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A mechanistically based quantitative structure–activity relationship (QSAR) for the uncoupling activity
of weak organic acids has been derived. The analysis of earlier experimental studies suggested that the
limiting step in the uncoupling process is the rate with which anions can cross the membrane and that
this rate is determined by the height of the energy barrier encountered in the hydrophobic membrane
core. We use this mechanistic understanding to develop a predictive model for uncoupling. The
translocation rate constants of anions correlate well with the free energy difference between the energy
well and the energy barrier, ∆Gwell-barrier,A-, in the membrane calculated by a novel approach to describe
internal partitioning in the membrane. An existing data set of 21 phenols measured in an in vitro test
system specific for uncouplers was extended by 14 highly diverse compounds. A simple regression model
based on the experimental membrane-water partition coefficient and ∆Gwell-barrier,A- showed good
predictive power and had meaningful regression coefficients. To establish uncoupler QSARs independent
of chemical class, it is necessary to calculate the descriptors for the charged species, as the analogous
descriptors of the neutral species showed almost no correlation with the translocation rate constants of
anions. The substitution of experimental with calculated partition coefficients resulted in a decrease of
the model fit. A particular strength of the current model is the accurate calculation of excess toxicity,
which makes it a suitable tool for database screening. The applicability domain, limitations of the model,
and ideas for future research are critically discussed.

Introduction

The knowledge about the molecular mechanisms underlying
different modes of toxic action (MOA) varies considerably. This
hasconsequencesfortheestablishmentofquantitativestructure-activity
relationships (QSARs). If the mechanisms are well-understood,
it is possible to search for suitable descriptors in a focused way,
and the applicability domain of the model is easier to define. If
the mechanisms are poorly understood, a more statistical
approach is necessary, that is, larger numbers of descriptors need
to be calculated and descriptor selection methods have to be
applied. This makes the definition of the applicability domain
more difficult, and the interpretation of the selected descriptors
can become nontransparent. Of course, in many cases, a
statistical approach is unavoidable and this is also reflected in
the OECD report on the principles for the validation of
(Q)SARs, which states that for regulatory purposes QSARs
should have “a mechanistic interpretation, if possible” (1).

The MOA of uncoupling of oxidative and photophosphory-
lation is an example of an MOA with a relatively well-
understood mechanism (2–4). Therefore, taking advantage of
this knowledge should facilitate the descriptor search, the
definition of applicability domain, and the mechanistic inter-
pretation of the QSAR model.

The basis for the mechanistic explanation of the uncoupling
effect directly stems from Mitchell’s chemiosmotic theory (5).
The chemiosmotic theory explains how ATP is produced from
inorganic phosphate and ADP by ATP synthase (ATPase) in
energy-transducing membranes, that is, how the phosphorylation
is coupled to electron transport and hydrogen transfer. As a “side
effect”, this theory also explains the uncoupling effect observed
for certain weak acids. Figure 1a gives a simplified schematic
picture of the uncoupling effect.

A precondition for the efficient functioning of energy-
transducing membranes is that they are proton-impermeable;
that is, they need to maintain a pH gradient. A weak acid can
act as a proton shuttle transporting protons across mitochondrial
or photosynthetic membranes. Thereby they dissipate the pH
gradient across the membrane by providing an alternate entry
path for protons, which leads to the uncoupling of the phos-
phorylation from the electron transport and hydrogen transfer.
The most potent uncouplers are so efficient that the ATP
production is completely uncoupled at toxicant concentrations,
which are up to 20 times below the number of ATPases (3).
This observation, among others, led to the widespread agreement
that these toxicants do not specifically inhibit a receptor of
energy-transducing membranes but rather act as catalysts
according to the protonophoric shuttle mechanism illustrated
in Figure 1a. It should be mentioned that other authors have a
broader definition of uncoupling and define any energy-
dissipating process competing for energy with routine functions
of energy-transducing membranes as uncoupling (4). In this
study, however, the narrower definition of weak acids acting
as proton shuttles is used for uncouplers, which are sometimes
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also referred to as protonophoric uncouplers (6) or proton
ionophores (2).

A large number of QSARs for weak acids acting as uncou-
plers have been published. The models based on data from
specific mitochondrial tests (models based on in vivo data are
omitted for brevity) cover a wide range of chemical classes
ranging from phenols (7–11) to compounds with NH acidic
groups like benzimidazoles (12), diarylamines (13), salicyla-
nilides (14), and pyrroles (15). All of these QSARs are based
on a descriptor for lipophilicity quantifying the uptake into the
membrane and in most cases on an additional descriptor for
the acidity of the toxicants. Data sets including compounds with
bulky ortho substituents also required steric descriptors to
describe the shielding of the negative charge on the oxygen or
nitrogen atom, respectively, of the anion (8). Lipophilicity has
been described by the octanol–water partitioning coefficient,
log Pow (or log Kow in environmental sciences), or the

membrane-water partitioning coefficient, log Kmw, measured
with lipid bilayer vesicles, so-called liposomes (9). The regres-
sion coefficients in the above-mentioned studies varied widely.
The consequence is that each QSAR can only be used within a
single chemical class or even only for subsets of compounds
within a chemical class.

Twenty to 30 years ago, the explanation of the mechanism
for uncouplers was still controversial. To defend the chemios-
motic theory, a whole series of experimental studies with
artificial bilayer membranes were published at that time (16–20).
The development of charge-pulse (21) and voltage-clamp (17)
experiments with black lipid bilayer membranes (BLM) allowed
the detailed examination of the transport of weak acids. In
charge-pulse studies, the membrane capacitance was charged
to an initial voltage by an intense current pulse, and the
subsequent decay of the potential across the membranes was
measured as a function of time. In voltage-clamp studies, a
constant potential was applied across the membrane and
relaxations of the current were studied after the decay of the
capacitance spike. While the analysis of the experimental data
differs, both methods provided identical kinetic information. The
uncoupling process could be described by transport models with
five experimentally determined physicochemical descriptors
shown in Figure 1a: acid dissociation constant, pKa, lipid water
partition coefficients of the weak acid, Kmw,HA, and its anion
Kmw,A-, and the translocation rate constants of the weak acid,
kHA, and its anion kA- (18, 19). With these descriptors, the
transport of protons from the + side of the membrane to – side
of the membrane, that is, the uncoupling process shown in
Figure 1a, could be fully described and quantified. The
outstanding feature of these studies was that the values of these
descriptors obtained by fitting the differential equations of the
transport model could be confirmed by alternative experimental
methods; for example, the value of the two partition coefficients
was additionally checked by equilibrium dialysis, and the values
were in agreement by a factor of 2 or less.

Escher et al. studied the effect of phenolic uncouplers on
chromatophores, which are isolated membrane vesicles from
the photosynthetic bacteria Rhodobacter sphaeroides (22). The
transport models derived from studies with artificial bilayer
membranes could be extended to chromatophores and, thus, to
more complex biological membrane systems. In addition, the
pH dependence of the uncoupling effect could be comprehen-
sively described by a single transport model. However, so far,
neither the studies using BLMs nor the chromatophore studies
has had a big impact in the field of QSAR.

The main goal of the present study was, therefore, to
capitalize on these earlier experimental studies and to directly
model the hitherto experimentally determined descriptors pKa,
Kmw,HA, Kmw,A-, kHA, and kA-. If these descriptors can be
calculated with sufficient accuracy, it should be possible to
model the uncoupling effect of weak acids in a single model
regardless of whether the compound is a phenol, a benzimida-
zole, or of any other chemical class.

Materials and Methods

Chemicals. A total of 14 compounds that showed uncoupling
activity (full names and abbreviations are given in Table 1) were
obtained from the following sources: DTFB, DPFB, and TBrTFB
were kindly provided by Prof. Zygmunt Kazimierczuk, Institute of
Chemistry, Agricultural University Warsaw (Poland); TTFB was
purchased from TimTec, Inc. (Newark, DE); and the other 10
compounds were purchased from Sigma-Aldrich Chemie GmbH
(Buchs, Switzerland). Chemicals were of the highest purity avail-
able, typically >98%. Unless impurities were of exceedingly higher

Figure 1. (a) Uncoupling process of weak acids acting as uncouplers
in energy-transducing membranes. By diffusion, weak acids (HA) can
transport protons from the + side to the – side, where they release a
proton. Driven by the membrane potential, the anions (A-) migrate
back and can pick up another proton. The translocation rate constants,
kHA and kA-, determine the speed with which a compound passes
through this cycle, that is, the intrinsic uncoupling activity (black letters).
The gray letters indicate the partitioning constants of the uptake into
the membrane and will be discussed in detail in the section on
mechanisms. The gray-shaded circles indicate the polar head groups
of the phosphatidylcholine molecules, while the curly lines indicate
the fatty acid alkyl chains. (b) Relative change in the Gibb’s free energy
of the anion and the neutral species across the membrane bilayer for
the uncoupler carbonyl cyanide m-chlorophenylhydrazone, CCCP
(energy schemes adapted from refs 2 and 19). Note that in the case of
CCCP, the depth of the energy well is the same for the neutral and the
charged species, respectively. This is an exception, as for most
uncouplers the neutral species shows a deeper energy well than the
charged species and thus a larger membrane-water partition coefficient.

912 Chem. Res. Toxicol., Vol. 21, No. 4, 2008 Spycher et al.



T
ab

le
1.

A
bb

re
vi

at
io

ns
,

C
A

S
N

um
be

rs
,

F
ul

l
N

am
es

,
an

d
E

xp
er

im
en

ta
l

D
at

a
of

35
C

om
po

un
ds

w
it

h
th

e
U

nc
ou

pl
in

g
A

ct
iv

it
y

M
ea

su
re

d
at

pH
7

w
it

h
K

in
sp

ec

ab
br

C
A

S
no

.
co

m
pd

na
m

e
pK

a
lo

g
K

o
w

lo
g

K
m

w
,H

A

(L
/(

kg
li

p
id

)
lo

g
K

m
w

,A
-

(L
/k

g l
ip

id
)a

lo
g(

1/
E

C
to

t)
(M

)
lo

g(
1/

E
C

w
)

(M
)b

m
li

p
/V

w

(g
li

p
id

/L
)

tr
ai

n/
te

st
c

FC
C

P
37

0-
86

-5
ca

rb
on

yl
cy

an
id

e
p-

m
et

ho
xy

ph
en

yl
hy

dr
az

on
e

6.
2d

3.
68

e
4.

22
f

4.
22

7.
54

8.
57

g
0.

59
0

C
C

C
P

55
5-

60
-2

ca
rb

on
yl

cy
an

id
e

m
-c

hl
or

op
he

ny
lh

yd
ra

zo
ne

5.
95

h
3.

38
e

4.
05

f
4.

05
7.

21
8.

09
g

0.
59

1
T

T
FB

23
38

-2
9-

6
4,

5,
6,

7-
te

tr
ac

hl
or

o-
2-

(t
ri

flu
or

om
et

hy
l)

be
nz

im
id

az
ol

e
5.

3i
4.

73
j

4.
35

i
4.

35
7.

16
8.

28
g

0.
55

1
D

T
FB

23
38

-2
5-

2
5,

6-
di

ch
lo

ro
-2

-(
tr

ifl
uo

ro
m

et
hy

l)
be

nz
im

id
az

ol
e

7.
3k

3.
49

e
3.

05
k

3.
05

5.
76

5.
98

g
0.

59
1

D
PF

B
10

25
16

-9
3-

8
5,

6-
di

ch
lo

ro
-2

-(
pe

nt
afl

uo
ro

et
hy

l)
be

nz
im

id
az

ol
e

N
D

N
D

N
D

N
D

6.
11

(7
.3

3)
g

0.
59

0
T

B
rT

FB
23

38
-3

0-
9

4,
5,

6,
7-

te
tr

ab
ro

m
o-

2-
(t

ri
flu

or
om

et
hy

l)
be

nz
im

id
az

ol
e

5.
8l

4.
81

e
N

D
N

D
6.

76
(7

.5
6)

g
0.

59
1

flu
az

in
am

79
62

2-
59

-6
3-

ch
lo

ro
-N

-[
3-

ch
lo

ro
-2

,6
-d

in
itr

o-
4-

(t
ri

flu
or

om
et

hy
l)

-
ph

en
yl

]-
5-

(t
ri

flu
or

om
et

hy
l)

-2
-p

yr
id

in
am

in
e

7.
11

m
3.

42
e,

n
N

D
N

D
8.

75
(9

.0
8)

g
0.

59
1

5N
T

FB
32

7-
19

-5
5-

ni
tr

o-
2-

tr
ifl

uo
ro

m
et

hy
lb

en
zi

m
id

az
ol

e
6.

7l
2.

68
e

N
D

N
D

5.
06

(5
.1

3)
g

0.
59

0
4N

T
FB

14
68

9-
51

-1
4-

ni
tr

o-
2-

tr
ifl

uo
ro

m
et

hy
lb

en
zi

m
id

az
ol

e
6.

8l
N

D
N

D
N

D
3.

73
(3

.7
5)

g
0.

59
1

6C
l2

4D
N

P
94

6-
31

-6
6-

ch
lo

ro
-2

,4
-d

in
itr

op
he

no
l

2.
06

o
N

D
N

D
N

D
5.

40
(5

.4
1)

g
0.

55
0

26
D

B
r4

N
P

99
-2

8-
5

2,
6-

di
br

om
o-

4-
ni

tr
op

he
no

l
3.

39
p

3.
57

e
N

D
N

D
5.

25
(5

.3
5)

g
0.

55
1

24
6T

ri
N

P
88

-8
9-

1
2,

4,
6-

tr
in

itr
op

he
no

l
0.

38
e

2.
03

e
N

D
N

D
5.

78
(5

.7
9)

g
0.

55
1

w
ar

fa
ri

n
81

-8
1-

2
w

ar
fa

ri
n

5.
00

q
2.

6e
3.

39
q

1.
4

3.
58

3.
59

g
0.

55
1

24
6T

ri
B

P
11

8-
79

-6
2,

4,
6-

tr
ib

ro
m

op
he

no
l

6.
08

r
4.

19
e,

r
N

D
N

D
4.

30
(4

.7
5)

g
0.

59
1

24
D

C
P

12
0-

83
-2

2,
4-

di
ch

lo
ro

ph
en

ol
7.

85
s

3.
23

t
3.

59
s

2.
69

4.
04

4.
62

u
0.

82
1

34
D

C
P

95
-7

7-
2

3,
4-

di
ch

lo
ro

ph
en

ol
8.

59
s

3.
05

t
3.

76
s

2.
85

4.
04

4.
79

u
0.

82
1

35
D

C
P

59
1-

35
-5

3,
5-

di
ch

lo
ro

ph
en

ol
8.

26
s

3.
62

e
3.

76
s

2.
85

4.
66

5.
40

u
0.

82
1

24
5T

ri
C

P
95

-9
5-

4
2,

4,
5-

tr
ic

hl
or

op
he

no
l

6.
94

s
4.

19
t

4.
46

s
2.

98
4.

95
6.

04
u

0.
82

1
24

6T
ri

C
P

88
-0

6-
2

2,
4,

6-
tr

ic
hl

or
op

he
no

l
6.

15
s

3.
72

t
3.

99
s

2.
5

3.
98

4.
33

u
0.

82
0

34
5T

ri
C

P
60

9-
19

-8
3,

4,
5-

tr
ic

hl
or

op
he

no
l

7.
73

s
4.

41
t

4.
71

s
3.

16
5.

42
6.

98
u

0.
82

1
23

45
T

eC
P

49
01

-5
1-

3
2,

3,
4,

5-
te

tr
ac

hl
or

op
he

no
l

6.
35

s
4.

87
t

4.
76

s
3.

9
5.

98
7.

15
u

0.
82

0
23

46
T

eC
P

58
-9

0-
2

2,
3,

4,
6-

te
tr

ac
hl

or
op

he
no

l
5.

4s
4.

42
t

4.
46

s
3.

46
4.

70
5.

29
u

0.
82

0
PC

P
87

-8
6-

5
pe

nt
ac

hl
or

op
he

no
l

4.
75

s
5.

24
t

5.
1s

4.
35

5.
76

7.
07

V
0.

84
1

35
D

B
C

13
97

9-
81

-2
3,

5-
di

br
om

o-
4-

m
et

hy
lp

he
no

l
8.

28
w

5.
44

w
4.

51
w

3.
18

4.
96

6.
41

u
0.

87
0

br
om

ox
16

89
-8

4-
5

3,
5-

di
br

om
o-

4-
hy

dr
ox

y-
be

nz
on

itr
ile

4.
09

w
2.

97
w

3.
16

w
2.

1
4.

85
4.

90
u

0.
87

1
4N

P
10

0-
02

-7
4-

ni
tr

op
he

no
l

7.
08

t
2.

04
t

2.
72

t
0.

95
3.

91
4.

00
u

0.
82

1
24

D
N

P
51

-2
8-

5
2,

4-
di

ni
tr

op
he

no
l

3.
94

s
1.

67
t

2.
64

s
1.

9
4.

12
4.

15
u

0.
82

0
26

D
N

P
57

3-
56

-8
2,

6-
di

ni
tr

op
he

no
l

3.
7s

1.
22

t
2.

03
s

1.
86

3.
06

3.
08

u
0.

82
1

34
D

N
P

57
7-

71
-9

3,
4-

di
ni

tr
op

he
no

l
5.

48
s

2.
23

x
3.

17
s

1.
9

4.
80

4.
84

u
0.

82
1

D
N

O
C

53
4-

52
-1

2-
m

et
hy

l-
4,

6-
di

ni
tr

op
he

no
l

4.
31

s
2.

12
t

2.
76

s
2.

35
4.

68
4.

75
u

0.
82

1
D

N
PC

60
9-

93
-8

4-
m

et
hy

l-
2,

6-
di

ni
tr

op
he

no
l

4.
06

s
N

D
2.

34
s

2.
26

3.
36

3.
42

u
0.

82
0

di
no

se
b

88
-8

5-
7

2-
s-

bu
ty

l-
4,

6-
di

ni
tr

op
he

no
l

4.
62

s
3.

56
t

3.
96

s
3.

35
5.

94
6.

40
u

0.
82

0
di

no
2t

er
b

14
20

-0
7-

1
2-

te
rt

-b
ut

yl
-4

,6
-d

in
itr

op
he

no
l

4.
8s

N
D

4.
1s

3.
59

6.
37

7.
00

u
0.

82
1

di
no

4t
er

b
40

97
-4

9-
8

4-
te

rt
-b

ut
yl

-2
,6

-d
in

itr
op

he
no

l
4.

11
s

N
D

3.
81

s
3.

23
3.

90
4.

28
u

0.
82

1
tr

ic
lo

sa
n

33
80

-3
4-

5
5-

ch
lo

ro
-2

-(
2,

4-
di

ch
lo

ro
ph

en
ox

y)
ph

en
ol

8.
05

y
4.

76
e

N
D

N
D

5.
07

(6
.7

3)
y

0.
91

0

a
Sa

m
e

re
fe

re
nc

es
as

fo
r

lo
g

K
lip

w
,H

A
.

b
V

al
ue

s
in

br
ac

ke
ts

w
er

e
de

te
rm

in
ed

w
ith

th
e

up
ta

ke
es

tim
at

ed
by

eq
s

2,
4,

an
d

5.
c

T
ra

in
in

g
se

t
(1

);
te

st
se

t
(0

).
d

R
ef

18
.

e
Ph

ys
Pr

op
-D

at
ab

as
e

(h
ttp

://
w

w
w

.s
yr

re
s.

co
m

/
es

c/
ph

ys
de

m
o.

ht
m

)
or

K
ow

W
in

-D
em

o-
D

at
ab

as
e

(h
ttp

://
w

w
w

.s
yr

re
s.

co
m

/e
sc

/k
ow

de
m

o.
ht

m
).

f
R

ef
20

(d
efi

ne
d

fo
r

a
su

rf
ac

e
of

0.
7

nm
2

pe
r

lip
id

m
ol

ec
ul

e
an

d
M

W
76

0
g/

m
ol

lip
id

).
g

T
hi

s
st

ud
y.

h
R

ef
19

.
i
R

ef
17

(d
efi

ne
d

fo
r

a
su

rf
ac

e
of

0.
7

nm
2

pe
r

lip
id

m
ol

ec
ul

e
an

d
M

W
76

0
g/

m
ol

lip
id

).
j
R

ef
36

(m
ea

su
re

d
D

o
w

an
d

pK
a

of
5.

3
ta

ke
n

to
ob

ta
in

K
o
w

).
k

R
ef

16
(d

efi
ne

d
fo

r
a

su
rf

ac
e

of
0.

7
nm

2
pe

r
lip

id
m

ol
ec

ul
e

an
d

M
W

76
0

g/
m

ol
lip

id
).

l
R

ef
37

.
m

R
ef

38
[m

ea
su

re
d

in
50

%
E

tO
H

/5
0%

H
2
O

(v
/v

)]
.

n
R

ef
39

[v
al

ue
fo

r
lo

g
K

o
w

ta
ke

n
as

a
m

ea
n

of
re

fs
e

(3
.5

6)
an

d
n

(3
.2

7)
].

o
R

ef
40

.
p

SP
A

R
C

pK
a-

D
at

ab
as

e
(h

ttp
://

ib
m

lc
2.

ch
em

.u
ga

.e
du

/s
pa

rc
/in

de
x.

cf
m

).
q

R
ef

41
.

r
R

ef
42

[v
al

ue
fo

r
lo

g
K

o
w

ta
ke

n
as

a
m

ea
n

of
e

(4
.1

3)
an

d
r

(4
.2

4)
].

s
R

ef
43

.
t
R

ef
30

.
u

R
ef

35
.
V

T
ak

en
as

an
av

er
ag

e
va

lu
e

of
re

f
35

an
d

tw
o

ol
de

r
un

pu
bl

is
he

d
m

ea
su

re
m

en
ts

.
w

R
ef

44
.

x
R

ef
45

.
y

U
np

ub
lis

he
d

m
ea

su
re

m
en

ts
.

Toward a Class-Independent QSAR for Uncouplers Chem. Res. Toxicol., Vol. 21, No. 4, 2008 913



uncoupling potency, the small fraction of impurity should not
influence the measured effects. Other chemicals used for time-
resolved spectroscopy are described in ref 23.

Determination of Uncoupling Activity. The in vitro test system
Kinspec, which was used in this study, works with chromatophores
extracted from the photosynthetic bacterium R. sphaeroides (23, 24).
In the Kinspec test, a 1 µs “single turnover” flash of light causes
the build-up of a membrane potential, and the subsequent decay of
the membrane potential is monitored using time-resolved spectros-
copy (23, 24). The presence of uncouplers acting as protonophores
accelerates the decay of the chromatophore membrane potential,
because of their ability to transport protons across the membrane.
This allows the determination of the activity of different uncouplers,
which is described in detail in the accompanying text to Figure
SI-1 in the Supporting Information. The endpoint for the toxic effect
of uncoupling in this system (25) is the concentration of toxicant
needed to induce an observed pseudo-first-order decay rate constant
of uncoupling, kuncoupling, of 0.5 s–1. The measurements in the
Kinspec system are in good agreement with other in vitro tests based
on oxygen evolution of isolated mitochondria or submitochondrial
particles (9, 11, 23) and also with in vivo effect concentrations;
however, the number of compounds used for these evaluations is
limited.

Toxic Mechanisms: Intrinsic Activity. The key to the under-
standing and the quantification of the uncoupling mechanism lies
in the nature of the proton-impermeable lipid bilayer membranes.
The properties of biological membranes differ from bulk solvents
like octanol or hexane in several ways. First, the hydrophobicity
changes over the axis perpendicular to the membrane plane, that
is, over the membrane normal, which can be quantified by the
change of the relative dielectric constant, εr. The relative dielectric
constant, εr, drops from a value of 80 in water to values around 70
on the membrane surface (26) to 30 at the interface between polar
head groups and hydrocarbon core (26) to values around 2 in the
hydrophobic core (19, 27). This is a direct consequence of the
arrangement of the phosphatidylcholine molecules in the bilayer
with polar head groups forming the outer side of the membrane
and the alkyl chains forming the hydrophobic core. The second
difference between bulk (isotropic) solvents and membranes is also
a result of the anisotropy of membranes. Membranes have highly
ordered regions and regions, which are less ordered. The regions
with high order lead to lateral pressures, which affect partition
coefficients and permeabilities (28, 29). Bulky molecules partition
less into these areas than could be expected from the hydrophobicity
of this environment.

This arrangement leads to large differences in the Gibb’s free
energy for a molecule depending on the position in the membrane.
In their work on the uncoupler m-chlorophenylhydrazone (CCCP),
Kasianowicz et al. (19) gave a qualitative picture of the free energy
of CCCP over the membrane normal, which also applies to other
polar hydrophobic compounds. The free energy schemes of Figure
1b illustrate two things: First, a protonophoric uncoupler like CCCP
has the lowest energy in the region of the polar head groups; that
is, this is the region where such compounds are mainly accom-
modated. Second, for a given molecule, the energy required to cross
the hydrophobic core is substantially higher for the anionic species
than for the neutral species. The translocation rate constants of the
weak acid, kHA, and its anion kA- are strongly related to the energy
differences between the region of the lowest energy (i.e., the energy
well) and the region with the highest energy (i.e., the energy barrier).
Efficient uncouplers like CCCP are compounds that keep this energy
as low as possible. On the other hand, compounds that have to
overcome a very high energy barrier should be inefficient uncou-
plers or even show no activity at all.

A side note: The term translocation rate constant is common in
biophysics but rarely used in QSAR studies, while the related
property permeability is commonly used. The difference between
the two properties for the situation shown in Figure 1b is that a
compound’s permeability (with dimensions distance/time) from the
membrane-water interface on one side to the other side is the
product of the translocation rate constant (with dimension time-1)

and partition coefficients normalized to the surface (with the
dimension of a distance). The permeability commonly modeled in
QSAR and in drug design would additionally include the transfer
through the unstirred water layer adjacent to the membrane, that
is, the permeability from the outer to the inner bulk aqueous phase.

A second insight from the studies with BLMs is that the total
concentration of uncoupler in the membrane remains constant during
the short duration of a charge-pulse experiment (18). We assume
that the same is valid for the chromatophores used in the present
study; that is, the shuttle mechanism disturbs the equilibrium only
slightly over the 100 ms of an experiment. Furthermore, we assume
that prior to the experiment the equilibrium between the aqueous
phase and the membrane has been established. This assumption
greatly simplifies the modeling.

Toxic Mechanisms: Description of the Uptake of Weak
Acids. Partition coefficients between biological membranes and
water can be measured, but such measurements are expensive and
the results would depend on the composition of the membrane.
Good experimental approximations to real membranes are lipo-
somes, as their partition coefficients correspond well with measured
partition coefficients to the lipid fraction in biological membranes
(30).

If a compound’s liposome-water partition coefficient is known,
it is therefore possible to distinguish between the aqueous effect
concentration, ECw, and the internal effect concentration, ECm, that
is, the concentration in the membrane. The logarithms of these two
concentrations are related by the following expression

log 1 ⁄ ECm ) log 1 ⁄ ECw - log Dmw (1)

with log Dmw denoting the logarithm of the pH-dependent
liposome-water partition coefficient of a weak acid. Equation 1
makes clear that a compound with a high aqueous toxicity, log
1/ECw, but a low tendency to partition into the membrane, that is,
a low log Dmw, has a high intrinsic uncoupling activity. On the
other hand, a compound with comparable log 1/ECw and large log
Dmw values is intrinsically not very active.

There remains the question of how log Dmw can be calculated.
If both the neutral and the charged species partition into the
membrane, the following relationships applies

Dmw ) fHA ·Kmw,HA + (1- fHA) ·Kmw, A- (2)

where Kmw,HA is the lipid water partition coefficient of the weak
acid, Kmw,A- is the lipid water partition coefficient of its anion,
respectively, and fHA is the fraction of neutral species in water,
fHA, which for a given pH value is defined by

fHA )
1

1+ 10pH - pKa
(3)

In many QSAR studies, the descriptor used for decribing the
partitioning into the membrane phase is the octanol–water partition-
ing coefficient, Kow. The fundamental differences between Kow and
Kmw have been extensively described in numerous publications and
two recent reviews (26, 31). In summary, the uncharged species
log Kmw and log Kow show a relatively high correlation (cf. section
on the calculation of descriptors for Kmw,HA), which, together with
the availability of relatively accurate calculation methods, explains
the enormous success of log Kow in QSAR studies. However, in the
case of charged species, the octanol–water partition coefficient is
by orders of magnitude lower than Kmw,A- and is also not linearly
correlated to Kmw,HA (27, 30, 32, 33). Therefore, the use of eq 2
with octanol–water partition coefficients instead of liposome-water
partition coefficients would produce misleading results in QSAR
studies, as has been discussed in detail elsewhere (34). Equations
1 and 2 allow one to cover the uptake part depicted in Figure 1a
and to accurately transform the aqueous effect concentration, ECw,
to the intrinsic effect concentration, ECm, in the membrane.

The Kinspec test system currently only allows one to work with
nominal concentrations because the chromatophore vesicles are so
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small (<100 nm) that they cannot be separated easily from the
aqueous solution. The derivation of ECw and ECm from the nominal
concentration, ECtot, is straightforward and is given in SI-2. The
assumption behind the calculation is that the fraction of compound
partitioning into the protein phase is negligible as compared to the
fraction partitioning into the lipid phase. This assumption has been
confirmed for a series of compounds in earlier studies (30).
However, it must be emphasized that it is highly important to have
either experimental data for log Dmw or an accurate calculation
method for log Dmw to obtain meaningful values for ECw and ECm.

Data Set. A total of 35 uncouplers measured with Kinspec was
used for this study (see SI-3 for the structures). Compounds 1–14
have been measured in this study, while compounds 15–35 were
measured in earlier studies (35). A look at the first 14 structures
makes clear that we purposely chose highly diverse structures (from
a chemical class perspectivesnot from an MOA perspective). The
second criterion for choosing a structure was the availability of
experimental descriptors; for example, compounds with measured
liposome-water partition coefficients were preferred. The third
criterion was the need to explore the limits of Kinspec and of the
model regarding the pKa. The previously measured 21 phenolic
uncouplers covered a pKa range of 3.7-8.6. While the uncoupling
activity continuously becomes weaker toward higher pKa values,
no such trend was observed for low pKa. Therefore, we chose
several compounds with pKa < 3.7 to shed more light into a possible
lower pKa limit for uncoupling.

All effect concentrations were determined at pH 7. The negative
logarithm of the aqueous effect concentrations ranged over six
orders of magnitude from 3.08 (26DNP) to 9.11 (Fluazinam). The
log Kow ranged from 1.22 (26DNP) to 5.44 (35DBC). The
experimental descriptors of the 14 compounds measured in this
study were collected from literature, while the experimental
descriptors of the 21 phenolic uncouplers were determined in
earlier studies at Eawag. References for each compound are given
in Table 1.

A remarkable feature of this study is that for most compounds
(cpds) experimental physicochemical descriptors were available,
for example, for pKa (34 cpds), Kmw,HA (25 cpds), Kmw,A- (25
cpds), Kow (29 cpds), and for kHA and kA- (7 cpds). This has several
advantages: (i) Experimental descriptors can be used to establish
the QSAR model, and subsequently, they can be replaced in a
stepwise manner by calculated descriptors. (ii) It is possible to check
directly for each descriptor whether the calculated descriptors have
a sufficient quality, and thus, it is easier to track the sources of
errors.

To fully exploit the second advantage, additional literature data
on Kmw,HA, Kmw,A-, pKa, and Kow were collected. This allowed
the examination and optimization of the descriptor calculations
without using the activity data. One might call these data sets
descriptor calibration sets. The extensive literature search resulted
in calibration sets of the following size: Kmw,HA, 136 cpds; Kmw,A-,
35 cpds; pKa, 57 cpds; and Kow, 134 cpds. The CAS numbers and
experimental data of these compounds can be found in Table SI-5
(showing the data for the compounds in addition to Table 1). The
SMILES Code of the 35 uncouplers of Table 1 and of the totally
144 additional compounds of SI-5 are given in SI-6A and B,
respectively.

For 10 compounds tested for uncoupling, no experimental data
on Kmw,HA and Kmw,A- were available. In such cases, one would
need calculated values to determine ECw and ECm from the nominal
concentration ECtot. However, as the calculation errors strongly
affect the obtained effect concentrations, we evaluated these
compounds only for their nominal concentration, ECtot. The values
for ECw and ECm of these 10 compounds are nevertheless given
in Table 1, with the brackets indicating the lower confidence in
the values of the aqueous effect concentration. Figure 2 shows a
flowchart summarizing the approach used in this study.

Calculation of Descriptors. The calculation methods chosen
should come as close as necessary to the experimental descriptors.
While there are a sufficient number of calculations methods for
pKa and an abundance of methods to calculate log Kow, there is no

established method available to calculate experimental descriptors
like the translocation rate constant of the charged species, kA-. The
first choices for descriptor calculations were quantum chemical (QC)
methods, however, with the goal in mind to later move to empirical
calculation methods once a model with a good fit had been found.
Table 2 lists the descriptors of the experimental models and the
calculated descriptors that should approximate the experimental
ones.

The calculation method for each descriptor and the underlying
assumption are described in the following section, and the calculated
values for each descriptor are given in SI-7.

Acid Dissociation Constant, pKa. An important characteristic
of weak acids acting as uncouplers is that the proton is not only
dissociated from OH groups, for example, phenols, but also from
NH groups, for example, in the case of benzimidazoles. Two
different methods covering both types of acidic compounds were
used to calculate pKa values: (a) COSMO-RS (46), a QC method,
and (b) SPARC, an empirical method (47).

(a) The COSMO-RS calculations were performed as described
in ref 48. Briefly, the calculations consist of the following steps:
(i) creation of start geometry using CORINA (49); (ii) for both the
neutral species and the anion, full DFT geometry optimization with
the Turbomole program package (50, 51) using the B-P density
functional (52, 53) with TZVP quality basis set and applying the
RI approximation (54) and applying the COSMO continuum
solvation model in the conductor limit (ε ) ∞); (iii) analysis of
tautomers and conformers if necessary; and (iv) actual COSMO-
RS calculation, which takes into account the deviation of the solvent,
water in the case of pKa calculations, as compared to an ideal
conductor in a model of pairwise interacting molecular surfaces.
The chemical potential differences arising from these interactions
are evaluated using a statistical thermodynamics algorithm for

Figure 2. Workflow of the study with three main steps: (I) choice of
a suitable descriptor calculation method; (II) development of a model
for the training set with aqueous concentrations, ECw, and nominal
concentrations, ECtot; and (III) a test set with ECw and ECtot.

Table 2. Experimental Descriptors Determining the
Uncoupling Activity and Calculated Approximations of

These Descriptors

descriptor descriptors tested

pKa pKa calculated with (a) QC methods and (b) empirical
methods (SPARC)

log Kmw,HA (a) direct calculation with COSMOmic
(b) approximation by log Kow calculated with

KowWin
log Kmw,A- (a) direct calculation with COSMOmic

(b) approximation by log Kow calculated with
KowWin and assumed constant ∆logKmw of 1.0

kHA (a) approximation by calculating ∆Gwell-barrier (with
COSMOmic)

(b) approximation by calculating the partition
coefficient to reference solvents representing the
energy well and the hydrophobic barrier with either
QC methods or empirical methods (SPARC)

kA- (a) same methods as for kHA but for charged species
(b) simplification by correlating kA- with kHA
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independently pairwise interacting surfaces. More detailed descrip-
tions of the general COSMO-RS methodology are given elsewhere
(55–58).

(b) The empirical SPARC method is described in refs 59 and
60. It is based on perturbation theory and accounts for resonance
and electrostatic effects plus other perturbations such as H-bonding,
steric contributions, and solvation.

Liposome-Water Partition Coefficient of Neutral Species,
log Kmw,HA.

(a) Recently a QC method for the calculation of lipid-water
partitioning (COSMOmic) has been developed (61, 62). COSMO-
mic is an extension of the COSMO-RS approach for the calculation
of chemical potentials described above. In COSMOmic, the
partitioning process differs from that of a bulk solvent in one
fundamental way: The solvent is treated as a series of mixtures of
different solvents with water, salts, and phosphatidylcholine, and
this series has a spatial arrangement. The spatial arrangement of a
water-phosphatidylcholine bilayer system is introduced by con-
necting n solvent layers representing the change of solvent
composition; that is, layer 1 (the center of the membrane) consists
almost completely of fatty acids alkyl chains, while toward the outer
end of the system the layers contain more and more phosphatidyl
head groups (but also some water) and layer n consists only of
water (the bulk water phase). The percentage of each atom type
was taken from a recent molecular dynamics simulation of 512
lipid molecules (dimyristoylphosphatidylcholine) in an aqueous 1
M NaCl solution with a lipid mole fraction of 0.04 (63).

In a COSMOmic calculation, the center of the solute is moved
through the n liquid mixtures representing the membrane. In each
layer, the solute is rotated to a large number of orientations. For
each orientation, the chemical potential is calculated accounting
also for the fact that the solute extends into the adjacent layers
with different compositions. The final result of a COSMOmic run
allows the calculation of a probability of occurrence of the solute
for each of these n mixtures. The partition coefficient between the
membrane and the water, Kmw,HA, is then obtained by summing
up the probability of a solute being in mixtures 1 to n - 1 and
dividing it by the probability of the solute being in the mixture n
(the bulk water).

(b) The second option to calculate log Kmw,HA is a linear
regression between log Kmw,HA and the logarithm of the octanol-
–water partition coefficient, log Kow. Vaes et al. (64) determined
such a relationship with log Kmw,HA ) 0.904·log Kow + 0.515 with
a high correlation of R2 ) 0.89 for a set of 11 polar compounds.
This analysis was repeated with the compounds of Table 1 and
SI-5, which have experimental data on both Kmw,HA and Kow. Both
the training set with 81 pairs of experimental Kmw,HA and Kow and
the test set with 40 such pairs had almost the same regression
coefficients and the same measures of goodness-of-fit and predic-
tivity. Therefore, the training set and test set were merged to
determine the final relationship used for further analysis with almost
the same regression coefficients than the relationship published by
Vaes et al.

log Kmw,HA ) 0.92((0.062) · log Kow + 0.37((0.20) (4)

with n ) 121, R2 ) 0.88, Q2 ) 0.87, SD ) 0.41, and SDcv )
0.42.

Only nine compounds had larger residuals than 0.7 log units,
and only two had residuals above 1.0 log units (dibutylsuccinate
and bisphenol A). Thus, for the neutral species, the simplest
approach to calculate log Kmw,HA is the extrapolation from log Kow.
Note that in other studies lower correlations were reported, for
example, ref 31 lists examples where the extrapolation from log
Kow leads to predicted log Kmw,HA values, which are orders of
magnitude away from the experimental value. This was mainly
observed for hydrophilic compounds with log Kow < 1, which
partition into membranes by orders of magnitude more than would
be expected from eq 4 while for highly lipophilic compounds with
log Kow > 5.5 the contrary seems the case (65). Therefore, although
eq 4 is based on a large sample of 121 compounds, it can only be

used safely for neutral compounds with 1 < log Kow < 5.5. All
compounds of this study fell into this log Kow window; therefore,
eq 4 should give reasonably good predictions (65). If no experi-
mental data on log Kow were available, they were calculated with
the KowWin program from the EPI Suite (66), which is a fragment-
based approach (67).

Liposome-Water Partition Coefficient of Anion, log
Kmw,A-.

(a) The log Kmw,A- value can be calculated in the same fashion
as described above for log Kmw,HA, as COSMOmic also allows
the treatment of charged molecules.

(b) For lack of a better solution, log Kmw,A- has been ap-
proximated in earlier studies from our laboratory by using the
relationship log Kmw,A- equals log Kmw,HA minus the average ∆log
Kmw, that is, the difference between log Kmw,HA and log Kmw,A-.
On average, ∆log Kmw was observed to be close to one log unit
(26, 68). Therefore, the approximation is

log Kmw,A- ) log Kmw,HA -∆log Kmw ≈ log Kmw,HA - 1(5)

For the 35 compounds in Table 1 and SI-5 with experimental
data on Kmw,HA and log Kmw,A-, the values for ∆log Kmw range
from 0 to 1.98 and the average is 1.02 log units with a standard
deviation of 0.64. Therefore, a considerable amount of variance is
added by using eq 5, but no error larger than 1 log unit is made.
Note that only four of the 35 compounds were carboxylic acids,
with all of them having ∆log Kmw around 2. For such compounds,
eq 5 is likely to cause high errors. If no experimental data for log
Kmw,HA were available, they were calculated by eq 4.

Translocation Rate Constant of Neutral Species, kHA. The
general description of permeability describes the passive diffusion
of a compound from the bulk aqueous phase through the unstirred
water layer (adjacent to membranes), through the membrane, and
again through the unstirred water layer on the other side into the
bulk aqueous phase. The inverse of permeability, that is, the
resistance to permeation, Rtot, can be written as a simple sum

Rtot ) 1 ⁄ Ptot ) 1 ⁄ Pm + 1 ⁄ Pu (6)

where Ptot refers to the measured permeability, Pu refers to the
unstirred water layer permeability, and Pm refers to the permeability
in the membrane. In the case of uncoupling, we assume that the
total concentrations in the water phase and in the membrane are
not changing during our experiments; therefore, only Pm needs to
be considered.

Equation 7 describes Pm as defined by Diamond and Katz (but
without interfacial resistances) (69)

Rm ) 1
Pm

)∫0

d dz
K(z)D(z)

(7)

with d the thickness of the membrane, K(z) the depth-dependent
partition coefficient from water into the membrane, and D(z) the
diffusion coefficient in the membrane at depth z with the z-axis
defined as the membrane normal. If the transport is governed,
however, by a distinct barrier region within the membrane (69–71),
which is the case for lipophilic anions (and often also for neutral
species), eq 7 simplifies to

R)
dbarrier

Kwater-barrierDbarrier
) 1

Pm
(8)

with Kwater-barrier the solute partition coefficient from water to the
barrier region, Dbarrier the solute diffusion coefficient through
the barrier region of the membrane, and dbarrier the thickness of
the barrier region. As illustrated by Figure 1b, it is possible to
distinguish two processes defining Pm: partitioning into the energy
well and transfer from the energy well over the energy barrier
(intramembrane permeability) or expressed in Gibb’s free energy
differences:
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∆Gwater-barrier )∆Gwater-well +∆Gwell-barrier (9)

This distinction is also made in biophysical studies where Pm is
written as the product of the linear partition coefficient, �HA, with
the dimension of length and the translocation rate constant, kHA,
with the dimension of 1/time or and �A- and kA- in the case of
anions, respectively.

Pm ) �HA · kHA (10)

�HA determines the surface density nHA-well with units mol per surface
of the HA species present in one partition well with nHA-well )
�HA·CHA-water. Using eqs 8-10, one can express the translocation rate
constant as

kHA )
2 ·Dbarrier

dbarrier · dwell-well
exp(- ∆Gwell-barrier,HA

R · T ))
2 ·Dbarrier

dbarrier · dwell-well
Kwell-barrier,HA (11)

with dwell-well the distance between the partition wells, R the gas
constant in units of J mol-1 K-1, and T the temperature in Kelvin.
Equation 11 contains several assumptions used in the present study.
First, the diffusion coefficient is roughly constant from one energy
well over the barrier region to the next energy well, and second,
the partitioning to the barrier region given by Kwell-barrier is the
rate-limiting step, which is directly proportional to kHA and kA-,
respectively.

A comment related to the first assumption is necessary: The
change of the diffusion coefficient, D(z), over the membrane normal
has been investigated recently in an MD simulation for a series of
eight small organic compounds (71). D(z) remained more or less
constant from the region of the polar head groups to the barrier
region, which justifies the assumption of a constant Dbarrier(z).
However, for different molecules, the value of Dbarrier(z) is not the
same but inversely proportional to the radius according to the
Stokes–Einstein relation (for spherical molecules). For the current
series of compounds, the differences in radii are smaller than a
factor of 2; therefore; the effect of neglecting differences in the
diffusion coefficient should be relatively small.

This said, the most important aspect of eq 11 is that it should be
possible to model the differences of the translocation rate constants
of different uncouplers by calculating Kwell-barrier for the neutral
and the charged species while all other terms are more or less
constant for all compounds.

(a) Approximation of kHA by Calculating ∆Gwell-barrier. The result
of a COSMOmic calculation is a probability distribution over the
membrane normal, that is, over the z-axis. The free energy
difference between the energy well and the energy barrier, ∆Gwell-

barrier, can be calculated from the probability of a compound being
located in the barrier region, pbarrier, and the probability of being
located in the energy well, pwell, by taking the difference of the
natural logarithms

∆Gwell-barrier )-R · T · ln(pbarrier

pwell
))-R · T · ln(Kwell-barrier)

(12)

with R the gas constant and T the temperature. Figure 3 shows an
example of a COSMOmic probability distribution over the mem-
brane normal. To make the picture comparable to the free energy
profile of Figure 1b, the negative logarithm is plotted for both the
neutral species and the anion of CCCP.

Qualitatively, the calculated energy profile corresponds well with
the profiles shown in Figure 1b. The main difference is that the
energy wells of the neutral species are shifted toward the center of
the membrane. The descriptor used for our QSAR model is ∆Gwell-

barrier,HA, which is directly proportional to the logarithm of the

translocation rate constant kHA. Note that CCCP is quite a special
case because the partition coefficients of neutral species and anions
are the same. For most compounds, the partition coefficient of the
neutral species is much higher than for the charged species; thus,
the depth of the energy well in the equivalent of Figures 1b and 4
would be deeper for the neutral species.

(b) Approximation of kHA by Calculating the Partition Coefficient
between Reference Solvents. Mayer and Anderson proposed a
model for permeability, which also uses the energy barrier as rate-
limiting step (72). For a selection of 12 structural analogues, they
showed that it might not be necessary to measure the permeability
through phosphatidylcholine bilayers but took experimental partition
coefficients between water and a “reference solvent” mimicking
the barrier domain. Therefore, for the process shown in Figure 1,
instead of calculating Kwell-barrier from the full probability profile
over the membrane, one can also calculate the partition coefficient
between two reference solvents, one representing the energy well
and the other one representing the energy barrier. This would
constitute a major simplification.

Translocation Rate Constant of Charged Species, kA-.
(a) The same approaches as described for the approximation of

kHA were used for charged species to calculate ∆Gwell-barrier,A- and
partition coefficients between reference solvents.

(b) A major simplification would be the assumption that kHA

and kA- are correlated. Then, the measures calculated for kHA could
be scaled to the (lower) value corresponding to that of the charged
species and possibly also be calculated with empirical methods like
SPARC. Even if this assumption leads to a somewhat lower quality
of the model, it could be useful for a first crude prediction and
especially for database screening.

Statistical Methods. The data set was split into two-thirds
training set (23 compounds) and one-third external test set of 12
compounds prior to any model building. Taylor-Butina clustering

Figure 3. Calculated probability distribution for HA and A- species
for the uncoupler CCCP. The z-axis represents the membrane normal.
The scale is in Ångstroms ranging from 0 (the center of the membrane)
to 32 (the bulk water phase). The probabilities are plotted as inverse
logarithms to allow comparisons with free energy profiles.
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(73) was used to give a more balanced split of the data. The two
descriptors log Dmw and ∆Gwell-barrier and the response ECm were
used as it could be expected that these three descriptors cover the
variance of ECw to a large extent (if the mechanism is unknown,
splitting the data set with such an algorithm requires a larger number
of more general descriptors, but this seemed unnecessary in this
study). With a similarity threshold of 0.8, three large and five small
clusters of compounds were obtained. Within each cluster, the
compounds were ordered according to ECw and then distributed
between training and test sets.

Two criteria were used to assess the model performance: the
coefficient of determination, R2, and the residual standard deviation,
SD, as defined in ref 74. Note that for regression models usually
the residual SD also accounts for the number of variables (descrip-
tors). However, this was not done here to allow the direct
comparison of regression and nonlinear models, and as no more
than two descriptors were used, the difference is small.

The 95% confidence intervals of the regression coefficients were
calculated as the product of the standard error and the quantile of
a t distribution with the corresponding degrees of freedom. In many
publications, the standard error is given, which is about a factor of
2 smaller.

A 5-fold cross-validation (or leave-many-out) was used for
internal validation using the training set. The training set was split
19 times randomly into five subsets, that is, the cross-validation
was repeated 19 times to obtain more balanced samples. The R2

calculated in a cross-validation is denoted as Q2 (in our case, the
mean of 19 Q2 values). For the test set, the Qext

2 was calculated as
proposed in ref 74, that is, with the mean of the experimental values
yj taken as the mean of the training set and not the test set. The SD
calculated in the cross-validation is denoted as SDcv and for the
test set as SDext. In other works, SDcv and SDext are also referred
to as SDEP (standard deviation error of prediction) (74). All
statistical calculations were made with R 2.1 (75).

Results

Uncoupling Activity. All compounds of Table 1 showed an
uncoupling activity in the Kinspec system, even the three
compounds with pKa < 3.7 (26DBr4NP, 6Cl24DNP, and
246TriNP with pKa values of 3.39, 2.06, and 0.38, respectively),
which were measured to examine if there is a possible lower
pKa limit for uncoupling measured in Kinspec. Thus, no lower
pKa limit can be set from the Kinspec measurements. The
implications will be addressed in the Discussion section.

Sensitivity Analysis of Earlier Transport Models. To
determine which compound properties have the strongest
influence on the activity of uncouplers, the first method applied
in this study was a sensitivity analysis with existing models.
The study of Escher et al. (22) with experimentally fitted
translocation rate constants (based on fitting the transport
equations under varying pH values) for seven compounds and
independently determined liposome-water partition coefficients
was chosen, but similar results should be obtained from studies
with BLMs. The process of uncoupling is described by a
transport model, which results in two linear inhomogeneous
differential equations: one for the change of surface charge
describing the movement through the membrane caused by
potential differences (eq 43 in ref 22) and one describing the
diffusion processes caused by concentration differences (eq 41
in ref 22). The analytical solution of these equations can be
used to determine the endpoint of kuncoupling ) 0.5.

Figure 4 shows the sensitivity of the negative logarithm of
the aqueous effect concentration at pH 7.0 to the five descriptors
of the model, pKa, Kmw,HA, Kmw,A-, kHA, and kA-. The functions
of the transport equation used to generate the plots are given in
SI-4.

For dino2terb (Figure 4a), it is striking that the two descriptors
describing the charged species Kmw,A- and kA- have the strongest
effect when they differ from the experimental value (which is
assumed to be the “real” value). Both descriptors have a slope
coming close to one in the sensitivity analysis; that is, if the
translocation rate constant is calculated 1 order of magnitude
too high, the calculated effect concentration is equally by 1 order
of magnitude too high. On the other hand, even an error of 1
order of magnitude in the calculation of pKa, Kmw,HA, or kHA

has only a minimal effect on the effect concentration.
For CCCP (Figure 4b), which is a very strong uncoupler,

the picture is more complex. For pKa, both an overestimation
and an underestimation lead to a reduced predicted uncoupling
activity. This is a consequence of the pKa value of 5.95 being
close to the pH of 7 while the insensitivity of dino2terb to this
descriptor is caused by the larger difference between the pH
and the pKa ) 4.8 of dino2terb. In contrast to dino2terb, the
model also becomes sensitive to the descriptors for the neutral
species; however, still a little bit less than for the charged
species, for example, an underestimation of kHA by one log unit
leads to an underestimation of ECw of 0.5 log units while for
kA- the error is still higher with about 0.8 log units. Another
observation is that for CCCP an underestimation of a descriptor
leads to a larger error than an overestimation. The following
three conclusions can be drawn from these observations:

• To establish a mechanistic QSAR model, the search for
calculation methods for the two descriptors of the charged
species, Kmw,A- and kA-, has the highest priority.

• Errors in the calculation of these two descriptors translate
almost directly into the errors in the calculated effect
concentration; that is, if the residual standard deviation of
the calculation method for Kmw,A- or kA- has a certain
value, it is highly unlikely that the residual standard
deviation of the uncoupler model is much lower.

• The two descriptors Kmw,A- and kA- have such a strong
influence that it might be possible to establish a linear
regression model for ECw based only on these two
descriptors. The other descriptors (pKa, Kmw,HA, and kHA)
might not be significant in a regression model.

Comparison of Quality of Descriptor Calculation
Methods. Uptake. Several methods were used to calculate each
descriptor. The decision of which method should be used for
modeling the activity was made by comparing the method’s
ability to predict the four physicochemical descriptors pKa,
log Kow, log Kmw,HA, and log Kmw,A- using the compiled data
sets given in Table 1 and SI-5. Table 3 summarizes the quality
of the predictions of the different methods for each of these
four descriptors.

The first row of Table 3 covers the QC calculation methods
described in the Materials and Methods section each under
subsection (a) of the corresponding descriptor, while the second
row covers the empirical approaches each described under
subsection (b) of the corresponding descriptor. The data sets
used to test the model performances for the predictions of pKa

and log Kow could easily be extended to a larger number of
compounds; however, the important aspect was to test the
descriptor calculation methods with a data set that is structurally
similar to uncouplers and not to the biggest number of
compounds possible.

The high predictive power of the QC method for the pKa is
in agreement with the original publication where almost the
same values were determined (48). The rather high standard
deviation of the empirical pKa predictions was mainly due to
the 10 NH-acidic compounds, which showed errors up to 3.5
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units. The QC calculation for log Kow had a relatively large SD
mainly caused by three compounds with errors >2 log units
(35DBC, fluazinam, and TBBPA). In the case of TBBPA, it is
quite likely that the value from literature is not correct as both
methods resulted in a 2 log units higher value, while in the
other cases no such conclusion can be drawn. Without these
three compounds, the QC method would have an R2 ) 0.77
and an SD ) 0.61. It should be mentioned that it is difficult to

draw conclusions from this method comparison in the case of
pKa and log Kow because a large portion of the data were
probably used to establish the empirical methods in the first
place (resulting in some cases in an error of zero).

The QC predictions for log Kmw,HA and log Kmw,A- were
scaled with a linear transformation using the experimental data,
that is, the relationship log Kmw,HA (experiment) ) �1·log
Kmw,HA (COSMOmic) + �0 (which does not affect R2 but

Figure 4. Sensitivity analysis for the two compounds (A) dino2terb (2-tert-butyl-4,6-dinitrophenol) and (B) CCCP (carbonyl cyanide
m-chlorophenylhydrazone). Five experimentally determined model descriptors, acid dissociation constant, pKa, lipid water partition coefficients of
the weak acid, Kmw,HA, and its anion Kmw,A-, and the translocation rate constants of the weak acid, kHA, and its anion kA- were analyzed. Each plot
shows the change in modeled ECw upon varying a given descriptor over an order of magnitude and keeping all others constant. The vertical line
in the middle of the plot shows the experimentally fitted “real” value of the descriptors.
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slightly lowers the SD). The fit equations for log Kmw,HA and
log Kmw,A- are given in SI-7.

Table 3 suggests that in the absence of experimental data for
the uptake, it is most sensible to calculate the pKa with the QC
method, while for the membrane-water partitioning, no clear
conclusion is possible; therefore, both approaches to calculate
log Kmw,HA and log Kmw,A- were used.

Intrinsic Activity. Equations 9–12 show that it is possible
to calculate the translocation rate constants of molecules if the
distribution over the membrane normal is known; that is, the
logarithm of the translocation rate constant is approximately
proportional to the free energy difference between the energy
well and the energy barrier in the membrane (∆Gwell-barrier). Only
a limited number of seven experimentally determined translo-
cation rate constants from ref 22 were available to test the quality
of the calculated ∆Gwell-barrier. The fit of the logarithm of the
translocation rate constant of the charged species, log(kA-) vs
∆Gwell-barrier,A- calculated with the QC method given in SI-7 is
good with R2 ) 0.74 and SD ) 0.38. For the neutral species,
that is, for log(kHA) vs ∆Gwell-barrier,HA, the correlation is lower
with R2 ) 0. 43 and SD ) 0.51. The main reason for the lower
R2 is the small variability of kHA, while the SD is still
comparable with the one of kA-.

Quantitatively, the barrier heights of anions calculated with
COSMOmic (for DMPC bilayers) are consistently higher than
the barrier heights expected from experimental translocation rate
constants for chromatophores (22) and also with lecithine-
chlorodecane black lipid bilayers (20). An example is the anion
of CCCP, which has a calculated ∆Gwell-barrier of +8.1 kcal/
mol (with COSMOmic), while the experimental value is +6.1
(19). This would result in a difference in kA- of a factor of 30.
It is possible that this difference is caused by the different type
of phospholipid used for the calculation. However, for a
regression model, it does not matter if the translocation rate
constants or the values of ∆Gwell-barrier are consistently too high
as long as the relative differences are correct, while for the
nonlinear model, the calculated kHA and kA- need to be corrected
by scaling them with experimental data. The most important
observation made in the section above is that fit of the (few)
experimental translocation rate constants with calculated ∆Gwell-

barrier results in relatively small errors, which is an indicator that
the translocation rate constants can be calculated well with
COSMOmic.

Training Set. The main conclusion from the sensitivity
analysis was that a regression model with only two descriptors
might be sufficient to predict ECw. The two descriptors of choice
were the ∆Gwell-barrier of the charged species calculated by eq
12 and, for the uptake, either log Kmw,A- or log Dmw (as defined
in eq 2).

Linear Regression Model for ECw. Following the scheme
shown in Figure 2 and the results shown in Table 3, different
linear regression models for ECw were tested. Table 4 sum-
marizes the statistical quality of the regression models.

The first four models differed only by the calculation method
for log Dmw, which was calculated according to eq 2 using either
experimental pKa values and liposome-water partitioning
coefficients (R1), experimental pKa and octanol–water partition-
ing coefficients (R2), and using only calculated descriptors with
QC (R3) or empirical methods (R4), respectively.

Regression model R1 with log Dmw calculated with experi-
mental descriptors had the best fit of all models and took the
following form

log(1 ⁄ ECw)) 1.09((0.29) · log Dmw -
0.28((0.09)·∆Gwater-barrier,A- + 5.16((1.56)(R1)

with n ) 17, R2 ) 0.91, Q2 ) 0.87, SD ) 0.47, SDcv ) 0.56,
and F ) 66.95.

The negative values of the coefficient for ∆Gwell-barrier,A-

means that the activity decreases with increasingly high energy
barrier (∆Gwell-barrier,A- has positive values), while increasing
values for Dmw increase the activity. As the regression coef-
ficient of log Dmw is about one, eq R1 shows that an increase
in the partition coefficient directly causes the same increase of
the toxic activity. The standard deviation is comparable to the
one determined for the seven compounds with experimental
translocation rate constants. The largest error was caused by
dino4terb (4-tert-butyl-2,6-dinitrophenol), which was overesti-
mated by 1.17 log units, while all other errors were smaller
than 0.7 log units. The values predicted with eq R1 vs the
experimental values are shown in Figure 5.

Two additional descriptors were tested to see if they could
improve eq R1, namely, pKa and ∆Gwell-barrier,HA, that is, the
translocation rate constant of the neutral species. While pKa was
not significant in the regression model and did not contribute
to the fit, ∆Gwell-barrier,HA improved the fit of the model slightly
to R2 ) 0.94 (Q2 ) 0.90), SD ) 0.38 (SDcv ) 0.48). However,
contrary to ∆Gwell-barrier,A-, the coefficient for ∆Gwell-barrier,HA

was positive, which physically makes no sense; therefore, only
linear models with two descriptors were evaluated further.

As expected, the models with calculated log Dmw, that is,
models R3 and R4, had a lower quality of fit and larger residual
standard deviations. The decrease of fit observed for the model
with QC descriptors was mainly caused by three compounds
with large errors over one log unit [4NP, -1.19; CCCP, –1.24;
and warfarin, +2.08 (with the + indicating overestimation and
the – indicating underestimation)]. The model with empirical
descriptors had less extreme errors but about the same SD.

Regression model R2 was obtained by taking experimental
data on pKa and Kow and calculating log Dmw with eqs 4 and 5
using the data given in Table 1. As these basic experimental
property data are often available in practice, this appears a useful
option and the quality of the fit increased substantially. Note
that two compounds did not have experimental data on Kow

(dino2terb and dino4terb); therefore, values calculated with the
empirical method given in SI-7 (column log Kmw,HA KowWin)
had to be used. Leaving out these two compounds of model R2
would result in R2 ) 0.82, Q2 ) 0.72, SD ) 0.66, and SDcv )
0.82. The coefficients for the uptake were almost the same for
models R2 and R4, which confirms that taking experimental
data if available is a sensible option.

In the sensitivity analysis, the transport model showed a very
strong sensitivity to log Kmw,A-. Therefore, two additional descrip-
tors for the uptake were tested, again using the experimental data:
R5, the partition coefficient of the charged species, log Kmw,A-,
and R6, the partition coefficient proportional to the concentration
of the charged species in the membrane (for a given pH). The latter
can be calculated by taking only the second term in eq 2,that is,

Table 3. Correlation and SD of Different Descriptor
Calculation Methods for Descriptor Calibration Setsa

pKa

(n ) 57)
log Kow

(n ) 49)
log Kmw,HA

(n ) 97)
log Kmw,A-

(n ) 35)

R2 SD R2 SD R2 SD R2 SD

QC 0.98 0.45 0.62 0.81 0.80 0.66b 0.68 0.63b

empirical 0.87 1.26 0.80 0.59 0.86 0.56b 0.60 0.76b

a For the log Kmw,HA and log Kmw,A-, only a training set of 97 and 35
compounds, respectively, was used (to keep a test set for future studies).
b Predictions fitted with the training set, that is, SD, were determined as
proposed in ref 74 but yfit was used instead of ycalc.
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(1–fHA)·Kmw,A-. An example to illustrate the difference between
R5 and R6 would be the two compounds 35DBP (pKa ) 8.28;
log Kmw,A- ) 3.18) and Dino4terb (pKa ) 4.11; log Kmw,A- )
3.23). While the descriptor for the uptake in R5 is nearly the same
for 35DBP and Dino4terb, it is a factor of 22 higher in regression
R6. Thus, regression model R6 reflects the idea that at comparable
concentrations and translocation rate constants, a higher fraction
of anion in the membrane should increase the activity, and a lower
fraction (e.g., compounds with pKa > 7) should decrease it.

The comparison of experimental descriptors for the uptake,
that is, models R1, R5, and R6, shows that the model with log
Dmw clearly has a better fit than the model with log Kmw,A- or
log [(1 – fHA)·Kmw,A-], a result that will be treated in detail in
the Discussion. The coefficients of equations R1-R6 are given
in Table 4, and the plots of R2–R5 are given in SI-8.

Linear Regression Model for ECtot. As stated in the section
on the data set, 10 compounds did not have experimental data
necessary to calculate log Dmw, and therefore for such compounds
only the nominal concentration, ECtot could be used to assess the
quality of the model. The nominal concentration is related to the
intrinsic effect concentration by eq 13 (full derivation in SI-2).

log(1 ⁄ ECtot)) log(1 ⁄ ECm)- log(mlip ⁄ Vw + 1 ⁄ Dmw)
(13)

where mlip/Vw is the lipid mass to water volume ratio in the in
vitro assay (given in Table 1). As the lipid mass to water volume

ratio can differ between different batches of chromatophores,
mlip/Vw should be given for each measurement. As a first test,
the same 17 compounds used to model ECw were used to fit a
linear regression equivalent to eq 13,

log(1 ⁄ ECtot)) �1 · log(mlip ⁄ Vw + 1 ⁄ Dmw)+
�2 ·∆Gwell-barrier,A- + �0 (14)

where �1 and �2 are the regression coefficients of the two
descriptors and �0 is the intercept. The results are given in Table
5 with the regression models R7-R10. The same choice of
descriptors for log Dmw has been used as for models R1-R4
for ECw. The descriptors used in R5 and R6 were not tested
any more because of their obvious lack of fit.

As compared to the models for ECw, the correlations tended
to decrease slightly for ECtot while the SD was rather lower.
This is explicable as ECtot covers an about one log unit smaller
range of concentrations than ECw (from 3.1 to 7.2 M instead
of from 3.1 to 8.1 M). However, as the changes are relatively
small, the important conclusion from comparing model R1 with
model R7 is that the concept of dividing ECtot into ECw and
ECm seems to be applicable to the test system used in this study.
This applies also for the corresponding models with calculated
descriptors.

When all 23 compounds of the training set were used (right
half-of Table 5), the correlations are comparable for all models;
however, the SD increased slightly. Three compounds had errors
above one log unit (in model R8 with log Dmw from experi-
mental Kow and pKa), namely, 4NTFB (+1.25), CCCP (-1.10),
and warfarin (+1.12). 4NTFB was like dino2terb and dino4terb,
a compound without experimental Kow, and a calculated Kow

had to be used, which might explain the high error. Leaving
out the three compounds without experimental Kow of model
R8 would result in R2 ) 0.83, Q2 ) 0.77, SD ) 0.56, and SDcv

) 0.67. It is remarkable that no obvious outliers occurred and
that even 246TriNP (with a pKa of 0.38 could be fitted with
these descriptors). The coefficients of eqs R7-R10 are given
in Table 5, and the plots of predicted vs experimental values
are given in SI-9.

Nonlinear Models for ECw. The cyclic process shown in
Figure 1 can be fully described by a transport model with the
already introduced descriptors pKa, Kmw,HA, Kmw,A-, kHA, and
kA- for compounds with pKa < pH (22). However, for
uncouplers with pKa > pH, an additional effect needs to be
considered, namely, the formation of dimers of the neutral and
the charged species, AHA- dimers also called heterodimers
(16, 17, 22, 76, 77). In a first step, a model neglecting AHA-

dimers was tested using the functions given in SI-4. The values
of kHA and kA- were calculated by fitting the seven experimen-
tally derived values from ref (22) with ∆Gwell-barrier,HA and
∆Gwell-barrier,A-, respectively. The plot of predicted vs experi-
mental values (SI-10) showed a large number of compounds

Table 4. Quality of Fit of Linear Regression Models for ECw at pH 7 Using the Descriptor ∆Gwell-barrier,A- and Different
Descriptors for Uptake (Defined by Eq 2 for Models R1–R4)a

ECw train (n ) 17) ECw test (n ) 8)

descriptor for uptake R2 Q2 SD SDcv �1 �2 �0 Q2
ext SDext

R1 log Dmw (exp) 0.91 0.87 0.47 0.55 1.09 -0.28 5.16 0.88 0.61
R2 log Dmw [pKa (exp) and Kow (exp)] 0.80 0.71 0.69 0.83 0.83 -0.30 6.70 0.74 0.88
R3 log Dmw (QC method) 0.73 0.58 0.80 0.99 1.51 -0.16 3.13 0.75 0.86
R4 log Dmw (empirical) 0.72 0.58 0.82 0.99 0.85 -0.24 6.11 0.69 0.97
R5 log Kmw,A- (exp) 0.77 0.66 0.74 0.90 1.12 -0.12 3.77 0.77 0.83
R6 log [(1 – fHA) · Dmw (exp)] 0.63 0.42 0.94 1.17 1.01 -0.04 3.44 0.49 1.24

a R2 and R4 were both calculated with eqs 4 and 5 with experimental and calculated values, respectively. The columns �1, �2, and �0 denote the
regression coefficients for the descriptors log Dmw, ∆Gwell-barrier,A-, and the intercept, respectively.

Figure 5. Experimental vs predicted aqueous effect concentrations,
ECw, at pH 7 for training and test sets with regression models based
on experimental partition coefficients for the uptake (R1). Training set
compounds (empty circles) and the test set compounds (black triangles).
The structures are shown as examples to illustrate the diversity of the
data set.
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very close to the unit slope, and no compound predicted more
than half a log unit too high, while six compounds with pKa

close or above the experimental pH had predicted effect
concentrations being several orders of magnitude too low
(24DCP, 35DCP, 245TriCP, 345TriCP, and 4NP), which
drastically reduced the correlation.

Therefore, an approximation for the translocation rate constant
of AHA- dimers, kAHA- was needed. A very simple approach
was chosen based on the observation that the simple regression
model (R1) showed a very good performance without consider-
ing AHA- dimers. Therefore, the information in the descriptors
of the linear model seems also to contain kAHA-, and a likely
hypothesis is that kAHA- must also be related to ∆Gwell-barrier,A-.
The four experimentally derived values for kAHA- from ref (22)
were fitted with ∆Gwell-barrier,A- and used as an additional
parameter in the transport model. This measure improved the
correlation between the predicted and the experimental log(1/
ECw) to an R2 of 0.85 and an SD of 0.66. Replacing the
experimental values of pKa, Kmw,HA, and Kmw,A- with calculated
values resulted in correlations comparable to the linear models
R2-R4.

As at present, the nonlinear models did not show a better
performance than the linear models, no additional tests with
the test set and the ECtot were made. Further improvements are
possible by more closely examining the nature of the dimers
either by gaining additional experimental data or by more
extensive computations; that is, there might be compounds that
have a low ∆Gwell-barrier,A- but nevertheless have a very low or
even zero kAHA- because they do not form dimers for steric
reasons.

Alternative Approaches to Calculate ∆Gwell-barrier,A-. In
the Materials and Methods section, possible simplifications
to approximate the translocation rate constant of the charged
species were described. They were based on the idea to use
reference solvents representing the environment of the energy
barrier and the energy well. Two partition coefficients were
calculated with COSMOtherm: K1,9decadiene-water (72) and
K1,9decadiene-octanol, as a descriptor that should reflect the
environment of the energy well more closely (although being
of a theoretical nature as the two phases are probably
miscible). The partition coefficients of both the neutral and
the charged species were calculated. The following correlations
of the logarithm of the partition coefficients with ∆Gwell-barrier,A-

were observed as follows: 0.86 (log K1,9decadiene-octanol,A-), 0.97 (log
K1,9decadiene-water,A-), 0.16 (log K1,9decadiene-octanol,HA), and 0.29 (log
K1,9decadiene-water,HA).

When the two partition coefficients log K1,9decadiene-octanol,A-

and log K1,9decadiene-water,A- were tested as descriptors in the
regression model with experimental log Dmw, that is, the
equivalent of R1, the correlation decreased slightly in the case
of K1,9decadiene-octanol,A- (R2 ) 0.89, SD ) 0.52) and increased
slightly in the case of log K1,9decadiene-water,A- (R2 ) 0.92, SD
) 0.44) with the regression coefficients very similar to R1 taking

the values of 0.99 for log Dmw, 0.36 for log K1,9decadiene-water,A-,
and an interecept of 4.89. However, given the size of the data
set, these differences are too small to be considered as improve-
ments, but these results are certainly worth further investigations
also for experimental studies because K1,9-decadiene-water would be
easier to measure than membrane permeability.

A last but important observation is that there was no
correlation between ∆Gwell-barrier,A- and ∆Gwell-barrier,HA (both
calculated with COSMOmic) with an r2 of 0.03.

Test Set and Final Model with Applicability Domain. Once
the final choice of descriptors was made, the models were
applied to predict the test sets. The test set for ECw is rather
small (n ) 8); therefore, the Qext

2 values are only crude
indicators. The values are given in Table 4, with no Qext

2 being
substantially lower than the Q2, and the SDext is only slightly
larger than the SDcv, which is reassuring. In the case of the QC
method (R3 of Table 4), the Qext

2 was actually higher than the
R2 because one compound in the training set had an extremely
high residual (warfarin, +2.08) due to the serious overestimation
of log Dmw.

In the case of R1, the predicted values of the test set
compounds are also shown in Figure 5, while the corresponding
plots for the linear regression models R2-R6 are shown in SI-
8, and all statistical quality criteria are given in Table 4. The
same observations could be made for ECtot, with the values of
the regression coefficients and the statistical quality criteria given
in Table 5 and the plots of R7-R10 given in SI-9.

For future predictions for ECw, three final models are
recommended. In case experimental data for Dmw are available,
regression model R1 with all available compounds takes the
values given by eq 15

log(1 ⁄ ECw)) 1.15((0.24) · log Dmw -
0.29((0.08)·∆Gwell-barrier,A- + 5.13((1.37) (15)

with n ) 25, R2 ) 0.90, Q2 ) 0.87, SD ) 0.50, SDcv ) 0.56,
and F ) 97.32, and in case, the Dmw needs to be estimated by
octanol–water partition coefficients (calculated or experimental).
Equation 16 applies

log(1 ⁄ ECw)) 0.78((0.27) · log Dmw -
0.35((0.12)·∆Gwell-barrier,A- + 7.39((1.61) (16)

with n ) 25, R2 ) 0.79, Q2 ) 0.73, SD ) 0.72, SDcv ) 0.82,
and F ) 40.72 or eq 17 for descriptors calculated entirely with
the QC method

log(1 ⁄ ECw)) 1.56((0.64) · log Dmw -
0.20((0.15)·∆Gwell-barrier,A- + 3.42((3.04) (17)

with n ) 25, R2 ) 0.74, Q2 ) 0.67, SD ) 0.80, SDcv ) 0.92,
and F ) 31.58.

For the QC method, again, a single compound (warfarin)
reduced the R2 and increased the SD. This was caused by the

Table 5. Quality of Fit of Linear Regression Models for ECtot at pH 7 Using the Descriptor ∆Gwell-barrier,A- and Different
Descriptors for the Uptake as Defined in Eqs 2 and 13, Respectivelya

ECtot (n ) 17) ECtot (n ) 23) ECtot test (n ) 12)

descriptor for uptake R2 Q2 SD SDcv �1 �2 �0 R2 Q2 SD SDcv �1 �2 �0 Qext
2 SDext

R7 log Dmw (exp) 0.84 0.78 0.48 0.57 -1.12 -0.28 5.15 0.79b 0.63b

R8 log Dmw [pKa (exp) and Kow (exp)] 0.78 0.70 0.56 0.66 -0.63 -0.28 6.73 0.78 0.72 0.65 0.74 -0.52 -0.31 7.15 0.64 0.67
R9 log Dmw (QC method) 0.71 0.53 0.64 0.82 -0.92 -0.25 5.41 0.75 0.64 0.69 0.84 -0.84 -0.27 5.80 0.70 0.62
R10 log Dmw (empirical) 0.74 0.61 0.61 0.75 -0.56 -0.27 6.81 0.75 0.66 0.69 0.81 -0.38 -0.30 7.47 0.65 0.66

a The columns �1, �2, and �0 denote the regression coefficients for the descriptors log(mlip/Vw + 1/Dmw), ∆Gwell-barrier,A-, and the intercept,
respectively. b The external test set is only possible with compounds having experimental log Dmw (exp), that is, n ) 8.
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severe overestimation of log Dmw of 1.5 log units. Without this
compound, the measures of fit and predictivity would change
to R2 ) 0.81, Q2 ) 0.73, SD ) 0.68, and SDcv ) 0.80. The
regression coefficients of eq 17 changed only little after
removing warfarin, but their confidence intervals were strongly
reduced.

Concerning the applicability domain, we suggest that the
models presented in this study are not limited to the chemical
classes shown in SI-3 but apply to any weak acid with the
limitations described in the following section. The models have
a very low number of descriptors; therefore, no statistical
approach to define the applicability domain (78) was chosen,
but some empirical guidelines to the limitations are given. The
limiting factors of the model are pKa, solubility, and size. The
pKa is limiting because if either the HA or the A- concentration
in the membrane is extremely low, the cyclic process shown in
Figure 1 is not efficient any more. There is no generally agreed
rule at which upper and lower pKa uncoupling becomes
irrelevant, but the compounds described in the literature
(9, 14, 15, 37) almost all range between 3 and 9. As an example,
we extended the sensivity analysis of CCCP shown in Figure
4b) for the pKa up to 3 units above the pKa of CCCP (from
5.95 to 9). The transport model predicts a reduction of the 1.8
log units. Therefore, a compound with a pKa of 10 or higher is
not likely to be an uncoupler even if the ∆Gwell-barrier,A- is quite
low, but nevertheless, the regression models should not be ap-
plied outside of the pKa window of 3 < pKa < 9, because they
do not contain a descriptor for speciation (while the nonlinear
model would account for such effects).

The second limiting factor is solubility. It is clear that highly
insoluble compounds will be difficult to measure in the short
equilibration time of a typical Kinspec experiment, but they
nevertheless might act as uncouplers in the environment
especially in mixtures. No cutoff value can be given for
solubility, but it is recommended to compare the predicted ECw

for uncoupling with the aqueous solubility. If the solubility is
lower, the same argumentation than the one that has been made
for baseline toxicants applies (79).

The last factor that could cause misleading predictions is a
molecule’s size. This factor is limiting because ∆Gwell-barrier,A-

is calculated with a membrane model (COSMOmic) that must
have a size limit (e.g., it would not make sense to make
calculations for a compound that is larger than half of the
membrane). Currently, COSMOmic does not account for lateral
pressures (28, 29), which become stronger for large compounds.
This might lead to overestimation of both the partition coef-
ficients and the ∆Gwell-barrier,A-, even for intermediately large
molecules. The largest molecule studied in this study was
warfarin (length ≈ 12 Å). Therefore, larger molecules than
warfarin should not be predicted with the present model.

The value of ∆Gwell-barrier,A- itself is not limiting, that is, as
the coefficient is negative, the predicted effect concentration
becomes very large (i.e., low toxicity) with very high values of
∆Gwell-barrier,A-, and eventually, the uncoupling effect is less
relevant than baseline toxicity, which reflects the situation in
real organisms where baseline toxicity always competes with
more specific MOAs. As baseline QSARs are available for
almost any endpoint and also for Kinspec (25), high values
∆Gwell-barrier,A- leading to very low uncoupling activity only require
comparison with the predicted baseline toxicity and do not fall out
of the applicability domain of the models proposed in this study.
Neither can low values as with fluazinam (∆Gwell-barrier,A- ) 1.9),
which is almost the most potent uncoupler known, be modeled
sufficiently well with the regression models.

Discussion

The main goal of this study was to examine if it is possible
to model the activity of uncouplers of different chemical classes
in a single model. Although this is a fundamental premise of
MOA-based toxicity QSARs, such models aresapart from
baseline toxicity (narcosis)sstill rare. Although the present data
set is small, it is extremely diverse, containing compounds from
five different chemical classes. The good fits of the models with
experimental data for the uptake are strong indicators that this
goal can be reached for uncouplers.

The most important descriptor for the intrinsic activity is the
translocation rate constant (or permeability) of the anion. In this
perspective, uncoupling is a singular MOA and easily misun-
derstood; that is, if one wants to model the permeability of a
weak acid through the membrane, it is perfectly legitimate to
neglect the permeability of the charged species. This applies
also to uncouplers as even for the most potent uncouplers the
translocation rate constant of the charged species is at least an
order of magnitude smaller than for the neutral species (20)
and for less potent uncouplers the difference is 3 orders of
magnitude or more (22). However, as the activity of uncouplers
is determined by the limiting step in the cyclic process shown
in Figure 1a, the translocation rate constant of the charged
species is exactly the bottleneck one needs to describe.

In this study, the descriptor calculation methods were chosen
and optimized with additional data (the “descriptor calibration
sets” given in SI-5 plus Table 1 with the results shown in Table
3). As toxicity data sets are often very small, this approach is
very useful. If the descriptor calculation methods had been
chosen and optimized with the small training set of this study,
an overfitted model would have been very likely. Of course,
this approach is feasible only for MOA where the mechanism
and the required descriptors are known. An additional advantage
of the present data set is that it allowed the use of experimental
data for the uptake. This gives the modeler clear indications
where the main sources of error are. As an example, in the usual
scenario of making a toxicity QSAR, one would continue to
search for descriptors for regression model R3 or R4 (the models
with only calculated data) as the fit is not yet very “impressive”,
while in this study, model R1 with experimental data for the
uptake showed that two descriptors are sufficient and the most
important point is to improve the quality of the descriptor
calculation methods.

However, the quality of the descriptor calculations is also
the weakness of the presented models. The quality of the models
based completely on calculated descriptors is not very high. As
mentioned in the Introduction, class-based QSARs exist for
almost all of the compound classes tested in this study. It is
likely that these class-specific QSARs have smaller errors. For
example, for the 21 phenols measured in earlier Kinspec studies,
we proposed a model with an R2 of 0.94 (34). Therefore, the
question is justified if there is an advantage of working with
such a general model. We see three main advantages: First, the
general model presented here should be applicable to all weak
acids, and there is a considerable number of weak acids from
different chemical classes for which no class-specific QSARs
exist at all. As a matter of fact, our earlier model for phenols
(34) showed large errors when it was used for other chemical
classes, especially NH-acidic compounds, a result that we
attribute to large errors in the empirical method used to calculate
the descriptor for the charged species. The ability to generalize
is an important advantage; for example, if a database is screened
for compounds that should be tested experimentally, a generally
applicable model is more important than having models with
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high fit but limited applicability. Second, general models have
a more “collaborative spirit”; for example, if someone else needs
to model permeability of charged compounds, the present work
can be helpful while the models presented here can immediately
benefit from other groups improving membrane-water partition
models. Third, the lower fit is caused by the limits to predict log
Dmw, while the intrinsic activity determined by ∆Gwell-barrier,A- can
be predicted very well. The intrinsic activity directly relates to the
toxic ratio, TR (or excess toxicity), given by 18. The TR is the
ratio of the ECw for baseline toxicity to the experimental ECw,
which can be orders of magnitude lower for specific MOA like
uncoupling (ref 25 describes the determination of baseline toxicity
with Kinspec):

TR)ECw(baseline) ⁄ ECw(specific) (18)

Indeed, for the 25 uncouplers with data on ECw, the logarithm
of the TR correlates well with ∆Gwell-barrier,A-

log(TR))-0.31((0.08)·∆Gwell-barrier,A- + 5.38((0.99)
(19)

where n ) 25, R2 ) 0.71, Q2 ) 0.66, SD ) 0.54, SDcv ) 0.59,
and F ) 57.33 and with the SD being less than a factor of 4,
and only a single compound with a residual above 1 log unit
(dino4terb). Therefore, the descriptor ∆Gwell-barrier,A- is an ideal
criterion for screening of databases as there is a high interest to
detect compounds with excess toxicity. We developed some
simple criteria to detect potential uncouplers and applied these
critieria for a database of industrial compounds, namely, the
EU High and Low Production Volume Chemicals, HPVC and
LPVC, respectively (Spycher, S., Netzeva, T. I., and Escher,
B. I. Unpublished results). In the next sections, the results of
the present study will be discussed in more detail.

One of the aims of this study was to examine the lower pKa

limit for uncouplers as it is known that compounds like 2,4,6-
trinitrophenol (246TriNP) with a pKa of 0.38 do not cause
uncoupling in mitochondria (80), while the lowest pKa of known
phenolic uncouplers is about 4 (e.g., dino2terb, dinoseb, and
24DNP). Three phenols with pKa < 4 were tested in this study,
and all of them showed high activity in the Kinspec system,
including 2,4,6-trinitrophenol. This discrepancy has been ob-
served earlier with submitochondrial particles (inverted mito-
chondrial membranes) where an effect can be measured with
2,4,6-trinitrophenol as well. In the case of submitochondrial
particles, this discrepancy has been elegantly explained by
McLaughlin et al. who showed that the inversion of the potential
from -175 mV for mitochondria to +175 for submitochondrial
particles (plus the pH change from 8.3 to 6.3) causes this
difference (81). As the chromatophores in Kinspec have no
potential before the experiment starts, they lie somewhere in
between mitochondria and submitochondrial particles. Thus, it
is not possible to infer the activity in mitochondria directly from
chromatophores for compounds with pKa < 4. Therefore, a
limitation of the linear models of this study needs to be defined,
and we suggest that they should not be used for pKa < 3. This
limitation could probably be overcome with transport models,
which account for potential and pH differences of the mem-
branes as has been shown by Benz and MacLaughlin for the
case of FCCP (18). Such models allow the direct calculation of
the proton flux caused by a weak acid, and it should be possible
to extend results determined with Kinspec to such models.
However, as compared to the easily interpretable linear regres-
sion models developed in this study, they are rather complex,
but introducing such models into QSAR modeling is an

important area of future research. The conclusion from measur-
ing the three compounds with pKa < 4 is that both the linear
model and the Kinspec describe the indispensable precondition
for uncoupling (i.e., high enough translocation rate constant of
the anion), but toward lower pKa, they do not consider other
limiting effects and might overestimate the real uncoupling
activity. They are therefore too conservative, which is less
serious than the underestimation of the activity.

When it comes to the assessment of the quality of current
descriptor calculation methods, it is clear that more research is
needed to improve the calculation of membrane-water partition
coefficients, be it by empirical or QC methods [it should be
mentioned that the QC method tested (COSMOmic) is still at
an early stage of development]. The need to improve predictions
for charged species is especially urgent as charged species are
not only of interest for the particular MOA of uncouplers but
also of general interest in many areas including toxico- and
pharmacokinetics. The carefully reviewed compilation of
liposome-water partition coefficients given in Table 1 and SI-5
can contribute to this task (another thoroughly evaluated
compilation of partition coefficients of neutral and charged
compounds mainly determined with pH metric titration can be
found in ref 82).

The observation that the fit of the seven experimentally
determined translocation rate constants of phenolates with
∆Gwell-barrier,A- has about the same SD as the regression models
with experimental data for the uptake (R1, R7, and eq 15) is
reassuring. If the regression models had a lower SD, it would
have been an indicator of overfitting, while a higher SD would
have indicated that either the good fit of the experimental
translocation rate constants applies only to the phenolates tested,
that other relevant descriptors are missing, or that the functional
form is not linear.

As a matter of fact, the fit of linear models is surprisingly
good given that they do not account for the speciation (i.e., the
fractions of HA and A-, respectively) nor for AHA- dimer
formation, which cannot be neglected in transport models (at
least for compounds with pKa > pH). It appears that the two
descriptors used for the linear models contain the information
of the dimer formation. If uncoupling would be related to uptake
and translocation rate constant of the charged species alone,
then regression models R5 and R6, which look only at the
partition coefficient (R5) or the pH-dependent uptake of the
charged species (R6), should work better. Therefore, it appears
that the descriptor log Dmw also contains information that
correlates with the formation and transfer of AHA- dimers. This
hypothesis is corroborated by the observation that the com-
pounds with large errors in R6 are the same compounds as the
ones with large errors in the nonlinear model with a translocation
rate constant of AHA- dimer set to zero. It is possible that the
linear regression models proposed in this study generalize less
well than real mechanistic models like the transport models
tested, but for the 35 compounds examined in this study, the
linear models did not have extreme outliers. Therefore, the
discussed inconsistency of using no descriptor for the formation
and transfer of AHA- dimers does not seem a serious weakness,
although it is known to be an important phenomenon. The lower
fit of the models based only on calculated descriptors is
consistent with the errors of calculated partition coefficients for
neutral and charged species.

A large section of this study deals with the issue of comparing
the results of aqueous concentrations, ECw, and nominal
concentrations, ECtot. While at a first look the two effect
concentrations appear very similar (r2 ) 0.93), it is important
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to note that for compounds with high values for log Dmw, the
solution in the test system tends to be depleted and ECw is
consistently lower than ECtot. As a consequence, ECw can be
up to 40 times lower than ECtot and simply taking ECtot would
lead to reduced value of the toxic ratios. The distinction is
especially important if in vitro results are related to in vivo data
with measured aqueous concentrations. A nice result is that the
fit of the regression models for ECw and ECtot is comparable.
The fact that the SDs of R1 and R7 are almost the same can be
considered as an indirect proof of the assumption that, first, the
liposome–water partition coefficients approximate the chro-
matophore–water partition coefficients well and, second, that
there is no substantial partitioning into other compartments of
the chromatophores (e.g., proteins) or even if then the relative
differences between the compounds are the same.

A very low correlation was observed between the free
energy, ∆Gwell-barrier,A- and the equivalent for the neutral
species ∆Gwell-barrier,HA. This is a serious limitation if simpler
empirical methods usually developed for neutral species should
be used. While it is possible to develop class-specific uncoupler
QSARs with the use of descriptors of the neutral species, the
goal of developing class-independent or “global” QSARs
apparently can only be reached with descriptors for the charged
species.

Conclusions

In this study, a series of highly diverse uncouplers could be
modeled with only two descriptors; thus, it appears possible to
reach the goal of class-independent QSARs for the uncoupling
activity of weak acids. The preconditions for such global QSARs
for uncouplers are, first, the successful calculation of descriptors
for the translocation rate constant of the charged species and,
second, the calculation of membrane-water partition coefficients
of the neutral and the charged species.

The first precondition could be met by using a novel
membrane model that allows the calculation of the distribution
of compounds within the membrane and, thus, to calculate the
heights of energy barriers encountered by molecules crossing
the interior of the membrane. The energy barrier of the anion,
∆Gwell-barrier,A- is the rate-limiting step of the uncoupling effect,
and it could be shown that this descriptor alone already covers
the largest portion of the variability of the intrinsic activity.
The descriptor ∆Gwell-barrier,A- can also be related to the excess
toxicity (toxic ratio) caused by the uncoupling activity of weak
acids; therefore, ∆Gwell-barrier,A- is also the most important
descriptor to distinguish weak acids with the potential to
uncouple from weak acids without this potential.

With the data set used in this study, it was possible to take
advantage of experimentally determined descriptors. For the case
of uncouplers, it was possible to show that to increase the quality
of QSAR models based on calculated descriptors, it is not
necessary to include additional descriptors but to improve the
predictions for the uptake into membranes especially for charged
compounds. Such a conclusion is very hard to make if no
experimental descriptors are available; therefore, such close
collaborations between modeling and experimental studies are
highly desirable.

Some additional work is necessary to improve the under-
standing of the effects of speciation, that is, to define the lower
and upper limits that the pKa uncouplers can have or even better
to find models that account for speciation effects. If these
challenges can be overcome, then the door would be opened to
pH-dependent QSAR models for uncouplers and in our opinion
also to in vitro–in vivo correlations and interspecies interpolations.
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