decision node 2 . You then consider what is the best
recreational use for the land. Let's say that you decide that the park and
courts are best . Turning next to decision node 3, you decide that if the land
is to be used for housing, the best choice is mixed-income apartments .
Ordinarily such apartments are not attractive to builders, but several
builders have assured you that they are willing to undertake the project,
given the sizeable federal subsidy . Your choice is thus narrowed to two
contenders, the park and mixed-income apartments . In effect the decision
tree has been pruned to that shown in Figure 12-9 .

Parks and Cowls

Fig. 12-9

Clearly there is nothing very startling about this process or its end
result, and indeed deterministic decision trees such as this one hardly set
one's normative blood aboil . Ordinal preferences, which merely provide
rankings of alternatives, are always sufficient for finding the best choice .

Folding Back With Uncertainty : The Hospital Lawn

The more interesting and valuable applications of decision analysis are
those in which chance plays an important role in the outcome of a decision .
This is the case with the embassy official's decision problem described
earlier. Let's look at another deliberately simple problem . A hospital
administrator-we'll call her Harriet-must let a contract for reseeding the
hospital lawn . She can give the contract to company A, which has agreed
to do the job for $1500 provided that the weather is good over the next
month ; the charge will escalate to $2400 if the weather is bad . (Bad weather
is defined as less than one or more than four inches of rain .) Or she can give
it to company B, which has submitted a flat bid of $2000 . Meteorological
records indicate that there is a 15 percent chance there will be less than one
inch of rain and a 25 percent chance of more than four inches . Thus there is
a 60 percent chance that the weather will be good . What should Harriet do'?
The decision tree is shown in Figure 12-10 .
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Again we start to work backward from the tips of the tree, or rather
Harriet does . Right away she comes to chance node A, shown in Figure
12-11 . Now if Harriet could pick an outcome, she would choose to have
company A do the work in good weather for $1500 . But she cannot simply
choose that outcome since nature is in control . If she gives the contract to
company A she will have to take whatever comes in the way of weather ; in
effect she must accept a lottery . This means that she must find a way to
assign a value to this node as a whole, a measure of what it's worth to her
to be in a position where she faces a lottery with a 60 percent chance of
spending $1500 on the lawn and a 40 percent chance of spending $2400 .

One way she might do this is to determine some sort of an average
value for chance node A . What do we mean by the average value of a
lottery? It is what the average outcome of the lottery would be, in the long
run, if the lottery were played again and again . This long-run average is
aptly termed the expected value . In this case, where dollars are at stake,
we usually refer to the expected monetary value or EMV.

The expected va of may be calculated directly . It is found by
multiplying the value of each of the possible outcomes at a chance node by
its probability and then summing these products . For chance node A, we
calculate

EMV,, = . 6($1500) + .4($2400) = $1860

The expected value if Harriet gives the contract to company B is, of
course, $2000. The decision tree, thus, in essence reduces to Figure 12-12 .
If Harriet is willing to play the long-run averages, she should choose the
action that offers the best expected value . In this case we're talking about
costs; therefore the best EMV is the lowest and Harriet should give the
contract to company A . A double line (//) is used to indicate that the choice
"Give to B" has been eliminated .

I

Give to A
$1860

$2000

Fig. 12-12

A decision maker who bases his actions on expected values is said to
be risk neutral . It is reasonable to assume that Harriet is risk neutral, for
the amounts at stake in reseeding the hospital lawn are not large, at least
not relative to the budget of a hospital in this expensive age . For the time

being we will suppose all our decision makers to be risk neutral : this will
keep the exposition simple . Later on we'll have more to say about the
decision maker who is not risk neutral . In the meantime it may reassure
you to know that, even then, the use of expected values usually provides a
good first cut at a problem .

Anyway, if Harriet feels the hospital should be risk neutral with
respect to the particular lottery it faces, that it should treat a $400 risk the
way she herself would treat one for $5, her decision is clear. She gives the
contract to company A and since hoping is free, iflineffective, she hopes
for good weather. Some of you may wonder which path Harriet should
follow if the outcomes achieved by following the two paths are equal . This
point has been adequately covered in the literature .

"Would you tell me, please, which way I ought to go from here?"
"That depends a good deal on where you want to get to," said the
Cat .
"I don't much care where-" said Alice .
"Then it doesn't matter which way you go," said the Cat .

-Lewis Carroll, Alice in Wonderland

Before returning to the more complex generator problem, let's summa-
rize what we have been doing . Essentially we have assumed that the
decision maker is risk neutral, that is, willing to proceed on the basis of
expected value . We have then relied on two procedures in working
backward from the tips of the tree to the initial decision :

1 . At each chance node, we have assigned a value, the expected
monetary value or EMV, to the node as a whole .

2. At each decision node, we have chosen the action with the best
EMV (the highest or lowest, whichever is appropriate for the case
at hand) and have eliminated other possible courses of action .

Howard Raiffa refers to this whole process of working back along the
branches of the tree as "averaging out and folding back ."

As a check on your Understanding of EMV and its use, assume that
the embassy officer of Figure 12-1 is risk neutral . Where should he hold
the party? : '

Folding Back with Uncertainty and Learning : The Choice of Generators

Earlier in this chapter we asked you to try to draw the decision tree
illustrating the choice between two types of generators for a power plant .
We are now ready to go back and determine the preferred choice . The tree
was shown in Figure 12-7 . We can now average out and fold back from

'EMV,,,,,,,,,,, _ . 6(100) + ,4(-20) = 52 . EMV,,,,,,,,„,,,, = .1(500) + .9( - 10) = 41 . Therefore he
should hold the party indoors .

1

.0
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$2400

Fig. 12-11
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those payoffs to the initial decision . We strongly urge you to try this for
yourself before reading on .

If you do indeed stop to work the problem out, you probably will start
with the top branch . Working back from its payoff of 4.5, you come to
decision node 2-where you can't make a choice until you know the EMV
at chance node C . Fortunately, that EMV can be determined by inspection
to be 7 .5, which is entered above the node . The choice at node 2 is then
between an outcome of 4 .5 with old generators and an expected value of
7 .5 with new . Since these are positive payoffs, the preferred choice offers
the larger expected value and the old generator branch is crossed out . The
same procedure is followed for the other branches ; eventually the choice is
reduced to Figure 12-13 . The decision is clear ; all that remains is to cross
out the inferior choice, "Don't test ." The completed tree is shown in

lest

Fig. 12-13

Figure 12-14 . The best strategy is to test ; if it passes the test, the new type
of generator should be installed . If not, the old type should be chosen .

Install old
7 .5

Test OK

Test

Fig. 12-14

Note that this tree describes a situation where the decision maker must
make a first decision, then wait to acquire further information before
making a second decision . In other words, he waits until he finds out how
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the probabilities break, until he knows along which path chance will lead
him .

Decision trees thus do more than systematically lay out the opportuni-
ties for action and the uncertainties that will affect outcomes ; they portray
as well the gains from gathering further information . They induce, indeed
almost force, the decision maker to consider sequential strategies, where
further action will depend on the information observed to date . A major
problem with government programs is that once started they are hard to
stop, or even to modify . If policy makers used a decision tree at the outset,
they might be modest about their ability to predict outcomes and would
then be more likely to build information-gathering feedback loops into the
decision process .

For example, suppose that you, an educational planner, must deter-
mine which of two reading techniques will be the subject of a three-year
trial . You discover quickly that you have the option of using one in some
classrooms and the second in others . Moreover, you can revamp the trial
during its course as information on the two techniques begins to accumu-
late . An accurate representation of the situation requires drawing the tree
so as to reflect all the various possibilities for setting up and revising the
experiment. In this way decision analysis forces you to structure your
choices so that you can react to information as it becomes available . In
other words, it emphasizes flexibility in contrast to the construction of an
immutable master plan .

Note also, if you haven't already, that although the value at each
chance node depends on all the possible outcomes, the value at a decision
node is the value of the preferred outcome only .' This, of course, reflects
the fact that the decision maker is in control at a decision node, whereas he
must accept whatever fate deals him at a chance node .

Before turning to variations on the basic model, let's look at a more
complicated problem of a sort that occasionally appears in the press .

Using a Decision Tree to Structure a Complicated Problem : The Fish Ladder
A hydroelectric power plant on the Connecticut River has been ordered to
build a fish ladder so that salmon can swim upstream beyond its dam .
Three firms have submitted designs and cost estimates for the ladder .

Design A is the most expensive ; it will cost $8 .4 million and will take
three years to build . A ladder of this type is already in successful operation
in Oregon .

Design B is apparently similar, although it cuts a few corners to save
construction time and money . It will cost $7 .4 million and will take two
years to build . We say "apparently" because although to the human eye it
appears to capture the essential design features, the ichthyologists are
reluctant to guarantee absolutely that the salmon will agree ; they (the
''This is another of' those points that are so obvious we're embarrassed to mention them . Yet
experience has shown that students unfamiliar with decision analysis are likely to trip
themselves up on just this point .

4 .5
I Works well 7 .5

0 Work poorly ' .5

0 Works well
45

7S

I Work, poorly



Z14 ~CISIIIE~IySISW

ichthyologists, that is) estimate the probability of success at .9 . If for some
reason the fish refuse to climb the ladder, the problem will become obvious
by the end of the first year of operation . Modifications that will unquestion-
ably satisfy the salmon can then be carried out at an additional cost of $2 .8
million and a further delay of a year .

Design C is an altogether different type of ladder ; the ichthyologists
believe that it has only a .7 chance of success . It is far less expensive-$5 .6
million-and will take only a year to build . It will take an additional year to
determine whether or not it works . If it does not work, it will have to be
abandoned and a ladder of type A or B will then have to be built . Although
no fish ladders of type C are now in operation, one is currently under
construction in New Brunswick, and by a year from now it will be known
whether or not it is successful . If it works there, we can confidently expect
it to work here .

Environmental and recreational benefits from a successful ladder are
estimated at $1 million a year, whichever type of ladder it may be .

The design of the ladder must be approved by a state agency . The
agency quite reasonably decides that its goal should be to minimize total
cost, on the theory that costs to the utility will eventually wind up on the
Year :

0

I
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Build B I Doesn't work Modify

Fig . 12-15 A, B, C are costs ($ million) . Subscripts indicate time at which incurred .
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consumers' bills by way of rate increases, and the losses in environmental
and recreational benefits due to construction delays will be borne by
substantially the same group. The agency discounts both costs and benefits
at 8 percent per year. It is anticipated that construction costs will rise at
the rate of 10 percent per year .

Assuming that the three ladders will last equally long, and that the
agency is risk neutral, what is the agency's best course of action? (For
convenience, assume that construction costs are incurred when a ladder
comes on line.)

3

This problem is typical of a situation where the decision maker
desperately needs to keep track of what's going on and where he is in the
process. It is, of course, an armchair case, with all the loose ends tidied up .
But it hints at several problems that would be encountered in the real
world, in particular the evaluation of intangibles (environment and recrea-
tion), allowance for the passage of time, and the possibility of acquiring
further information . The probabilities are not more than "best guesses"-
but if this is the best information you have, you should use it .

The decision tree for the fish ladder is shown in Figure 12-15, but
before you turn to it you should try to formulate the tree and work out the

A4 4 Li+L,+L 3 +L,=12 .35

It, I I .,

	

I 1 . 2 I I , - 11140

B 3 +MS+L I +L2+L I +L++L5=14.88

L is loss of environmental benefits for subscripted year .

'

	

3 6

1

	

1 1 Cost

Build A
AI+Li+L2+LI=11 .46

9 Works
B 2 +Li+L2=9.46

Build B

	

10.96

	

I Doesn't work

	

Modify
132+M,+LI+L2+L3+L4=14 .00

.7 Works
C 1 + L[ = 6 .62

9 .86 Build A
C 1 +A 5 +L I +L,+L3 +L,+L5=18.90

Build C 3 Doesn't work
9 Work, +' i + 134 I I .1 + I . 2 +LI+L,=16 .

Build 13

.I Doesn't work Modify
('1 + 13,+M,,+t.1 +L2+LI+L,+LS

I L,, - '-1 .41
.7 C work,, build C

8 .60 ('2 + L i + L2 = 7 .59



preferred choice for yourself. A new feature has been added, and we
suggest that you incorporate it in your tree : the entire tree is put in a time
frame, partly for clarity of exposition and partly because it makes it easier
to figure the time lost along each route . A zigzag line ( )
indicate the point at which a fish ladder comes on line .

is used to

Allowing for Risk Aversion

If this were as far as decision analysis could take us, it would still be
valuable as a conceptual framework for thinking about decision problems,
as well as a direct guide to choice whenever the decision maker operates
on an expected value basis . Fortunately, decision analysis also points us
toward a systematic approach to situations in which the decision maker
will not be risk neutral . In this section we take an intuitive look at this
approach .

We saw above that it was plausible to assume that Harriet, the hospital
administrator, was risk neutral, for the amounts involved were not large .
But let's look at a more dramatic example . Suppose an individual-let's
call him Henry-is compelled to make a decision that in effect amounts to
choosing between the two lotteries shown in Figure 12-16 . If he is risk
neutral, he will choose lottery A because it has a larger EMV, despite the
fact that he could lose a bundle-$10,000, to be exact . At this point you

5
$20,000

Choose A
Lit v = $ 5 .000

5
_S10,000

$8,000

Choose B
EAIV = $4,000

0

Fig. 12-16

may feel that risk neutrality is fine for Henry if that's the way he wants it,
but it's not your cup of tea . In fact, the structure of your preferences is
quite different . This is indeed a sensible reaction . Most people who are risk
neutral when relatively small amounts are at stake are risk averse if the
sums involved are large enough . If you prefer lottery B to A, you too arc
risk averse ; most of your friends would probably react the same way . Yet
the same people may on occasion exhibit risk seeking behavior. Anyone
who has spent $1 for a raffle ticket that gives him a one-in-a-thousand shot
at a $500 television set has been a risk seeker, although one might argue
that the thrill of the game is an additional positive consideration .

A Problem That Introduces Risk Aversion : The Desalinization Plant

In wlr examples thus far, we have relied on expected value, in other words
on the long-run averages, to see which of the available alternatives we
should undertake . Let's take a closer look at what this implies . Consider
the problem faced by the government of a small island that has insufficient
fresh water . A desalinization plant is to be built, with a choice of
technologies available . Technology E is well established ; it will produce 6
million gallons of fresh water a day . Technology A is more advanced but
less certain . There is a 50-50 chance that it will work well, in which case it
will have an output of 10 million gallons a day . If it works poorly, the
output will be 3 million gallons . The decision tree is shown in Figure 12-17 .

S
? nullion gallons per I :n

A

10 million gallon, pei lay

i, million gallon, prr clay

Fig. 12-17

If the government is interested in the greatest expected number of
gallons, then it should choose Technology A . Indeed this would be the
sensible action if, whatever the outcome, the island will be regularly
purchasing additional supplies from some convenient source such as a
pipeline from the mainland . (Thus far, this decision problem sounds like
the electricity-generating problem discussed earlier .) The number of gallons
at risk with the advanced technology may then be translated directly into
dollars at risk should an additional purchase be necessary . That dollar
amount will presumably be small relative to the total budget for the island .
An expected value or averaging process would therefore be reasonable .

But what if this desalinization plant is to be a primary source of water
for the island (and this is where this example departs from the generating
plant example), and if additional water can be brought in only by an
expensive process, say, by tanker? Then we will need to adopt a different
approach . Although there will certainly be gains in producing 10 million
gallons a day rather than 6, the uses to which the last gallons are put will be
less valued than earlier uses . Perhaps the last million gallons a day will be
used on lawns and fairways . In contrast, a drop to 3 million gallons a day
would mean curtailing much more valuable uses of the water, such as
irrigation of vegetable crops .

Suppose, for example, that experience with droughts in the past
indicates that the first 3 million gallons to be produced by the plant will be
worth $10,000 to the islanders, a supply of 6 million gallons will be worth
$18,000, and one of 10 million gallons is worth a total of $25,000 . The
decision tree now becomes Figure 12-18 . Looked at in this light, the
traditional technology is superior . In other words, the loss in value if
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output is reduced from 6 million to 3 million gallons a day is $8000, which
is greater than the gain of $7000 that would result from an increase in
output from 6 million to 10 million gallons a day . Therefore the average
dollar value achieved by pursuing Alternative A is less than the average
dollar value achieved by pursuing Alternative E . With average dollars as
our criterion of choice, Alternative E should be chosen. Moreover, if the
island government is in addition risk averse with respect to money
lotteries, the strength of this preference for Alternative E would be
increased, for Alternative E is a sure thing .

Fig. 12-18

This example shows that relying on the average output of some
quantity such as gallons per day may be inappropriate . The gains from the
same gallon increment may not be the same across different ranges of
values. In this case it was legitimate to convert gallons to dollar equivalents
and to use expected dollars as our criterion of choice . The islanders were
willing to be risk neutral with respect to dollars, at least for the magnitude
of dollars involved, but they were not willing to be risk neutral with respect
to quantities of water .

But just as the value of gallons may diminish as we get more of them,
so too the real worth to us of a dollar may not be the same at all dollar
levels . Suppose you are offered a choice between $10,000 for sure, and the
flip of a coin to determine whether you get $0 or $25,000. You might well
prefer to receive $10,000, despite the fact that the lottery offers an
expected dollar value of $12,500 . The simple lesson is that when a gamble
may substantially alter one's endowment of a vital commodity, whether
dollars or gallons of water or health or environmental amenities, it may be
inappropriate to use expected values in making a choice .

Economists and decision theorists have developed methods for han-
dling situations where expected dollars are not a suitable criterion for
choice because there is a substantial variation in the value of dollars
achieved under alternative outcomes . The basic approach involves con-
verting dollar outcomes to an artificially constructed scale of values called
utilities . The methodology is called utility theory . It can appear deceptively
simple, but in fact the scaling process is rigorously defined and ensures that
the individual will be risk neutral with respect to lotteries 4hat arc
expressed in terms of these utilities . As we converted gallons to dollars in
the desalinization plant example, so utility theory converts dollars, or any
other measurable unit, to utility units . We shall not deal with utility theory

.5
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here ; it is left to an appendix at the end of this chapter . The lazy reader will
take comfort from our confession that we have encountered few actual
public policy analyses where utility theory was explicitly emplayed, though
some might claim that its use is implicit in structuring a graduated income
tax . The budding decision analyst will master that appendix, hoping
perhaps to be among the first to apply this important technique to the
assessment of critical policy issues . One major application of the utility
theory approach, was addressed to the appropriate location of the new
Mexico City airport .' It had a significant impact ton the Mexican govern-
ment's ultimate policy choice .

The Value of Information
We return again to the problem in which a decision maker was required to
choose between two types of generators for a power plant . The output
characteristics for the old type of generator were known with certainty ; for
the new they were not . The decision maker also had the option of acquiring
accurate information about the new technology by having a prototype built
and tested . We found that the latter was the best choice, with the final
decision relying on the results of the test . (The complete decision tree is
shown in Figure 12-7 .)

Is it always advisable to gather additional information before making a
decision? If you think for a minute, the answer clearly must be no . First
and most simply, it may be that the information, whatever it is, cannot
possibly change the decision . Second, even when a decision might be
altered, the cost of acquiring the information in terms of resources and
delays may be more than the information is worth . For example, the
director of the dam project would not have found it worthwhile to spend $2

million to test the prototype generator, because the expected value of the
"Test" branch would then be only $5 .1 million, significantly less than the
$6.5 million EMV of the "Don't test" branch . Just how much should the
decision maker be willing to pay?

We can work this out using our decision tree . Let T be the cost of the
test in millions (we will get back to specific values of Tin a moment) . 'Then
the payoffs (reading from the top of the tree down) are 5 - T, 8 - T, and so
on. If we average out and fold back, the tree reduces to Figure 12-19 . Note

Test

Don't test
6 .5

Fig. 12-19
(All payoffs tire in millions of dollars .)

'See Ralph L . Keeney, "A Decision Analysis with Multiple Objectives : 'the Mexico ('it)/

Airport," Bell Journal of Ee onomie s and Management Se u',u e 4 (1973) : 101-17 .
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that we don't need to know the value of 7' in order to make a choice at
decision node 2 . The choice is between "Install old" for a payoff of 5 - T
and "Install new" for a payoff of 8 - T. Whatever the value of T, "Install
new" is better . But at decision node 1, the choice depends on what 7' is .
Clearly the decision maker should choose "Test" as long as the cost of the
test is less than $ .6 million ; if it is greater than $ .6 million, he should install
the new type of generator without testing . Thus for any amount up to $ .6
million, the test is a good buy ; anything more would be a mistake . Hence
the test is worth $ .6 million to the decision maker . We call this amount the
Expected Value of Perfect Information, or EVPI . A decision maker who
can undertake a costly perfect test should be willing to pay up to his EVPI
for it. In general, the EVPI is the difference between the EMV of the
"Test" branch for a perfectly accurate test and the EMV of the next best
branch .

Another Illustration of the Value of Information : The Metropole Subway
System
Metropole, a large subway system, is considering the installation of
automatic train-speed controls on its new branch . The savings in personnel
costs will be significant . Two types of controls are available . The type sold
by Venerable Engineering has been thoroughly tested in use . It will cost
$14 million . A much cheaper alternative is produced by Innovative
Technology . Unfortunately, it has not been proven in practice . Metropole
believes that it is 60 percent likely that Innovative's controls will work . If
that system is purchased and it then fails, all payments made to Innovative
will be refunded . But Metropole will have to fall back on a nonautomated
system for six months while the Innovative controls are removed and the
Venerable system installed . Extra personnel costs during these six months
will amount to $3 million . Innovative Technology is eager to pull off a sale
to a big subway system and offers its speed controls to Metropole for $10
million . The decision tree (for pedagogic simplicity, we ignore discounting
considerations) is shown in Figure 12-20 .

I0
I 8

	

Works
Innovative

.4 - Venerable
17

Pa i Is
Venerable

14

Fig. 12-20
(All payoffs are in millions of dollars .)

Note that in this decision problem we are seeking to minimize
expected costs, and hence should choose the lowest expected value at each
decision node . If Metropole is risk neutral, and we shall assume that it is
on gambles of this size, then it should adopt the Innovative system .

m' ~4 M1 ~ a =111114 >!!{ -~
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Another possibility is available . A simulated system could be devel-
oped to create the equivalent of a field test for the Innovative controls .
Metropole has not yet received firm bids for this field test . (Before it does,
you might want to work out how much it should pay at the most .) Assume
that the test could be run in the next few months, that it is completely
reliable, that if it succeeds the Innovative system will be installed on
schedule, and that if it fails the Venerable system will be available at the
time it is needed . The decision tree has now acquired another branch .
Before looking at Figure 12-21, try to work out Ifor yourself how much
Metropole should be willing to pay for the test .

Install

Innov O ve

I18

Irt,cdl venerahk

Ic,t

11 .6

h Works

4 1viI . m,tall Venerahl :

h Pass . Install Innovative

.4 I:ul . install Venerahle

I(1

17

14

10 4 1

14 + 1'

Fig. 12-21
The EMV of the "Test" branch is $11 .6 million plus the cost of the

test, T . The EMV of the "Don't test" branch is $12 .8 million . Therefore
the EV PI is (12 .8) - (11 .6) = 1 .2 million dollars . Metropole should be
willing to pay up to that amount for the test .

Perfect information is rarely to be had through a straightforward
expenditure of dollars ; we can acquire it, if at all, only by waiting, and
waiting carries its own costs, costs that must be considered as part of the
test costs. For example, in our subway example, if the conditions were
different, the test might have delayed the installation of automated speed
controls by one month . This then would have added $ .5 million in
personnel costs to the system, whatever the outcome of the test . Even
when they occur in intangible form, it is usually helpful to think about
information costs and how much the information is worth .

Drawing Inferences from Imperfect Tests

It was easy to trace the implications of the tests we considered for the
prototype generator and the speed control system, for we assumed that the
tests were perfectly accurate . The real world is usually less cooperative,
and is less precise about revealing the true situation . Our devices for
gathering information turn out to be tests that are imperfect in a variety of
ways . Must a test be wholly reliable in order to be of value? Any test
whose results may change a decision has some value . (Poker players make



.8 Pass test

.25 Fail ill operation

.2 Fail test

I Fail in operation

mighty efforts to catch the slightest clue or hint of information from their
fellow players .) Naturally, the more imperfect the test, the less we should
be willing to pay for it. The EVPI serves as an upper bound for testing
costs; if information is not completely reliable, we should pay at a
maximum somewhat less than that amount .

Let's stick with our Metropole example a bit longer ; we now assume
that the simulated field test is imperfect . If the test result is "Fail," the
controls will surely fail in operation . But "Pass" is less reliable . The
controls are expected to pass the test 80 percent of the time, but the pass
result is accurate only 75 percent of the time ; one time in four when the
controls pass the test they will fail in practice . This implies that the
controls will work in practice 80 percent x 75 percent = 60 percent of the
time . How much should Metropole be willing to pay for this imperfect test?

.75 Work in operation

0 Work in operation

Fig. 12-22
(All payoffs in millions of dollars ; IT is the cost of the imperfect test .)

We can summarize the test information in an event lulu, as in Figure
12-22 . (An event tree has only chance nodes ; such trees have been used
notably in studies of nuclear reactor safety .) This minitree is then incorpo-
rated in a full decision tree, as is shown in Figure 12-23 . Working
backward from the tips of the tree, we immediately see that "Install
Innovative without testing" has an EMV of 12 .8, and "Install Venerable "
an EMV of 14 . These figures are the same as in the earlier version of the
problem . As before, Venerable controls are eliminated from further consid-
eration because the expected cost is higher than for Innovative . The "Test
Innovative" branch is more complicated, but if we average out and fold
back we find that its EMV is $12 .2 million plus the cost of the imperfect

.2 Fail test ; install Venerable
12 .2 + IT

Fig. 12-23

test, IT . Metropole should be willing to pay up to $ .6 million for the
imperfect test .

Putting Imperfect Test Information into Usable Form : Abused Children

In the example just considered, we were supplied with all the test
information we needed . But frequently the information isn't as neatly
arranged as this . Consider the following situation, based on an investiga-
tion of the problems in identifying abused children .',

School officials believe that 3 percent of a city's 10,000 school children
are physically abused . Measures can be taken to help these children, but
first they must be located . It is proposed to carry out a preliminary
screening of . all children ; when evidence of abuse (such as bruises of a
certain type) is found, interviews with parents will follow . Unfortunately
the screening process is not entirely reliable . If a child is actually abused,
the chance is 95 percent that the test used for the screening will be
positive, i .e ., will indicate that the child is abused . On the other hand, if
the child is not abused, the chance is only 10 percent that the test will be
positive .' School officials are most anxious to identify cases of abuse, yet
must proceed cautiously given the enormous stigma that attaches to
parents who are falsely accused . The tradeoffs are painful, and it is
imperative that school officials understand the implications of a positive or
negative test .

The difficulty is that the information is not in a shape that's readily
usable. However, we have all the numbers we need ; we just have to
perform a few calculations and rearrange them . Figure 12-24 sets forth
what we now know .

But it doesn't serve any purpose to screen a child after we know he is

Richard Light, "Abused and Neglected Children in America : A Study of Alternative
Policies," Harvard Edut ufiunal Review 43, no . 4 (November 1973) .
' For purposes of illustration, abuse and the test for it are assumed to be yes-no variables (the
technical term is "binary") . We all know that this is an oversimplification ; there are many
degrees of abuse, and evidence of abuse varies in its degree of ambiguity . Introducing this
additional complexity would cause no conceptual difficulty, though more arithmetic would be
required to get the information into usable form . Note, moreover, that when it comes to taking
action on behalf of abused children, both the screening test and the actual existence of abuse
may well be viewed as binary . Authorities may determine that even though the results of the
screening may be reported along a continuous scale, scores above a certain cutoff point will
he regarded as tndicaung abuse and will result it direct intervention with the family .
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Fig. 12-24

abused . We need to know what the likelihood is that a positive test means
that a child is indeed abused, or that a negative test means that he is not . In
other words, we want the information in the form of Figure 12-25 .

Abused

Test +

Not abused

Test -

Not abused

Fig. 12-25

Look again at the tree shown in Figure 12-24, and think about what it
means to follow along the topmost branch : it means that the child is abused
and at the same time the test is positive . The probability of this combined
event-the joint probability-is .03 X .95 = .0285 . It is called the Pa (h_
kobability because it's the probability of following the whole course of one
particularpath on the decision tree . (Granted, in the interest of consistency
it might be called the branch probability, but it isn't .) Look next at the
topmost path in Figure 12-25 ; if we follow along this path it means that the
child's test is positive and he also is abused . But this combined event is
just the same as the combined event "is abused and has positive test" ; the
order is immaterial . Hence the joint probability must be the same, .0285 .
Similarly, each of the other paths on the second tree is the counterpart of a
path on the first tree, although the order from top to bottom is not the same
on both trees. The probabilities for each path are shown at the tips of the
branches in Figures 12-26(1 and 12-26b .

Now comes the crucial step . Notice that if a child's test is positive it
must be that either he is abused (with probability .0285 for the joint event
"test positive, is abused") or he isn't (with probability .097 for the joint
event "test positive, is not abused") ; the total probability of a positive test
is the sum of these, .1255 . Similarly, we find that the probability of a
negative test is the sum of the probability that the child is abused and has a
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Fig. 12-26

negative test ( .0015) and the probability that he is not abused and has a
negative test ( .873), or .8745 . Entering these results on Figure 12-25's
target tree, we have Figure 12-27 .

Not ihu,Ld

Abused

Not abused

0 1 85

097

0015

873

Fig . 12-27

It remains only to fill in the probabilities at the final two chance nodes,
and this is a matter of simple arithmetic . If the probability of a positive test
is .1255, and the probability of the path "Test + ; abused" is .0285, then
the probability that the child is abused, once his test is positive, is .0285/
.1255 = .2271 . Following the same procedure, we fill in the rest of the tree,
as in Figure 12-28 .

This event tree is in a form that is of use to us ; it is what we have been
aiming for . The whole process is called "tree flipping" ; it is the intuitive
version of Bayes' formula ." The tree flipping technique offers many
advantages . It's simple ; there's no formula to forget or foul up ; and most

" I-or those who are more comfortable with formal mathematical notation we print the usual

Bayes' formula :

P(A

	

+ ) - [p(A)p( + I A)I i [p(Not A)p(+ I Not A)]

In this notation p(A ) is the overall probability (the "prior" probability) of abuse . The vertical

line I indicates a conditional probability : p(A I i ), fur example, is to be read "the

probability of abuse, given that the lest is positive ." 'I' he formula was originally set forth by

the Reverend Thomas Bayes, an lath-century English cleric . We strongly urge you to rely on

tree flipping for updating probabilities .
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Fig. 12-29

purpose to perform the test after we know whether the tumor is benign or
malignant . The doctor needs to know the probabilities for the event tree in
Figure 12-30 .

Try to work out the answer for yourself before looking at the complete
conversion in Figure 12-31 .

.7'lest negative
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Fig. 12-28

important, it works well for more complex situations, such as those in
which there are more than two underlying conditions . Suppose, for
example, that the underlying conditions are no evidence of abuse, strong
evidence, and ambiguous evidence, while the test reports are +, -, and ? .
The formula is a mess in such cases, but the tree is crystal clear .

Practice in Tree Flipping : A Medical Test
A doctor must treat a patient who has a tumor . He knows that 70 percent
of similar tumors are benign . He can perform a test, but the test is not
perfectly accurate . If the tumor is malignant, long experience with the test
indicates that the probability is 80 percent that the test will be positive, and
10 percent that it will be negative; 10 percent of the tests are inconclusive .
If the tumor is benign, the probability is 70 percent that the test will be
negative, 20 percent that it will be positive ; again, 10 percent of the tests
are inconclusive . What is the significance of a positive or negative test?

The information immediately available to the doctor is described
succinctly in the event tree in Figure 12-29. But it doesn't serve any
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Imperfect Tests and Intangible Payoffs
Both the child abuse and the tumor tests ultimately lead to decisions about
subsequent courses of action that cannot be quantified in any clearcut
fashion . Nevertheless decision analysis poses the nature of the decision
maker's dilemma very clearly . For example, suppose for simplicity that
good medical practice requires that a malignant tumor be treated surgically
and a benign tumor left alone . Then four general types of intermediate
outcome are possible : (1) the patient has a necessary operation ; (2) the
patient undergoes surgery unnecessarily ; (3) the patient receives no treat-
ment and none is needed ; (4) the patient fails to receive necessary
treatment. For each of these intermediate outcomes, the patient will have
certain probabilities of recovering and dying . (In the long run, of course,
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Decision analysis cannot help the doctor determine the value of each of
these outcomes. But it does remind him starkly that whatever decision he
makes, given what he knows about the probability that a tumor is benign or
malignant and the likelihood of recovery or death in each situation, he will
implicitly set boundaries on the values he assigns to these outcomes . The
decision tree is shown in Figure 12-32 . The benign/malignant probabilities
are transposed from Figure 12-31 . If the recover/die probabilities can be
estimated, the course that gives the patient the best chance of recovery can
be directly determined . We have used conjectural probabilities for recover
(R) and die (D) in Figure 12-32 ; the numbers in brackets [ ] are the
resulting chances of recovery . Death of the patient due to other causes is
excluded from consideration, in order to simplify the exposition ; additional
chance nodes could easily be added to allow for such contingencies .
Similarly, "recover" is of course much too broad a category ; in practice
we might well insist that the prospective quality of the patient's life be
taken into consideration .

The child abuse problem is similar . What should school officials do
once the preliminary screening indicates that a child is abused? Perhaps
their first instinct is to pursue vigorously each suspected case of abuse .
The relevant part of this event tree is shown in Figure 12-33 . In other
words, the chances are greater than three in four that, if a suspected case is
followed up, the parents will turn out to be innocent . The school depart-
ment may well feel that this is hardly the way to win friends for its
programs, or do good for its community . It must weigh the severe harm
of permitting an occasional case of child abuse to continue against the
serious costs of falsely implicating parents . In practice this analysis would
probably lead the department to schedule careful follow-ups after symp-
toms of abuse are detected. Or if test outcomes were in the form of several
gradations from negative to positive, as might well be the case in the real
world, perhaps only the strongest positives would be pursued .

.??71 Abused

Test +

7729 Not abused

Fig. 12-33

These treat-don't treat dilemmas are encountered in many guisca .
Even when unnecessary treatment is not positively harmful, it is likely to
be expensive and time-consuming . Utility theory offers each decision
maker a way to quantify the value of these risky and intangible outcomes in
terms of his own personal preferences ; it is discussed in the appendix to
this chapter .

Decision Analysis and a Contemporary Policy Issue
One of the most complex issues currently facing the United States is the
question of how electricity is to be generated for the next half century . The
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choice between continued reliance on the light water nuclear reactor and
development of the breeder (more accurately, the liquid metal fast breeder
reactor) is one aspect of that controversy . A study of the optimal timing of
research and development (R&D) for the U .S. breeder reactor program
illustrates the tremendous capabilities that decision analysis offers for
clarifying such a problem .'

The Clinch River breeder reactor, a demonstration plant located near
Oak Ridge, Tennessee, is scheduled for completion in 1983, provided
Congress does not cut off its funding . The next step planned for the
breeder program is to build a large breeder reactor that would serve as a
commercial prototype, to be followed in turn by the first commercial
breeder reactor. The study examines four options : (1) concurrent develop-
ment of Clinch River and the commercial prototype, with a decision to be
made in 1986 as to whether we should then proceed with a full-scale
commercial breeder ; (2) sequential development, with Clinch River to be
developed now, a decision on the prototype to be made in 1986, and a
decision on the commercial breeder in 2005 ; (3) waiting until 1986 before
making a decision on both Clinch River and the prototype, with the
concurrent development route then pursued if information is favorable ; and
(4) stopping development now and ceasing R&D . The first stage of the
decision tree is shown in Figure 12-34 . The dates at the tips of the
branches indicate when the first commercial prototype would come into
use .

Fig. 12-34

In this analysis, several key uncertainties affect the outcome of each
decision and hence are included in the complete decision tree . These
uncertainties relate to the success of the initial breeders, the supply of
uranium, future energy demands, capital cost differentials between the light
water reactor and the breeder, the future availability of other advanced
technologies, breeder R&D costs, and public reaction to the issues of
nuclear safety and potential environmental damage . Benefits take the form
of lower energy costs in the future .

The Atomic Energy Commission (AEC, later ERDA, the Energy
Research and Development Administration), on the other hand, favors a
deterministic model to investigate the ramifications of the R&D decision,
using a number of possible scenarios for the future . Net benefits are then

o Richard G . Richels, R 4 1) under Uncertainty : A Study of the U .S. Breeder Reaeior
Program (Cambridge, Mass . : Energy and Environmental Policy Center, Harvard University,
1976).
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calculated for each scenario . The AEC thus relies on a once-and-for-all
masterplan, with a commitment to an entire timetable . In contrast, the
decision tree approach would permit the AEC to set up a decision process
that enables it to take advantage of new information as it becomes
available . As a result of the scenario approach, those opposed to the
further development of the breeder have focused on the scenarios that
make it look bad, while the proponents have stressed those that lead to a
recommendation of concurrent development . No sense of the likelihood of
each scenario emerges from the analysis, and hence no estimation of
expected net benefits is possible . Both types of scenario are plausible ; the
debate continues .

One of the interesting features of the decision analysis study of this
issue is its treatment of environmental and safety issues . Rather than
addressing them directly, all such issues are subsumed under a single
uncertainty, the likelihood of a moratorium on further use of nuclear
power, assuming implicitly that a moratorium will be invoked when
environmental and safety costs are high . This approach has several virtues .
It limits the scope of the analysis ; in effect it says only, "if' we decide to go
ahead with the breeder, this is the economically effective way to go ." In
thus separating dollar outlay and benefit questions from the crucially
important intangible considerations, the tradeoffs between dollars and
potential threats to safety and the environment are made explicit. Focusing
on the likelihood of a nuclear moratorium also recognizes that, since the
parties to the nuclear debate will never reach agreement on the safety of
the breeder, the critical issue is what people believe about its safety .

Figure 12-35 shows the essential features of the complete decision
tree . A programming model is used to derive estimates of the relevant costs
and benefits, and probabilities are carefully assessed. The tree is then
folded back and we find that if the decision is to be made on economic
grounds alone, the concurrent development strategy is preferable, though
not by a wide margin . Not to leave you in suspense, the expected values
(discounted at a 10 percent annual rate) of the four alternatives are shown
in Table 12-1 .

You may argue that the analysis is all well and good, but given the
political mood in this country and the widely expressed concerns about
reactor safety and spent fuel disposal, the large outlay implied by concur-

Table 12-I
Concurrent development

	

$13.8 billion
Sequential development

	

$12.5 billion
Wait

	

$11 .5 billion
Stop

	

$ 0

rent or even sequential development is no longer feasible . Decision
analysis makes it relatively easy to evaluate altered situations ; of course, it
may be necessary to fold back the tree afresh . Sometimes it's simply a
matter of introducing revised probabilities or refining the estimates of the

Concurrent development
1995

Sequential development
2000

wait
2005

Stop
Never



payoffs. At other times whole branches must be struck off the tree . Since
the nuclear- R&D analysis was completed, for example, the breeder has
been put on hold. Sometimes the exploration of new options will require us
to add a bit of vegetation . Here again, the required revisions in the analysis

Wait

I

	

Stop
I
I
I

	

('BR-I
1995

1

	

Wilt

Fig. 12-35
CRBR = Clinch River Breeder Reactor
PLBR = Prototype Large Breeder Reactor
CBR-1 = First Commercial Breeder Reactor
Dates are estimated completion times .
Chance nodes :

1 . Design succeeds or redesign necessary
2. Combined uncertainties about nuclear moratorium, demand projections, and

uranium availability
3. Combined uncertainties about capital cost differentials, availability of other

advanced technologies, and more up-to-date estimates of uranium supply
4 . Still later estimates of uranium supply
5 . Combined uncertainties (at a later date than above) about capital cost

differentials and availability of other advanced technologies
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are straightforward . Finally, decision analysis also permits us easily to
investigate the sensitivity of the conclusions reached to the quantitative
assumptions made, a matter of particular interest in the nuclear debate . We
turn now to a brief consideration of that aspect of decision analysis .

1

Sensitivity Analysis

Sometimes experts in a particular field object to the conclusions reached
by a decision analysis . If they do, their objections should be rooted not in
the methodology but in the assumptions that guided the construction of the
tree. Thus an expert on energy might claim that the study of research and
development strategies for nuclear power plants discussed in the preceding
section neglected certain alternative strategies, such as proceeding full
speed ahead to develop solar power . Perhaps some aspects of the payoffs
were understated ; maybe the future availability of uranium was misesti-
mated. Or perhaps some of the probabilities were miscalculated . The
estimate of the likelihood that the first design for the Clinch River breeder
reactor would prove successful by 1986 was in fact much too high .

I
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Assume for the moment that at least some of these claims are correct .
Should we blame decision analysis'? No, it is merely a tool . To discredit the
method because it is misapplied would be equivalent to blaming the
manufacturer of the architect's table and T-square for the design of an
inadequate structure . Indeed, a more forceful defense can be made for
decision analysis . It is particularly well suited for examining the effect of
changing some of the critical underlying assumptions . This process is

called sensitivity analysis .
Usually the probability distributions and payoffs used in a decision

analysis are estimates rather than hard numbers . In fact, sometimes they
are little more than informed guesses . Nevertheless, if this is the best
information the decision maker can come up with, he should go ahead and
use it. In such circumstances he naturally would like to know how sensitive
his final decision is to the estimates he has used . If he finds it to be very
sensitive, he should then spend more time refining the estimates . Decision
analysis lends itself very well to a careful calculation of that sensitivity .

Here is a very simple example .
A risk neutral decision maker must choose between two construction

sites . Site preparation for Location I will cost $85,000 . For Location ll the
cost is iffier ; the decision maker thinks there is a 60 percent chance it will
cost $100,000, but if he's lucky it will cost only $40,000 . The tree is shown
in Figure 12-36 .

Choose site I

Choose site 11

$85,000

$100,000

$40,000

Fig. 12-36

The EMV at chance node A is $76,000, and so Site 11 appears to be the
preferred choice . But in fact the probabilities .6 and .4 are based on limited
information; the decision maker believes they could be refined significantly
with a little effort . How sensitive is his decision to these probabilities? To
put it another way, how different would they have to be to change his
decision? He can find out by calculating the probabilities for which
Location I would be preferred to Location 11 . As the probability of a cost
of $100,000 increases, Site II will become less and less attractive, until for
some probability p the decision maker is neutral between the two sites .
Thereafter he will prefer Site I . Let's find the p for which he would be
indifferent, for which the expected cost of the two alternatives is the same .
That p will satisfy the equation

p(100,000) + (1 - p)(40,000) = 85,000

which yields p = .75. In other words, whenever the probability that the
cost at Site II is $100,000 exceeds .75, Site I will be preferred . Now the

IL

decision maker may feel unsure that p is .6, but at the same time feel
reasonably certain that no information he gathers will push it higher than
.7 . if this is his belief, he should proceed with Location II ; no benefit will
result from gathering further information even if it is costless . If the
sensitivity analysis still leaves him uneasy with the decision, he can always
figure out what it would be worth to get more information before
proceeding . And perhaps he should reexamine his assumption of risk
neutrality .

	

I
A similar procedure can be used to test sensitivity to payoff values of

other critical parameters . Let's assume that at Location 11 getting clear title
to the land will involve legal expenses . The decision maker might wish to
determine just how large those expenses can be before he should choose
Location l .

In discussing the operate/don't-operate decision described on page
228, we used conjectural probabilities for recovery and death . It so
happens that with these particular probabilities, "test" narrowly edges out
"operate without testing ." If we perform a crude sensitivity analysis (i .e .,
take a good hard look at the numbers) we see that this result comes about
because the mortality rate when the tumor is benign is 10 percent . Had we
hit upon a mortality rate of 0.I percent, the preferred choice would have
been "operate without testing," for in that case an incorrect negative test
presents a greater danger than the operation ."

In the choice of energy reseach and development strategies, a critical
parameter is the discount rate . If the discount rate used is greater than 10
percent, strategies that get substantial R&D programs underway immedi-
ately look less desirable . If it turns out that the optimal R&D strategy shifts
when the discount rate rises from 10 to, say, 10 .2 percent, then much more
time should be spent attempting to pin down the current rate . But if the
preferred choice does not change until the rate exceeds 18 percent, then
the objection that "things came out that way only because they picked a
low discount rate" would quickly be shown to be misguided . In such a
situation, we say that the conclusion is robust with respect to variations in
the discount rate . Sensitivity analysis is thus potentially a powerful tool for
policy analysis and debate .

In the breeder study, sensitivity analysis was used to check the
probability assessments, and all were found to be robust with the exception
of the likelihood of a nuclear moratorium . It was found that it' concurrent
development is ruled out for political reasons, sequential development is
the preferred economic alternative provided the probability of a morato-
rium is less than .63 . If that probability is between .63 and .86, the best
strategy is to wait . If it is greater than .86, then research and development
should be stopped altogether .

° Realistically, we should recognire that doctors are strongly inlluenced by standaids of
good medical practice," by the fact that the costs of tests are usually covered by the

patient's medical insurance, and by the need to practice defensive medicine in the face of
possible malpractice litigation . The type of analysis set forth above enables us to assess the
consequences when doctors respond to such influences .



Sometimes we can be confident that we are choosing desirable courses
of action because we . can formulate relatively precise assumptions about
critical variables . At other times we may be in the fortunate position of
having policies available that are robust with respect to a realistic range of
assumptions . Decision analysis can tell us when our preferred policy
choices are robust and when they are sensitive to the numbers assumed in
the analysis . If they are sensitive, decision analysis will help us identify
which assumptions are critical and which don't matter much . It cannot
resolve debates about underlying values, but it is of great assistance when
we must engage in a discussion about the implications of alternative sets of
values .

The Uses of Decision Analysis

How does a decision tree fit in with the other models we have examined?
Many of the analytic techniques studied earlier may be useful for estimat-
ing probabilities or payoffs, or even for determining options . The use of a
tree is wholly compatible with the other techniques . Indeed, it is more than
likely that benefit-cost analysis and discounting will be required in
estimating payoffs, and we recognize that other models will be used to
formulate probabilities .

This brief discussion of decision analysis has been aimed at convincing
you of the wide applicability of the conceptual framework . Sometimes a
decision appears so straightforward that it's hardly worth writing down the
numbers and running them through the mill, yet defining the problem in the
form of a decision tree may uncover issues and perspectives that would
otherwise be overlooked . On other occasions a tree may prove helpful in
sorting out a decision problem with so many ramifications that only a
systematic approach can make it manageable . And the more difficult the
task, the more useful decision analysis is likely to prove in comparison to
the alternatives of no analysis at all or back-of-the-envelope calculations .
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Appendix: Utility Theory

In the foregoing chapter we observed that expected value is frequently an
unsatisfactory criterion for choice in risky situations . One example that we
explored in detail involved the water supply for an island . In that case, we
saw that by attaching dollar values to the water, we could get a much more
accurate measure of the true value of alternative lotteries. Utility theory
generalizes this procedure to any lottery, including most specifically
lotteries where the decision maker is uncomfortable' with a decision based
on expected monetary value (EMV) .

Our discussion focuses on the individual decision maker, who may be
acting on his own behalf or on behalf of others ; the broad principles we
develop are appropriate in either situation . The policy maker who under-
stands the central issues involved in making any risky decision is better
equipped to make choices that affect the well-being of his individual
constituents .

The Nature of the Problem and a Suggested Solution

Consider the very simple situation set forth in Figure 12A-1 . The EMV of
each of these two choices is $0, but most of us would have little difficulty
in deciding quickly that we prefer Y . We say that, faced with a choice
between these two courses of action, we would be risk averse ; we would
choose the less risky alternative, and we would even pay something of a

Fig. 12A-1

premium to get it rather than the risky option X . If we were to analyze the
underlying reasons for our attitudes, we would probably conclude that Y
appears preferable to X because losing $1000 would hurl us far more than
winning $1000 would benefit us . This is an example of what economists
sometimes loosely refer to as the diminishing marginal utility of money . In
laymen's terms, it means that we spend our money on whatever we value
most highly . Additional money, if we had it to spend, would go for
something less valuable to us . Consequently, the loss of $1000 would hurt
more than the gain of $1000 would help ."

" This principle was recognized at least as early as 1738 . Daniel Bernoulli, in analyzing the
famous St. Petersburg paradox, noted that expected value does not serve as a guide to action
for most people . The paradox arises in the following way : you are offered the opportunity to
buy a lottery in which a coin is tossed until it comes up heads . The game then ends and you
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