

Technology	Advantages	Constraints, comments
Gravity Fed or Ramp Pump	-Low cost -Simple to install and use -Easy maintenance -No fuel needed – 24 x 7 operation	Gravity: Needs a clean spring above located above the town Ram Pump:- Need appropriate site (falling water at a lower level, to be moved to a higher elevation) -Draws from stream water or spring
Diesel Generator	-Moderate initial cost -Easy to install	-Frequent maintenance., expertise required -Short life -Fuel often expensive, supply intermittent -Noise, dirt, fumes -Lifetime (20 yr.) costs higher than SPS
Human Pumping	-Very Low cost -No fuel needed -Low maintenance	- Very time and labor consuming - Limited in depth & flow (power required)
Wind Turbine	-Lower initial costs than SPS -Long life -Effective at windy sites -Clean -No fuel needed	-High maintenance needs -Expensive repair -Parts difficult to find -Wind can vary seasonally -Lower output in calmer winds
Solar Pumping System (SPS)	-Easy to install -Reliable long life -Low Maintenance, simple repair -No fuel needed -Clean -Modular system, can be expanded	Solar energy can vary seasonally Highest initial cost Lower output in cloudy weather

Multistage Submersible centrifugal pump

1: Wat	er Dema	ind		Green
Users	Guideline gal/day	Quantity	Total gal/day	m³/day
People	10	500	5000	19
Dairy cow	23			
Horse	13			
Pig	4.5			
Sheep / Goat	1.5			
Chickens	.04			

1) a proper population survey is needed to see what the water will be used for, if it is a straight replacement for current uses, or if new uses are expected. 2) small plants & trees, and animals may be provided gray water.

1,000 gal = 3.8 m³

Estimating Lift and Head
 Vertical Lift components: Elevation difference + static water level depth in well

	•	· · · ·		
Resource assessment	-		-	
Solar tracking mode		Fixed		
Slope	•	12.0		
Azimuth	•	0.0		
OL STATISTICS			- i	
Show data		Daily color		
		radiation -	Daily solar	
		horizontal	radiation - tilted	
	Month	kWh/m²/d	kWh/m²/d	
Diss Roberts Allegangere	January	4.29	4.65	
Bluefields, Nicaragua	February	4.96	5.24	
	March	5.47	5.58	
http://www.retscreen.net/	April	5.81	5.70	
	May	5.06	4.85	
	June	4.04	3.86	
	July	3.71	3.57	
	August	4.02	3.93	
	September	4.38	4.39	
	October	4.15	4.29	
	November	3.95	4.22	
	December	3.93	4.27	
	Annual	4.48	4.54	
Annual solar radiation - horizontal	MWh/m ²	1.63		
Annual solar radiation - tilted	MW/h/m ²	1.66		

Losses and Efficiency

- 1. Electro-Mechanical pump efficiency
 - Not all the electrical power ends up moving water
 - Depends on the type of pump (positive displacement vs. centrifugal) and the model
 - Boosted by the use of an MPPT controller, but still varies during the day
 - Recommended to use 30-40% for feasibility study, but may go up to 45-70% depending on equipment used.
- 2. PV+ electrical circuit efficiency
 - Common practice to assume 80% of Wp is usable by pump

	Example &	Varia	bi	lity				41
	•			•				Green Em
	A	В	G	Н		J	K	L
1	Solar Pumping sizing spre	adsheet	Si	te:	example			
2	conversion factors/constants;		kn	own (cito) n	aramotore	: input		
- 3	1mal = litere	3.81	rei	commended	nrelimina	, input v valuee		
5	1gal =	0.00381	16	commended	premima	y values		
6	1 ft= m	0.00301		CE SDS	2004 ma	nual formul	20	
7	water density*gravity (SI)	9 810		UL JF3	2004 ma	nuur ionniu	45	
8	1hn = W	736	Er	nalish units		metric units	(SI)	
9	Population	150		ignori unito	500	moune units	500	
10	need/day /person		G	al	12	liters	45.6	
11	Daily need		G	al (per dav)	6000	m^3 (/dav)	22.8	
12	Total static water head		ft		180	m	55	
13	Head losses due to friction (5-10%)	7%			7%		7%	
14	Dynamic head		ft		194	m	59	
10	Parfact Salar Haura (BSH @ 11/M/m42)				6		6	
17	computed (nominal) flow rate for DSH		an		20	IA2/min	76	
18	computed (nominal) flow rate for PSH			411	20	r-5/min I/e	1 2667	
15	compared (norminal) flow fate for PSIT					115	1.2007	
20	selected pump nominal (design) flow rate		gp	m	20	lpm	76	
21	nominal (design) dynamic head		ft		194	m	59	
22	constant factor (gravity/(seconds/h))			0.188		0.163		
23								
25	pump average efficiency	30%			30%		42%	
26	Pump design Watts				2,430		1,744	
28	electrical loss factor from PV nominal	20%			20%		20%	
29	Electrical efficiency							
30	PV Design Watts				3,038		2,180	
31	Selected PV kWp						2,200	

	Grou	ıp ex	ercises	5			
Water pumping workshop		Problem de	scriptions				
Site description:							
Country	Philippines	Philippines	Haiti	Nicaraqua	Nicaraqua	Ecuador	Tanzania
	Mindanao	Herminal (Negros	TerreBlanche	Potreritos	Bramadero /San Geronimo	Nantip (Amazons)	Ngelenge
latitude	~6 deg N	10d N	19 deg 35' 37" N	1 otrentos	Geroninio	(/ 111020113)	10.4.5
longitude	ouegiv	120 d E	72 deg 38' 30" W	SW	region		35 / F
Population - households	90	55	72 dog 50 50 11		region		55.4 E
Population - people	+100 external students during the day	330	school - 500 students + clinic - 50 patients	500	600	120	2000
Daily water volume target	14 to 28m3/day	10m3	tbd			4000 I	5-10 gal/dia/p
Water source:	springs	spring	well in courtyard			spring	-
Water level in well (m)	n/a	n/a	60	25	30		
drawdown	n/a	n/a	included	3m	5m		17
flow rate	1 - 1.3lps	129I/min	52gpm max		9gpm max	52 l/min	45 gpm
Elevation difference to tank (m)	118m	41m	as needed	50m	23m	9	32
distance to tank (m)	900m	200m	tbd			300	500
Comments/notes	rain water harvesting in village		2-story clinic			village is next to large river, terrain is flat	
Solar Data							
PSH min (hrs = kWh/m2/day)	4	4	4.5	4.6	4.6	4	4
PSH avg	5	5	5.5	5.1	5.1		
Feasibility Study calculations							

Solar Pump - Vendor Role

- Most of the SPS comes from one vendor:
- Each pump has a specific controller designed for it by the same vendor
- Many vendors also sell PV panels
- Each vendor uses a proprietary software to forecast their system performance for every month of the year, and quote accordingly.
- Most vendors also sell many accessories: support structures, safety rope, water-resistant cables, underwater connection kits, etc.
- Balance of system (BOS) can be procured locally: wires, pipes
- Support structures often made locally as well.

Request for Quote: what to ask

- Provide basic characteristics: depth, drawdown, maxi flow rate, lift (TDH estimate), target daily flow, geographical location.
- Ask for performance forecast for the site (simulation)
- Be ready to adjust description as field info may be adjusted
- Request itemized quote from local & overseas vendors and see what could be procured locally and at what cost.
- Enquire about shipment duration & cost alternatives

Separately, from local resource:

Find out about possible import taxes, brokerage fees, etc.

Demo: software

http://www.monopumps.com.au/en-au/downloads-amp-tools-0 http://net.grundfos.com/Appl/WebCAPS/

	Μ	anufacturers	
• Evaluate • Specific r	finding a lo nodels & b	ocal distributor, vs. importing orands change / form alliances	
Conergy (Dankoff)	USA	www.conergy.us	Dankoff's "slow pump" + Grundfos
Grundfos	Denmark	www.grundfos.com	Most sold in the world
Lorentz	Germany + China	www.lorentz.de	Helicoidal, variable quality reputation
Mono	Australia	http://www.monopumps.com.au/en-au/solar- products	Helicoidal, good quality, high pressure, few local distributors
Shurflo	USA	http://www.shurflo.com/pages/new_industrial/Indust rial/solar/solar_home.html	Limited depth, common for small systems
SunPumps	USA	http://www.sunpumps.com/	Various own models + Grundfos

Potreritos Equipment	bill	
PV panels 2866Wp	\$12,072	2005 price!
Pumps (large + small)	\$1,753	
controllers (large + small)	\$534	
submersible cable (300ft)	\$330	
lightning arrestors (6)	\$216	
Float switch (4)	\$176	
30Amp/600VDC disconnect	\$145	
Misc parts	\$695	
TOTAL US	\$15,921	
+ Shipment + taxes		
+ locally procured parts		
Grand total	\$22,080	

Sample Budget – Project

Final Project Design (GE)	\$ 6,500
Procurement of Solar Pump Equipment	\$22,080
Construction of Water Tank and Distribution Lines (Enacal)	\$14,800
Community Labor and Donated Materials	\$ 1,140
Project Related Community Development Work— Community Water Board, Training, Reforestation and Patio Gardens	\$11,356
Project Follow Up and Evaluation	\$ 1,930
Total Cost	\$57,806

