Systematics and biogeography of the arcuate horseshoe bat species complex (Chiroptera, Rhinolophidae)

Lorelei E. Patrick Eve S. McCulloch \& Luis A. Ruedas

Submitted: 3 October 2012
Accepted: 14 May 2013
doi:10.1111/zsc. 12026

Abstract

Patrick, L.E., McCulloch, E.S., Ruedas, L.A. (2013). Systematics and biogeography of the arcuate horseshoe bat species complex (Chiroptera: Rhinolophidae). -Zoologica Scripta, 00, 000-000. The present study sheds light on species delimitation in what has been previously described as Rbinolophus arcuatus, a morphologically conservative bat species complex nominally distributed throughout archipelagic South-East Asia from New Guinea to Sumatra. Given that rhinolophids tend to be relatively weak fliers, hence have low vagility, we hypothesized that some specimens attributed to R. arcuatus, but originating from geographically disjunct populations, may in fact represent distinct species. To test this hypothesis, we examined specimens attributed to R. arcuatus as well as to other species in the Rbinolophus euryotis species group using both morphological techniques and mitochondrial cytochrome b and control region sequences. Careful morphological analysis reveals heretofore cryptic but nevertheless distinct, species-level morphological differences among specimens derived from geographically isolated locations. Furthermore, molecular data illuminate the existence of several spe-cies-level sequence divergences among specimens heretofore attributed to R. arcuatus. These analyses similarly suggest the existence of additional species in other South-East Asian Rbinolophus taxa previously considered monotypic. We suggest at least one description to be undertaken of a previously unrecognized species as well as the elevation of several others from sub-specific to specific status. Corresponding author: Lorelei E. Patrick, Department of Biological Sciences, Louisiana State University, 107 Life Sciences Bldg., Baton Rouge, LA 70803, USA. E-mail: Ipatri3@lsu.edu Lorelei E. Patrick, Eve S. McCulloch, E-mail: evemcculloch@gmail.com and Luis A. Ruedas, Department of Biology and Museum of Vertebrate Biology, Portland State University, 1719 SW 10th Ave, SRTC Room 246, Portland, OR 97207, USA. E-mail: ruedas@pdx.edu

Introduction

Horseshoe bats of the genus Rhinolophus Lacépède, 1799 (Chiroptera: Rhinolophidae) are mostly insectivorous and distributed throughout the Old World - primarily in the tropical regions - from Africa, through Europe, to Australasia. Most of the ca. 80 species (Koopman 1994; Csorba et al. 2003; Simmons 2005) are specialized for seeking prey from a perch, although a few are known to glean (Norberg \& Rayner 1987). The wing morphology of rhinolophids is therefore constrained by their foraging strategies: most species have short, rounded wing tips and are capable of highly manoeuvrable flight at slow speeds (Norberg \& Rayner 1987). The common name for this genus comes from a specialized horseshoe-shaped structure on the rostrum, thought to direct or focus echolocation calls produced in the nasal cavities. This horseshoe structure and associated lancet, connecting process and sella structures, as well as overall size, have been used to good effect in order to distinguish among species (Peters

1871; Hill 1959, 1988, 1992; Hill \& Schlitter 1982; Heaney et al. 1998; Csorba et al. 2003; Guillén-Servent et al. 2003). However, recent research has shown that Rbinolophus contains many morphologically cryptic, previously unrecognized species and that changes in echolocation call frequency are often the mechanism for speciation (Cooper et al. 1998; Csorba et al. 2003; Kingston \& Rossiter 2004; Sun et al. 2008; Sedlock \& Weyandt 2009; Chattopadhyay et al. 2010). The morphological conservatism pervading this genus has complicated taxonomic and phylogenetic reconstruction, resulting in conflicting phylogenetic trees over the years; indeed, even within the same book, authors of different sections have chosen to follow different species taxonomic arrangements (Csorba et al. 2003; Guillén-Servent et al. 2003)!

The focus of the present work is the putative species Rhinolophus arcuatus, a member of the Rhinolophus euryotis group, with particular focus on R. arcuatus from Sulawesi. Originally described from Luzon Island in the Philippines
(Peters 1871), R. arcuatus as currently recognized has a range extending throughout numerous islands in SouthEast Asia (Fig. 1): the species is distributed from New Guinea in the east to Sumatra in the west, and as far north as Luzon (Hill 1992; Csorba et al. 2003). However, as the range has expanded, so have taxonomic uncertainties concerning this species. Ingle \& Heaney (1992), for example, noted the presence of two discrete morphotypes in the Philippines, namely R. arcuatus small and R. arcuatus large, but did not formally describe them. Sedlock \& Weyandt (2009) further demonstrated the presence of two genetically ($3-4 \%$ sequence divergence) and morphologically distinct morphotypes ('wide' and 'narrow' noseleaf), attributed to R. arcuatus from Mt. Banahaw, Luzon. One of the present authors (LAR) also noted a third discrete morphotype occurring sympatrically with R. arcuatus small and R. arcuatus large at one site on Luzon Island, suggesting the likely presence of at least three to five species on Luzon alone.

Prior to field work undertaken by LAR in 2000 and 2002, there was a single record of R. arcuatus from Sulawesi (Hill 1988): a specimen captured near Poso, Central Sulawesi, and attributed to R. a. proconsulis (Hill 1988). Rbinolophus a. proconsulis was originally described from specimens captured in Gua Bungoh, Bau, 1st Division, Sarawak, Borneo (Hill 1959). Subsequently, Hill (1992) modified his taxonomic opinion of the Sulawesi R. arcuatus, and Csorba et al. (2003) followed this opinion, both concluding that the Sulawesi specimen likely constituted at least a new subspecies of R. arcuatus.

Given the complex geological history of South-East Asia and that many species in Rbinolophus are relatively weak fliers, it is possible - even likely - that populations on different islands and island groups throughout the range of R. arcuatus, and attributed to that species, could in fact represent species distinct from, but morphologically cryptic with, R. arcuatus. As such, the putative species R. arcuatus may therefore represent a morphologically cryptic species complex remarkably rich in potential for biogeographic studies. Here, we test the hypothesis that R. arcuatus are conspecific throughout their range and, rejecting this hypothesis based on morphological and molecular analyses, propose the elevation of a subspecies to species level, further suggesting that there are several previously unrecognized species in the complex.

Materials and methods

Fieldwork

Whole specimens of Rbinolophus collected in Sulawesi by LAR and coworkers in 2000 and 2002 were preserved in 95% ethanol; specimens were deposited in the Museum of Vertebrate Biology at Portland State University, the Museum of Southwestern Biology at the University of New Mexico, and the National Museum of Indonesia (NMI, formerly Museum Zoologicum Bogoriense). The NMI specimens were not examined as part of this work. Information on collection localities is provided in Appendix I for specimens used in genetic analyses, and Appendix S1 for specimens examined in morphological analyses. Rbinolophus collected in the Philippines by LAR and co-workers in 1992-1993 and deposited at

Fig. 1 Distribution map of Rbinolophus arcuatus showing published collection locations with circles and collection locations of LAR and coworkers in triangles. Sulawesi is indicated in dark grey.
the Cincinnati Museum of Natural History and Science were also examined in this study (Appendices I and S1).

Morphometrics

A total of 52 skull and wing measurements and indices were used in this study, following Freeman (1981) and Csorba et al. (2003). These are illustrated in Fig. 2 and described in the Supporting Information (Data S1).

A total of 128 specimens were measured (Appendix S1), including the holotype and paratypes of R. a. proconsulis from Borneo, the original specimen from Sulawesi attributed by Hill to R. a. proconsulis, the Sulawesi R. arcuatus specimens collected by LAR, and numerous R. arcuatus specimens from the Philippines.

Measurements were taken either with digital calipers (Fowler) or from high-quality digital images using ImageProPlus (version 4.5.0.19, Media Cybernetics, Inc, Rockville, MD USA). Log-transformed skull and wing data were analysed both separately and in combination using principal components analysis (PCA) in the sAS statistical package (Release 9.1, SAS Institute Inc., Cary, NC USA). Three-dimensional graphs of the first three principal components were produced using SigmaPlot (version 9.01; Systat Software Inc., San Jose, CA, USA).

Molecular markers and sequence data

DNA was extracted from a ca. $2 \mathrm{~mm}^{3}$ sample of skeletal muscle or liver, or from a ca. $3 \mathrm{~mm}^{2}$ section of wing
membrane. Total genomic DNA (gDNA) was extracted using a DNeasy Blood \& Tissue Kit (Qiagen, Valencia, CA, USA) following the manufacturer's protocol. The mitochondrial cytochrome b (Cytb) gene and control region (CR) were sequenced as follows: the polymerase chain reaction (PCR) was carried out in an Illustra PuRe Taq Ready-To-Go PCR bead tube (GE Healthcare, Piscataway, NJ, USA) containing $3 \mu \mathrm{~L}$ gDNA (ca. 200 ng) and $2.5 \mu \mathrm{~m}$ of each primer, to a final volume of $25 \mu \mathrm{~L}$. Primer sequences and thermal cycling profiles are shown in Table S1. PCR product was run on a 2\% Agarose E-gel (Invitrogen, Grand Islans, NY, USA) and visualized under ultraviolet light. Selected amplicons were then purified using a Qiaquick PCR Purification Kit (Qiagen) or by excising the band from the gel and purifying it using a Qiaquick Gel Extraction kit (Qiagen) following the manufacturer's instructions. Cycle sequencing reactions were performed in a $10 \mu \mathrm{~L}$ total volume containing $2.5 \mu \mathrm{~L}$ of purified PCR product and $0.25 \mu \mathrm{~m}$ sequencing primer in a BigDye version 3.1 reaction mixture (Applied Biosystems, Foster City, CA, USA). Sequencing primers were the same as PCR primers. The thermal protocol for the sequencing reaction was $96^{\circ} \mathrm{C}$ for 5 min and 25 cycles of $96^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 5 s and $60^{\circ} \mathrm{C}$ for 4 min . Sequencing was performed on an ABI 3100 Automated DNA Sequencer (Applied Biosystems).

A total of 111 individuals were sequenced for these analyses. A list of specimens and sequences used is provided in Appendix I and includes samples from the following locations: Sulaw-

Also: Tail, hind foot, tibia, aspect ratio, tip index,

Digit3:Digit5

Fig. 2 Morphological measurements taken from each specimen. Details and names of measurements can be found in Data S1.
esi, Indonesia; Papua New Guinea (PNG); Cambodia; Luzon, Panay, Mindoro and Mindanao Islands of the Philippine Islands. In particular, we included sequences from R. 'arcuatus', R. euryotis, and Rbinolophus celebensis from Sulawesi, R. arcuatus from near the type locality in Luzon, and Rbinolophus species in the euryotis group from the Philippines. Hereafter, we will use quotation marks in the body of the text to refer to potentially incorrect species identifications made by previous collectors.

Phylogenetic analyses

Sequences were aligned initially using MegAlign (version 6.1, DNA* Lasergene 6, Madison, WI, USA). Monophyly of Rhinolophidae was assumed and Hipposideros armiger, H. diadema, H. pomona, and H. pratti (Hipposideridae) were chosen as out-groups. The Cytb gene and CR were analysed separately with a Bayesian inference approach using MrBayes (version 3.1.2; Huelsenbeck \& Ronquist 2001). Both genes were analysed individually for 2×10^{7} generations, with trees sampled every 2000 generations. Burn-in was assessed visually and trees preceding the asymptote of the log likelihood scores' curve were discarded. In addition, Garli (ver. 2.0; Zwickl 2006) was used to infer separate maximum-likelihood trees for each gene. Garli was run until several searches found the same best tree. One thousand bootstrap replicates were performed for each tree.

For the CR, we used the HKY $+\mathrm{I}+\Gamma$ model of evolution. This model was chosen using MrModeltest (version 2.3; Nylander 2004) based on the Akaike information criterion (AIC). Individual parameters were $-\ln \mathrm{L}=6199.4316$; $\mathrm{AIC}=$ 12410.8633; base frequencies: $\mathrm{A}=0.3707 ; \mathrm{C}=0.2385$; $\mathrm{G}=0.1092 ; \mathrm{T}=0.2817$; ti/tv ratio $=4.0971$; proportion of invariable sites $=0.3104$; gamma distribution shape parameter $=0.7655$. For the Cytb gene, MrModeltest selected GTR $+\mathrm{I}+\Gamma$ model of evolution based on the AIC. Model parameters were $-\ln \mathrm{L}=9336.3975 ; \mathrm{AIC}=18692.7949$; base frequencies: $\mathrm{A}=0.3241 ; \quad \mathrm{C}=0.3849 ; \quad \mathrm{G}=0.0890 ; \quad \mathrm{T}=$ 0.2020; rate matrix: $\mathrm{A}-\mathrm{C}=0.4927$; $\mathrm{A}-\mathrm{G}=14.2629$; $\mathrm{A}-\mathrm{T}=$ $0.6273 ; \quad \mathrm{C}-\mathrm{G}=0.3700 ; \quad \mathrm{C}-\mathrm{T}=8.7184, \quad \mathrm{G}-\mathrm{T}=1.0000$; proportion of invariable sites $=0.5011$; gamma distribution shape parameter $=0.9840$. A genetic distance matrix based on the GTR $+\mathrm{I}+\Gamma$ model of evolution was calculated from the Cytb sequence data using Paup (v. 4.0b10; Swofford 2000) for the clades of interest to show both inter- and intra-specific genetic distances (Table 1). Trees were assessed visually using TreeVIew (v. 1.6.6; Page 1996) and FigTree (v.1.3.1, Andrew Rambaut, Institute of Evolutionary Biology, University of Edinburgh, UK). Specimens that grouped together in distinct clades were given clade designations (Tables 1 and 2) and were used particularly in population genetic analyses.

Population genetic structure and diversity

For all population genetic analyses, 'populations' were defined by clade designation, as determined in the phylo-
genetic analyses described above. Some clades represent separate species (i.e. R. euryotis), while many clades belong to the R. arcuatus complex (Table 2). This use of clades will capture genetic structure among populations regardless of whether R. arcuatus from different islands are in fact separate populations of a single species. While clade status was determined in phylogenetic analyses that used as input the same sequence data set as was used for population genetic analyses, we nevertheless gain additional insight into relationships among clades by determining within and among clade diversity and structure. To fully exploit all available sequence data, we used three separate sequence data sets as input: (i) Cytb sequences only (ca. 925 bp), (ii) CR sequences only (ca. 420 bp), and (iii) Cytb and CR sequences concatenated (ca. 1300 bp). We did this because while the majority of Cytb and CR sequences were from the same tissue samples (specimens), in some cases, we had sequences either for Cytb or CR, but not both, for a given specimen (Appendix I and Table 2). We determined genetic structure and diversity, and tested for selective neutrality using settings described below (Excoffier et al. 2006). All analyses of genetic structure and diversity were run in Arlequin 3.11 (Excoffier et al. 2005).

Genetic diversity was calculated using multiple diversity indicators: (i) gene diversity ' G ', calculated from the probability that two randomly chosen haplotypes are different, (ii) nucleotide diversity ' N ', calculated as the probability that two randomly selected homologous sites are different, assuming no recombination and selective neutrality (Tajima 1983, 1993; Nei 1987), (iii) number of polymorphic sites ' S ' (Nei 1987), (iv) mean number of pairwise differences between every pair of haplotypes, ' π ' (distance method: Tamura \& Nei). Finally, we calculated two measures of theta $(\theta=2 \mathrm{Mu}$, where $M=2 N$ for diploid populations of size N and u is the overall mutation rate at the haplotype level): Theta S and Theta Pi. Theta $S\left(\theta_{S}\right)$ is calculated assuming an infinite-site equilibrium between number of segregating sites (S), the sample size (n) and θ, as well as no recombination (Tajima 1989). Theta $\operatorname{Pi}\left(\theta_{\pi}\right)$ is estimated from the infinite-sites equilibrium relationship between the mean number of pairwise differences (π) and theta (θ).

We tested for selective neutrality under the infinite allele model using Tajima's D (Tajima 1989, 1996) and Fu's $F_{\text {S }}$ (Fu 1997) - these analyses both assume no recombination, which is probably appropriate for short mtDNA sequences. Significant Tajima's D values can be the result of recent population expansion or bottlenecks, as well as selective effects. Fu's F statistic is also very sensitive to demographic expansion, which usually results in large negative F values. For all of these analyses, the observed data were tested against a null distribution of the test statistic generated by 16,000 simulations (significance level: 5\%). However, the

Table 2 List of islands found within each island group and the corresponding number of sequences and haplotype identifications (IDs) from that island

Island Group	Island	Sequence ID	CR Clade	Cytb Clade
Papua New Guinea	Papua New Guinea	AF065090	K	Not used
		AF065091	K	Not used
		AF065089	J	Not used
Sulawesi	Sulawesi	MSB93099	H	H
		MSB93100	H	H (PDX50)
		PDX50	H	H (MSB93100)
		PSUT67	H	H
		PSUT68	H	Not used
		PSUT72	H	H
		PSUT73	H (RCD3811)	H
		PSUT74	H	H
		RCD3811	H (PSUT73)	H
		0182	I	Not used
		0183_CR	I (B10_CR)	I
		417	1	,
		421	I (B11_CR)	,
		B10_CR	I (0183_CR)	Not used
		B11_CR	I (421)	Not used
		C03_CR	1	Not used
		C09_CR	I	Not used
		418	Not used	1
Philippine Islands	Luzon	M49	B (M376/M1068)	A (M376/M1068)
		M376	B (M49/M1068)	A (M49/M1068)
		M377	C	D
		M50	E	A (M357/M159)
		M3	E	Not used
		M43	E	Not used
		M12	F	A
		M159	F (M357)	A (M50/M357)
		M357	F (M159)	A (M50/M159)
		M31	F (M348)	A
		M348	F (M31)	A
		M57	F	A
		M52	F	A (M53)
		M1	Not used	A (M353/GQ..69)
		M53	Not used	A (M52)
		M352	F	A
		M353	F	A (M1/GQ..69)
		M369	F	A
		M386	F	A
		184_CR	F	A
		M127	D	B
		M137	D	B
		M16	D	Not used
		M17	D (M195)	B
		M64	D	B (M195)
		M195	D (M17)	B (M64)
		GQ368669	Not used	A (M1/M353)
		GQ368675	Not used	A
		GQ368676	Not used	A
		GQ368683	Not used	F
		GQ368688	Not used	F
		GQ368686	Not used	F
	Panay	M461	C	A

Table 2 Continued

Island Group	Island	Sequence ID	CR Clade	Cytb Clade
		M616	Not used	A (M514/M462)
		M514	C	A (M462/616)
		M525	C (M462)	Not used
		M545	C	A
		M462	C (M525)	A (M514/M616)
	Mindoro	M1068	B (M49/M376)	A (M49/M376)
	Mindanao	M1576	G	C
		M1494	G	C
		M1726	Not used	C
		M1461	A (M1634)	Not used
		M1462	A (M1651)	E
		M1463	A	E
		M1341	A	Not used
Cambodia	Cambodia	M1651	A (M1462)	E
		M1634	A (M1461)	E
		M1457	A	Not used
			M1797	M
Cand-7	L	Not used		
			J	

Clade designations were determined using Bayesian analyses of control region (CR) and cytochrome b (Cytb) sequences, respectively. Each ID occupying a unique row has a unique haplotype definition unless another ID is included within parentheses in either the CR Clade or Cytb Clade columns, in which case the haplotype for that sequence is shared with the sequence indicated. For example, the only sequence from Mindoro Island shares a haplotype with Luzon Island. Samples were 'Not used' in cases where sequences were obtained for only CR or only Cytb, but not both.

Fu's F statistic should be considered significant at the 5\% level if the P-value is below 0.02, and not 0.05 (Fu 1997; Excoffier et al. 2006). In order to determine genetic structure among clades, we ran a standard analysis of molecular variance (amova, Weir \& Cockerham 1984; Excoffier et al. 1992) and a locus by locus amova. With no missing data, these two analyses should produce the same results. AMOVA takes the number of mutations between haplotypes into account when testing genetic structure of clades. For all amovas, clades were clustered based on geography to form the following groups (where sequence availability permitted): Philippine Islands (clades located on Luzon, Panay, Mindoro or Mindanao), Sulawesi, PNG, and Cambodia. A Euclidean square distance matrix was used for amova computations (distance method: Tamura \& Nei) and to create a minimum spanning tree (MST, Rohlf 1973). The amova is a non-parametric analysis in which haplotypes are permuted among populations (clades), or among population groups (geographic location, described above), to obtain a null distribution against which the empirical/observed data are tested for significance. We also computed pairwise $F_{\text {ST }}$ among clades using Tamura \& Nei distances (Tamura \& Nei 1993). Significance for the amova and pairwise $F_{\text {ST }}$ was determined using null distributions calculated from 16,000 permutations with a significance level of 0.05 .

Molecular dating and calibration

To simultaneously co-estimate phylogeny and divergence times within our Rhinolophoidea data set, we used a Bayesian Markov chain Monte Carlo (MCMC; Metropolis et al. 1953; Hastings 1970) method for performing relaxed molecular phylogenetic analysis, as implemented in the program beast (v. 1.5.1; Drummond et al. 2006; Drummond \& Rambaut 2007). Molecular clocks were calibrated by assuming that the cladogenesis between lineages leading to Hipposideros and Rbinolophus occurred 45 million years ago (MYA). This assumption was based on a number of factors; we assumed (following Sigé 1990) that †Vaylatsia Sigé, 1990, Late Eocene and Oligocene of Europe, is either a descendant or early sister group to Rhinolophus. Rbinolophus sensu stricto is present in the Middle Eocene and another early rhinolophid, \dagger Palaeonycteris Pomel 1854 (nec \dagger Palaeonycteris Weber \& Abel 1928, †Picrodontidae incertae sedis) in the Upper Oligocene. Like Rbinolophus, Hipposideros sensu stricto is present in the Middle Eocene. Other acknowledged hipposiderids are likewise present from the Eocene, including \dagger Palaeophyllopora Revilliod, 1917 (Middle Eocene to Late Miocene) and †Paraphyllophora Revilliod, 1922 (Upper Eocene to Late Oligocene). Thus by the Middle Eocene, hipposiderid and rhinolophid lineages were well established. Using a midpoint of 40 MYA for the Middle Eocene, we extrapolated that cladogenesis between the two lineages should have preceded the established presence in the fossil record of quantiose genera or species in the two families by at least 5 MYA , hence our estimate of 45 MYA .
BEAST runs were conducted using substitution rates, proportion of invariable positions and gamma shape parameters obtained using MrModeltest under the GTR $+\mathrm{I}+\Gamma$ model of evolution based on the AIC, as described above (see Phylogenetic analyses). We used a relaxed lognormal molecular clock model, which has been shown to generate accurate estimates of rates with narrow highest posterior density (HPD) intervals (Drummond et al. 2006; Ho 2007) and a Yule prior to simulate the process of speciation, with reciprocal monophyly of the in-group (Rhinolophidae) and out-group (Hipposideridae) assumed a priori. Operators were tuned in successive runs of the program, with slight changes to the scaling factors until the effective sample size for each parameter exceeded 200 (Drummond \& Rambaut 2007). Once optimum operator scaling was achieved, we ran the analysis twice for 2×10^{7} generations (saving every 1000th generation) discarding approximately the first 10% of generations as burn-in (Shapiro et al. 2011), assuring that stationarity had been reached by visual inspection of the graphed output; 2×10^{7} generations resulted in acceptable mixing as diagnosed using Tracer (v. 1.5; Rambaut \& Drummond 2004). Convergence of the two beast runs likewise was assessed in Tracer.

Results

Morphology

When skull and wing data were analysed together, the first three principal components (PC) accounted for 84.5% of variation in the data ($\mathrm{PC} 1: 62 \%, \mathrm{PC} 2: 17.5 \%, \mathrm{PC} 3: 5 \%$). Eigenvectors for all measurements are given in Table S2. Rbinolophus 'arcuatus' from Sulawesi show no overlap in multivariate morphological space with R. arcuatus from the Philippines (Fig. 3). It is also noteworthy that Bornean R. 'a.' proconsulis (including the holotype) are morphologically distinct from Philippine R. arcuatus, from the original Sulawesi R. ' a.' proconsulis specimen [listed by Hill (1959) as R. proconsulis], and from more recent specimens of R. 'arcuatus' collected from the highlands of Sulawesi's Central Core region. However, the original Sulawesi R. ' a.' proconsulis specimen is morphologically similar to more recent specimens of putative R. ' a '. proconsulis from Sulawesi.

Molecular markers and sequence data

A Cytb genetic distance matrix for the primary clades of interest is shown in Table 1. Genetic divergence among
clades of the R. euryotis group is ca. 4\% (range: $0.48-$ 7.75%) for the Cytb gene.

Bayesian trees derived from analysis of the molecular data are shown in Fig. 4. For both genes, all recent specimens of R. 'arcuatus' from Sulawesi are closely related to each other, forming a monophyletic clade (clade H for both data sets) with high support values [Cytb: 1.00 posterior probability (pp) and 0.99 bootstrap support (bs); CR: 1.00 pp and 0.86 bs$]$. Surprisingly, the sister taxon to R. 'arcuatus' from Sulawesi is R. 'euryotis' also from Sulawesi, rather than nominal R. arcuatus from the Philippines, with high nodal support (Cytb: 1.00 pp and 0.96 bs ; CR: 0.97 pp and 0.64 bs). Specimens from the Philippines do form a well-supported clade (clades A-G for both Cytb and CR; Cytb: 0.95 pp and 0.34 bs ; CR: 1.00 pp and bs); however, taxa from each Philippine island are not monophyletic. The R. euryotis group proposed by Csorba et al. (2003) and Guillén-Servent et al. (2003) is upheld (Cytb: 1.00 pp and 0.9 bs ; CR: 1.00 pp and bs), with R. arcuatus, R. euryotis, and Rbinolophus shameli forming a monophyletic group.

$$
\begin{array}{|l|}
\hline \text { Rhinolophus arcuatus arcuatus Philippines } \\
\text { Rhinolophus "arcuatus" Sulawesi } \\
\text { Rhinolophus celebensis Sulawesi } \\
\text { Rhinolohus arcuatus proconsulis Sulawesi } \\
\text { Rhinolohus arcuatus proconsulis Borneo } \\
\text { Rhinolophus philippinensis Philippines } \\
\text { Rhinolophus macrotis Philippines } \\
\text { Rhinolophus sp nov Philippines } \\
\hline
\end{array}
$$

Fig. 3 Principal components analysis graphs for skull and wing data combined. All three graphs show the same data from different angles. The solid circle encloses the Rbinolophus "arcuatus" and R. 'a.' proconsulis specimens from Sulawesi. The dashed circle surrounds the specimens attributed to R. ' a.' proconsulis from Borneo.

Fig. 4 Rhinolophus phylogenies inferred using Bayesian inference. Non-italicized numbers at nodes indicate Bayesian posterior probabilities while italicized numbers are maximum-likelihood bootstrap values. A. Control region tree. Lettered clades correspond to the letters in Appendix I. B. Cytochrome b tree. Lettered clades correspond to the letters in Table 1.
L. E. Patrick et al. - Biogeography of the R. arcuatus complex

Fig. 4 (Continued).

Finally, R. celebensis is clearly distinct from remaining Sulawesi Rbinolophus and most closely associated with R. borneensis.

In the phylogenetic tree resulting from analysis of the CR (Fig. 4A), R. euryotis and R. 'arcuatus' from PNG are not as closely related to each other as are R. 'arcuatus' and R. 'euryo-
tis' from Sulawesi: the latter two are sister taxa, with PNG R. euryotis basal in the same clade; PNG R. 'arcuatus' have in contrast an unresolved relationship, using this marker, with a number of arcuatus group species from the Indo-Pacific. Rbinolophus philippinensis and Rbinolophus megaphyllus are likewise paraphyletic and share a clade with R. celebensis from Sulawesi. Interestingly, in the tree produced using Cytb sequences (Fig. 4B), two samples tentatively identified as Rbinolophus affinis from Borneo and another R. affinis sequence from GenBank groups with the R. euryotis group, although R. affinis is a member of the R. megaphyllus group.

Population genetic diversity and neutrality tests

Not all sequences used in the population genetic analyses represented unique haplotypes (Table 2). Among the Philippine Islands clades, there were fewer haplotypes than sequences for clades from Luzon and Mindoro Islands. The single specimen from Mindoro (M1068) shared a common haplotype with two specimens from Luzon (M49, M376) at both CR and Cytb. Also, clade designations varied between Cytb and CR, which is not unexpected given the varying rates of evolution for these mitochondrial markers.

Genetic diversity measures are shown in Table 3 for all sequence data sets (Cytb only, CR only, Cytb + CR). For concatenated $\mathrm{Cytb}+\mathrm{CR}$ sequences, the two Sulawesi clades (Clade H/R. 'arcuatus', and particularly Clade I/ R. 'euryotis') showed the highest levels of molecular diversity as indicated by nucleotide diversity and other measurements. For the Cytb only data set, Clade I (Sulawesi R. 'euryotis') had particularly high diversity, while Clade H (Sulawesi R. 'arcuatus'), although showing high levels of genetic diversity, did not stand out from other clades. For the CR only data set, Clade K (PNG R. 'arcuatus'), Clade I (Sulawesi R. 'euryotis') and Clade H (Sulawesi R. 'arcuatus') stand out with particularly high diversity measurements. The CR sequence data set was the only one that included samples from PNG. In general, measurements of genetic diversity were much lower with Cytb only data (average molecular diversity across clades: 3.23 , average nucleotide diversity across clades: 0.003) than when using only CR sequences (average molecular diversity: 6.34, average nucleotide diversity: 0.015). This is congruent with the hypothesis that the CR evolves more rapidly than Cytb.

Results for tests of neutrality are summarized in Table 3. Because both tests are based on polymorphism within clades, we could not determine selective neutrality for clades represented by single samples. For the Cytb +CR data set, the Clade F (CR)/Clade A (Cytb) complex (Luzon/Panay: R. arcuatus) was negative and significantly different from neutrality (P-value <0.05) for both Tajima's D (-1.37) and Fu's $F_{\mathrm{S}}(-2.72)$. Three other clades were not significantly different from neutral expectations using Fu's
F_{S}, but were marginally non-neutral using Tajima's D : (i) the Clade D (CR)/Clade B (Cytb) complex (R. arcuatus large) from Luzon (Tajima's $D: 0.44$), (ii) the Clade A (CR)/Clade E (Cytb) complex (Rhinolophus inops/subrufus) from Mindanao (0.74), and (iii) the Clade $\mathrm{H}(\mathrm{CR}) / \mathrm{Clade} \mathrm{H}$ (Cytb) complex (R. 'arcuatus') from Sulawesi (-0.33). Using the CR sequence data set, again Clade F (Luzon/Panay: R. arcuatus) exhibited significant departure from neutrality for both Tajima's $D(-1.12)$ and Fu's $F_{\mathrm{S}}(-4.56)$. Four other CR clades were significantly non-neutral for Tajima's D, but none had large Tajima's D values: Clade C (R. arcuatus) from Panay (-0.44), Clade D (R. arcuatus) from Luzon (-0.11), Clade H (R. 'arcuatus') from Sulawesi (0.03), and Clade I (R. 'euryotis) from Sulawesi (0.33). For the Cytb sequence data set, two clades showed significantly nonneutral and large Tajima's D and Fu's F_{S} values: (i) Clade A (Tajima's $D:-1.54$, Fu's F_{S} : -6.23), found on Luzon, Panay and Mindoro (R. arcuatus), and (ii) Clade H (R. 'arcuatus') from Sulawesi (Tajima's $D:-1.03$, Fu's $F_{\mathrm{S}}:-2.68$).

Population genetic structure

Global amova results, as a weighted average over loci, were very similar to those of the standard AMOVA, so are not included here. Although amova results for the three sequence data sets (Cytb $+\mathrm{CR}, \mathrm{CR}, \mathrm{Cyt}$) all showed highly significant levels of genetic structure (P-values $\ll 0.01$), the proportion of genetic variation found among groups (geographic location), among populations (clades) within groups, and within populations varied between data sets (Tables S3a-c). For the Cytb + CR data set, a clear majority of the genetic variation, 56.14%, was found among groups (Philippines, Sulawesi, Cambodia); 33.24% of the variation was contained among clades within groups; and 10.62% of the genetic variation was found within clades (Table S3a). The CR data set showed a similar trend, but much more genetic variation was found within clades, as would be expected under the model that the CR evolves faster than Cytb: 47.61% of the variation was among groups (Philippines, Sulawesi, Cambodia, PNG), 35.71% among clades within groups, and 16.68% within clades (Table S3b). On the other hand, in the Cytb sequence data set, most of the genetic variation was found among clades within groups (47.59%), rather than among groups (Philippines, Sulawesi, Cambodia: 44.74%), with little variation found within clades (7.67%; Table S3c). The Cytb data set shows higher global F_{ST} based on the amova ($F_{\mathrm{ST}}: 0.923$) than does the CR data set ($F_{\mathrm{ST}}: 0.833$). The large and significant proportion of variation found among populations is not surprising given that some clades actually represent distinct species, while others presently designated as populations of a single species (R. 'arcuatus') may represent heretofore cryptic species.
Table 3 Measures of genetic diversity and neutrality for three sets of sequence data (control region only, cytochrome b only, or both concatenated)

Sequence data set	Population	Species designator	No. genes	No. haplo.	No. loci	5	G	π	N	$\theta_{\text {s }}$	θ_{π}	Taj.'s D	Fu's F_{5}
Cytb + CR	Clade A (CR), Clade E (Cytb), Mnd.	Rhinolophus inops/subrufus	5	5	1343	14	1	7.5	0.006	6.7	7.4	0.74*	-0.75
Cytb + CR	Clade C (CR), Clade D (Cytb), Luz.	Rhinolophus 'arcuatus'	1	1	1344	0	1	NA	NA	NA	NA	NA	NA
Cytb + CR	Clade L (CR), Clade J (Cytb), Cam.	Rhinolophus shameli shameli	1	1	1341	0	1	NA	NA	NA	NA	NA	NA
Cytb + CR	Clade B (CR), Clade A(Cytb), Mdr.,Luz	Rhinolophus 'arcuatus'	1	1	1344	0	1	NA	NA	NA	NA	NA	NA
Cytb + CR	Clade C (CR), clade A (Cytb), Pan.	R. 'arcuatus'	3	3	1344	9	1	6.0	0.004	6.0	6.0	0	0.59
Cytb + CR	Clade D (CR), Clade B (Cytb), Luz.	R. 'arcuatus' Large	5	5	1343	11	1	5.2	0.004	5.3	5.6	0.44*	0.67
Cytb + CR	Clade E (CR), Clade A (Cytb), Luz.	R. 'arcuatus'	2	2	1344	4	1	4.0	0.003	4.0	4.0	0	1.39
Cytb + CR	Clade F (CR), Clade A(Cytb), Luz., Pan.	R. 'arcuatus'	11	11	1343	35	1	8.0	0.006	11.9	8.4	-1.37*	-2.72*
Cytb + CR	Clade G (CR), Clade C (Cytb), Mnd.	R. 'arcuatus'	2	2	1344	2	1	2.0	0.001	2.0	2.0	0	0.69
Cytb + CR	Clade H (CR), Clade H (Cytb), Sul.	R. 'arcuatus'	8	8	1342	36	1	12.3	0.009	13.9	13.0	-0.33*	-1.65
Cytb + CR	Clade I (CR), Clade I (Cytb), Sul.	Rhinolophus euryotis		2	1343	21	1	21.4	0.016	21.0	21.0	0	3.04
CR	Clade A, Mnd.	R. inops/subrufus	7	5	418	11	0.90	5.3	0.013	4.5	5.2	0.90	0.38
CR	Clade B, Luz./Mdr.	R. 'arcuatus'		1	419	0	0	NA	NA	NA	NA	NA	NA
CR	Clade C, Pan./Luz.	R. 'arcuatus'		5	419	11	0.93	4.5	0.011	4.8	4.5	-0.44*	-0.55
CR	Clade D, Luz.	R. 'arcuatus' Large	6	5	418	9	0.93	3.9	0.009	3.9	3.9	-0.11*	-0.81
CR	Clade E, Luz.	R. 'arcuatus'	3	3	419	5	1	3.4	0.008	3.3	3.3	0	-0.08
CR	Clade F, Luz./Pan.	R. 'arcuatus'	13	11	419	21	0.97	4.9	0.012	6.8	5.0	-1.12*	-4.56*
CR	Clade G, Mnd.	R. 'arcuatus' Small	2	2	419	1	1	1.0	0.002	1.0	1.0	0	0
CR	Clade H, Sul.	R. 'arcuatus'	9	8	417	25	0.97	8.9	0.021	9.2	9.3	0.03*	-1.21
CR	Clade I, Sul.	R. euryotis	8	6	418	27	0.93	11.6	0.028	10.4	11.1	0.33*	1.13
CR	Clade J, PNG	R. euryotis	1	1	419	0	1	NA	NA	NA	NA	NA	NA
CR	Clade K, PNG	R. 'arcuatus'	2	2	418	13	1	13.5	0.032	13.0	15.0	0	2.71
CR	Clade L, Cam.	R. shameli	1	1	416	0	1	NA	NA	NA	NA	NA	NA
CR	Clade M, Mnd.	Rhinolophus sp.	1	1	420	0	1	NA	NA	NA	NA	NA	NA
Cytb	Clade A, Luz./Pan./Mdr.	R. 'arcuatus'	22	15	925	22	0.96	3.2	0.003	6.0	3.5	-1.54*	-6.23*
Cytb	Clade B, Luz.	R. 'arcuatus' Large	5	4	925	4	0.90	1.6	0.002	1.9	2.0	0.27	0.64
cytb	Clade C, Mnd.	R. inops/subrufus	2	2	925	1	1	1.0	0.001	1.0	1.0	0	0
Cytb	Clade D, Luz.	Rhinolophus sp.	1	1	925	0	1	NA	NA	NA	NA	NA	NA
Cytb	Clade E, Mnd.	R. inops/subrufus	4	4	925	6	1	3.5	0.004	3.3	3.5	0.67	-1.01
Cytb	Clade F, Luz.	R. 'arcuatus' Wide		3	925	5	1	3.3	0.004	3.3	3.3	0	-0.08
Cytb	Clade H, Sul.	R. 'arcuatus'	8	7	925	12	0.96	3.2	0.003	4.6	3.7	-1.03*	$-2.68 *$
Cytb	Clade I, Sul.	R. euryotis	3	3	925	10	1	6.7	0.007	6.7	9.3	$1.4 \mathrm{E}+8$	1.07
Cytb	Clade J, Cam.	R. shameli	1	1	925	0	,	NA	NA	NA	NA	NA	NA

 able loci; ' S ', number of polymorphic sites; ' G ', gene diversity; ' π ', molecular diversity (mean no. pairwise differences between every pair of haplotypes); ' N ', nucleotide diversity (avg. over loci); ' θs^{\prime} ', Theta ($\left(\right.$); ' θ_{π} ', Theta (P). Location abbreviations: Sulawesi 'Sul.', Luzon 'Luz.', Panay 'Pan.', Mindanao 'Mnd.', Mindoro 'Mdr.', Cambodia 'Cam.', and Papua New Guinea 'PNG'.

We found significant and very strong genetic structure for most pairwise $F_{\text {ST }}$ values among clades regardless of the sequence data set used in the analysis (Tables S4-S6). However, perhaps more informative were rare cases of relatively small pairwise $F_{\text {ST }}$ values. For all sequence data sets, Clade H (Sulawesi R. 'arcuatus') showed particularly large and significant pairwise $F_{\text {ST }}$ values with all clades other than Clade I (Sulawesi R. 'euryotis'), including all other clades representing R. 'arcuatus' (Tables S4-S6). Regardless of the sequence data set used, Clade H had the smallest significant pairwise F_{ST} value with Clade I (Sulawesi R. 'euryotis'): Cytb + CR ($F_{\mathrm{ST}}: 0.75$), Cytb only ($F_{\mathrm{ST}}: 0.81$) and CR only ($F_{\mathrm{ST}}: 0.70$). In addition, several pairs of Philippine Islands clades showed small pairwise $F_{\text {ST }}$ values relative to the average. In particular, the Clade F (CR)/Clade A (Cytb) complex (R. arcuatus) showed relatively small pairwise F_{ST} with the Clade $\mathrm{D}(\mathrm{CR}) / \mathrm{Clade} \mathrm{B}$ (Cytb) complex (R. arcuatus large, $F_{\mathrm{ST}}: 0.67$) and with the Clade $\mathrm{C}(\mathrm{CR}) /$ Clade A (Cytb) complex (R. arcuatus, $F_{\mathrm{ST}}: 0.48$) (Table S4). These values are small only relative to the average significant $F_{\text {ST }}$ value (Cytb + CR data set: 0.82 , Cytb data set: 0.89 , CR data set: 0.74); even the smallest of the statistically significant pairwise $F_{\text {ST }}$ values were relatively large (Cytb + CR: 0.48, Cytb: 0.70, CR: 0.19; Tables S4-S6), with the possible exception of the smallest pairwise F_{ST} value from the CR data set (Table S6).

Minimum spanning trees (MST) produced from each of the sequence data sets reflect previously indicated structure (Figs S1-S3). All MSTs show that Clade H (Sulawesi R. 'arcuatus') is genetically more distant from remaining R. 'arcuatus' clades than Clade I (Sulawesi: R. 'euryotis') is from those clades, and that Clades I and H are more genetically similar to each other than to any other clade (Figs S1-S3).

Molecular dating

Our analysis assumed an initial diversification date of 45 MYA for Rhinolophoidea (cladogenesis between Hipposideridae and Rhinolophidae) in the relaxed lognormal molecular clock model implemented by beast. Estimated divergence dates for the major lineages were mapped onto the tree resulting from the MCMC analysis by beast (Fig. S4), as were the upper and lower bounds of the 95% HPD for each node. The hypothesized estimates for major cladogenic events are listed in Table 4. The results are generally congruent with those of the Cytb tree (Fig. 4B) and shed additional light on major biogeographic events in the region. Clade A identified in Fig. 4B is constituted by the 'small' and 'narrow' R. arcuatus. This clade separated from its sister taxon R. arcuatus 'large' ca. 1.2 MYA and diversified into a Mindoro and Luzon Isl. group and a Panay Isl. group ca. 775 KYA. The Luzon group includes individuals
previously identified by Sedlock \& Weyandt (2009) as the narrow sella morph individuals and appears distributed at least on Mt. Makiling (Luzon), Zambales Mts. (Luzon) and Mindoro Isl. These individuals appear to form a primarily montane forest species although they were sampled as low as 620 m on Mt. Makiling. Individuals in clade A from Panay - which is separated from Greater Luzon by persistent deep water channels - are distinct from the Greater Luzon individuals and appear to have diversified in Panay ca. 380 KYA. Clade B, R. arcuatus 'large' of Ingle \& Heaney (1992) separated from the 'narrow sella' group, Clade A, 1.2 MYA, with the specimens we examined from the Zambales Mts. diversifying ca. 442 KYA. Clade C includes specimens previously referred to as R. arcuatus from Mindanao, including a putative 'small' form (sensu Ingle \& Heaney 1992); this clade originated 1.62 MYA , and the specimens we sampled diversified ca. 406 KYA. Clade D is constituted by members of an undescribed species from the Zambales Mts. of Luzon Isl. and originated 2.03 MYA, diversifying ca. 1.24 MYA. Clade E, including specimens referred to as either R. inops or R. subrufus, from Mindanao originated 3.3 MYA, but had a relatively recent diversification on Mindanao based on the specimens that we examined; the most ancient event was 690 KYA , but two branching events in this clade were congruent with the Last Glacial Maximum (97 and 77 KYA). Clade F includes individuals previously identified by Sedlock \& Weyandt (2009) as belonging to the 'wide sella' morph of R. arcuatus, from lowland forest in Luzon's Mt. Makiling. This clade originated about 4 MYA and diversified about 1 MYA. Clade G includes an undescribed species of Rhinolophus from Mindanao Isl., Philippines. This clade originated 4.23 MYA and diversified 2.67 MYA. Clades H and I include the undescribed R. 'arcuatus' group species from Sulawesi (Clade H) as well as presumptive R. 'euryotis', also from Sulawesi. The origin of the joint clades is estimated at 5.20 MYA . Diversification between Clades I and J occurred 2.14 MYA, with R. 'euryotis' diversifying in Sulawesi ca. 1.28 MYA , and the undescribed R. 'arcuatus', more recently at 400 KYA . The branch leading to R. affinis originated 10.34 MYA and includes relatively deep internal divergences, suggesting the possibility of a morphologically cryptic species complex; the two specimens from Borneo are hypothesized to have separated from the Chinese lineage 3.13 MYA. The clade including R. celebensis, Rbinolophus virgo, Rbinolophus macrotis, Rbinolophus pusillus, Rbinolophus monoceros, and Rbinolophus cornutus originated 16.88 MYA, with an internal divergence estimate of 12.50 MYA. Rbinolophus celebensis appear relatively homogeneous and are hypothesized to have diversified 1.81 MYA, following a cladogenic event from the lineage leading to R. virgo at 6.29 MYA. That lineage in turn diverged from

Table 4 Results of the temporal estimates of diversification based on the relaxed lognormal molecular clock model implemented by BEAST

Species or Species group	Clade	Origin	Diversification	Notes
Rhinolophus euryotis group	A	0.78	0.75	Luzon \& Mindoro
	A	0.78	0.38	Panay
	B	1.23	0.42	arcuatus 'large'
	C	1.62	0.41	'arcuatus' Mindanao
	D	2.03	1.24	R. sp A, Philippines
	E	3.31	0.69	inops or subrufus
	F	3.99	0.91	arcuatus 'wide sella'
	G	4.23	2.67	R. sp B, Philippines
	H, I	5.20		Origin of H \& I clades
	H	2.14	0.40	R. cf. arcuatus, Sulawesi
	1	2.14	1.28	R. euryotis, Sulawesi
	J	5.53	-	Rhinolophus shameli, Cambodia
Rhinolophus affinis		10.34	3.13	3.13 MYA distinguishes specimens between China and Borneo (62 KYA)
Rhinolophus sinicus		14.53	-	
cornutus-monoceros-pusillus-macrotis-virgo-celebensis		16.88	12.50	
Rhinolophus macrotis vs. virgo-celebensis		11.05	-	
R. macrotis			4.13	Separating specimens between Nepal and China
R. virgo v. Rhinolophus celebensis		6.29	1.81	Diversification estimate for R. celebensis only
cornutus-monoceros-pusillus		12.50	3.38	Origin relative to macrotis-virgo-celebensis
Rhinolophus cornutus		3.38	0.50	
Rhinolophus monoceros		1.70	-	
Rhinolophus pusillus		1.70	1.27	
Rhinolophus euryale- Rhinolophus ferrumequinum		18.05	11.08	
R ferrumequinum		11.08	3.58	Separates specimens between China and Japan
Rhinolophus pearsoni		19.69	9.94	Deep divergence estimates suggest a morphologically cryptic polytypic species complex
Rhinolophus luctus-R. hipposideros		21.11	19.38	
R. luctus		19.38	1.15	
R. hipposideros		19.38	0.95	
Rhinolophus, initial diversification		21.11		
Hipposideros-Rhinolophus (root)		45.0		
Hipposideros, initial diversification		24.24		
Hipposideros sp A		26.24	-	Sulawesi
Hipposideros armiger armiger-diadema-pratti		24.24	15.84	
Hipposideros diadema- Hipposideros pratti		15.48	-	

Estimated divergence dates for the major lineages were mapped onto the tree resulting from the MCMC analysis by beast (Fig. S4), as were the upper and lower bounds of the 95% highest posterior density (HPD) for each node. Our analysis assumed an initial diversification date of 45 MYA for Rhinolophoidea (cladogenesis between Hipposideridae and Rhinolophidae; see Materials and methods). Clade refers to the results of the Bayesian analysis of the Cytochrome b gene (Fig. 4B), where applicable, that is, in the euryotis group that includes Rhinolophus arcuatus. Origin refers to hypothesized estimate for the cladogenesis of the branch including that group, in millions of years. Diversification refers to the deepest internal diversification, also in millions of years (refer to Fig. S4).
the R. macrotis lineage at 11.05 MYA. Specimens of R. macrotis from Nepal and China show deep divergence suggesting that they may represent independent species; the R. macrotis specimen from Nepal is from south of the Himalayas, whereas the Chinese specimen is from Yunnan Province, well east of the Naga Hills that form a southward highland extension of the Himalayas terminating in the Indian Ocean. The R. macrotis-virgo-celebensis lineage is hypothesized to have differentiated from the R. cornutus-monoceros-pusillus lineage ca. 12.50 MYA , with internal diversification among species in the clade occurring ca. 3.38 MYA between R. cornutus and R. monoceros/R. pusillus. Cladogenesis between R. pusillus and R. monoceros is
hypothesized to have occurred 1.70 MYA , with internal diversification of R. pusillus from the Hainan region beginning ca. 1.27 MYA. The lineage including the European Rhinolophus euryale and putatively widespread Eurasian Rbinolophus ferrumequinum diverged from the aforementioned clades ca. 18.05 MYA , with divergence between R. euryale and R.ferrumequinum hypothesized to have occurred 11.08 MYA. Rbinolophus ferrumequinum lineages from Yunnan and Japan diverged ca. 3.58 MYA.

The Rbinolophus pearsoni clade presents some interesting features: the initial lineage divergence from remaining Rbinolophus is hypothesized to have occurred ca. 19.69 MYA, with a relatively deep internal diversification among
specimens identified as R. pearsoni taking place ca. 9.94 MYA. Furthermore, that estimate separates two clades of R. pearsoni, each with representatives in China and Vietnam. In one clade, divergence between Chinese and Vietnamese lineages is estimated at 7.14 MYA , in the other, at 4.68 MYA. Internal (non-geographic) divergence estimates are 162 KYA (Guanxi, China) and 1.02 MYA (Lang Son, Vietnam). These data strongly suggest that there exist at least four distinct species-level taxa within what currently is recognized as R. pearsoni.

The final Rbinolophus lineage resulting from our analyses comprises R. luctus and R. bipposideros. This lineage represents an early divergence event within Rbinolophus (21.11 MYA), with divergence between the two species hypothesized to have taken place ca. 19.38 MYA. Internal divergence within the species are more recent: 1.15 MYA in R. luctus (between Burma and Huibei, China) and 950 KYA in R. hipposideros between Greece and United Kingdom.

Divergence estimates within Hipposideros were not strictly a part of this study as we used the several hipposiderid taxa as out-groups to root the Rbinolophus tree. Divergences among species in Hipposideros that we examined (15.4826.24 MYA) were generally deeper than those in Rbinolophus (see Fig. S4, Supporting Information).

Discussion

Both morphological and genetic data ineluctably lead to the conclusion that specimens of R. 'arcuatus' collected in Sulawesi represent an undescribed species. The morphological data show a clear distinction between Sulawesi and Philippine R. 'arcuatus' notwithstanding the tendency for morphology to be highly conserved in the R. arcuatus complex. Likewise, Bornean R. ' a.' proconsulis is morphologically distinct from R. arcuatus from the Philippines. Based on these results, we recommend that the subspecies proconsulis (restricted to Borneo) be elevated to species level, as it is not morphologically congruent with R. arcuatus. This diagnosis is hampered by the lack of genetic samples of Bornean R. ' a.' proconsulis to compare to Philippine R. arcuatus, but the morphological data are unequivocal. Available genetic data show that the Sulawesi R. 'arcuatus' are more closely related to R. 'euryotis' from Sulawesi than they are to the Philippine R. arcuatus. Indeed, based on Bayesian analyses, the genetic distance between the Sulawesi R. 'arcuatus' and the Philippine R. arcuatus is ca. 4%, which is the same as or greater than that between other wellestablished species within the R. euryotis group. This is greater than the 2.5% distance proposed by Bradley \& Baker (2001), as suggestive of species separation, and is particularly informative in light of the 5% difference between the clearly and definitively recognized species R. shameli from Cambodia and R. 'arcuatus' from Sulawesi.

In contrast, R. 'arcuatus' and R. 'euryotis' from Sulawesi are only 2.2% divergent yet are considered distinct species based on nasal sella morphology.
Analyses of the cranial data alone (data not shown) are similar to those of cranial and wing data combined, supporting the contention that morphological characters of the skull are important in differentiating among species. However, when wing morphology alone is considered (data not shown), there is no distinction among taxa or geographic areas. This morphological conservatism suggests that these bats are foraging in a similar manner, and may be part of the reason these specimens have so long been considered as a single species.

As is the case in the Philippines, there is within Sulawesi the potential for recognition of more than one form of R. 'arcuatus'. The most recent specimens were collected in the montane and submontane transitional forest of Tengah Province (2120 m), whereas the single other specimen previously collected was found in the lowland rainforests of Poso (Hill 1988). Elevational preferences have also been reported for R. arcuatus in the Philippines (Ingle \& Heaney 1992; Sedlock \& Weyandt 2009). Morphological data for the Sulawesi animals suggest that these specimens are poorly differentiated; however, without genetic data from lowland R. 'arcuatus' to corroborate the morphological results, we must remain open to the possibility of more than one species within Sulawesi R. 'arcuatus'. Morphological data demonstrate a large difference between the lowland Sulawesi specimen attributed to R. ' a.' proconsulis by Hill (1988) and Bornean R. proconsulis (previously R. a.proconsulis); it is therefore likely that they are distinct species. Indeed, it has recently been pointed out that some specimens of R. affinis have been erroneously identified as R. arcuatus (Suyanto \& Struebig 2007), further confusing the identification of both new and old specimens. Perhaps the only way to sort out these issues is by using molecular techniques; unfortunately, there are no tissues associated with Hill's nominal R. ' a.' proconsulis from Borneo or his Sulawesi specimen.

Based on the CR data, R. ' a.' mcintyrei (Hill \& Schlitter 1982) on PNG is also distinct from near topotypical R. arcuatus and should be elevated to specific status as R. mintyrei. The type locality of R. euryotis is Ambon Island, in the Molucca Archipelago, on the Sahul Shelf (Australia, New Guinea and adjacent islands). Our results clearly demonstrate that island populations of Rbinolophus species display a propensity for speciation, a phenomenon potentially explained by Kingston \& Rossiter (2004). However, in the absence of data to the contrary, it is perhaps expedient to hypothesize conspecificity to Sulawesi and Sahul Shelf R. euryotis (CR clade J), which would pro tempore retain the name. The specifically distinct species from $\mathrm{Su}-$ lawesi (Clade I: R. 'euryotis') now adopts the name Rbinolo-
phus tatar Bergmans \& Rozendaal, 1982. We note, however, that the type locality of R. tatar is the Dumoga Nature Reserve, in Sulawesi's Northern Peninsula. Because there are strong differences among other taxa from the different regions of Sulawesi (Evans et al. 2003), which became a single island only recently (Hall 1996, 2002), and because the Sulawesi material examined herein as putative R. tatar is from the Central Core region of Sulawesi, it remains possible that our material represents something distinct from R.tatar; this hypothesis requires further testing.

Population genetic analyses indicate very strong genetic structure among clades, particularly between R. 'arcuatus' from Sulawesi and the other R. arcuatus clades from the Philippine Islands and PNG. This is not surprising given that these clades are separated by considerable expanses of ocean. The presence of stronger genetic structure between 'populations' (clades) of the 'same' species on different islands than between different species on the same island additionally supports the hypothesis that in situ morphologically cryptic speciation has occurred. While a few clades from the Philippine Islands, such as Clade A (Cytb) may represent very diverged populations of R. arcuatus, it is unlikely that even all Philippine clades presently identified as R. arcuatus constitute a single species. The strong structure found among the Philippine clades suggests that gene flow among islands is limited, which would be expected if bats in populations currently ascribed to the single species R. arcuatus are not very vagile. During the last Pleistocene glaciations, the four major island groups of the Philippines were never in contact with each other (Inger 1954; Voris 2000). Nevertheless, specimens from Luzon and Mindoro share a haplotype. These two islands are very close to each other (16 km presently, marginally closer during the last ice age), suggesting a possible minimum distance between islands insufficient to prevent dispersal, notwithstanding the deep (permanent) channel separating the two islands (Smith 1912; Voris 2000).

Levels of genetic diversity were highest for clades in Sulawesi and PNG. This is not particularly surprising in the case of PNG, as it has a larger land area (thus in theory is able to support larger effective population sizes) and was in contact with mainland Australia at various points in the Pleistocene as part of a Greater Sahul Shelf landmass; the depth of the Torres Strait is under 10 m , suggesting that land connection would have been available during much of the geological past. It was unexpected that Clades H (R. 'arcuatus') and I (R. 'euryotis') from Sulawesi show such high levels of genetic diversity in comparison with nominal R. arcuatus clades on Luzon, Panay, Mindoro, and Mindanao. These are all oceanic islands that have never had contact with the mainland. The Philippine islands are further
north in the Indo-Malayan region and therefore potentially more isolated from sources of colonization than is Sulawesi. Other studies have indicated that colonization of islands seems to have occurred in a stepwise fashion with some species of bats, from west to east, with genetic diversity showing a corresponding decrease with distance from the mainland (Schmitt et al. 1995; Maharadatunkamsi et al. 2000). Unfortunately, in order to determine if this is the case with R. euryotis group species, we first would need to determine true biological species limits on all these islands, and further, would need samples from other islands, particularly Borneo: the putative stepping stone to both the Philippine Archipelago and Sulawesi.

Our data suggest that nominal R. arcuatus group species show limited dispersal even within the Philippines. This further supports the idea that R. 'arcuatus' clades from $\mathrm{Su}-$ lawesi and PNG are not merely disjunct populations of a single species, but rather that those clades are sufficiently diverged to represent different species.

One potential caveat to the genetic data presented here is that only mitochondrial genes were used to infer the phylogenies. It is possible that mitochondrial introgression could impact our conclusions based on the phylogenies; only by including nuclear data can we be sure that our mitochondrial gene trees reflect the true species trees (Funk \& Omland 2003). However, our taxonomic suggestions are based on both morphological and genetic data and so should not be greatly skewed or affected by mitochondrial introgression.

The evidence presented here suggests that Rhinolophidae in South-East Asia have undergone replicated adaptive radiations, with the result that similar morphotypes appearing on different islands or archipelagoes are less closely related to each other than to different morphotypes on the same island or archipelago (R. M. Brown, pers. comm.). This phenomenon has been demonstrated by Losos et al. (1998) in the Anolis lizards of the Greater Antilles. At least two other research groups have shown this to be the case with rhinolophid bats in South-East Asia. Cooper et al. (1998) demonstrated that R. philippinensis, R. megaphyllus, and an intermediate form from the same geographic area, were more closely related to each other than either were to the same morphotypes from different areas in eastern Australia and PNG. Kingston \& Rossiter (2004) showed similar results in the same species group from Sulawesi, and suggested that changes in primary echolocation frequency ('harmonic hopping') is the mechanism driving evolutionary change and consequent rapid speciation. Recently, Murray et al. (2012) found similar patterns of cryptic diversity in the genus Hipposideros throughout South-East Asia and hypothesized that this diversity was likely produced by mechanisms comparable to those acting on Rbinolophus. In
the case of the data presented here, the R. arcuatus sensu lato and R. 'euryotis' from Sulawesi are more closely related to each other than they are to their putative conspecific counterparts on different islands.

The biogeography of South-East Asia has fascinated scientists since the time of Wallace. Geological features and repeated effects of glaciations on connectivity of islands in this region have given rise to complex faunas made up of both continental and island-derived species (Stelbrink et al. 2012). While interesting, these phenomena have served to confound a clear picture of the systematics of many organisms. We have not provided a fully resolved phylogeny for all members of the R. euryotis group due to a lack of data; however, we demonstrate that it is a complex of several morphologically cryptic species-level taxa. Our revelation of replicated adaptive radiations in this biologically complex group of bats sows the seed for future biogeographic studies of this equally complex region.

Taxonomic summary

The present analysis was explicitly focused on R. arcuatus and the R. euryotis species group. Accordingly, the taxonomic summary is primarily concerned with these species. The astute reader no doubt will have noted that the results of the molecular dating analysis suggest the presence of additional morphologically cryptic species in specimens identified as belonging to R. macrotis, R. ferrumequinum and R. pearsoni. More detailed analyses of those taxa should be undertaken to reveal whether the hypotheses suggested in the present work indeed are borne out.

Rbinolophus arcuatus, Philippines

The Philippine Archipelago populations were not the focus of this work. Hence, we will limit ourselves to summarize potential taxonomic conundrums. We strongly suspect the presence of at least five species in the R. arcuatus complex. Ingle \& Heaney (1992) split R. arcuatus from Luzon into 'large' and 'small' morphs. In addition, an intermediate morph is present in Luzon's Zambales Mountains, sympatrically with the former two morphs (L. A. Ruedas, unpublished observations of specimens in National Museum of the Philippines and Cincinnati Museum of Natural History). An additional distinct morph is present in Panay (specimens in CMNH). The picture was further complicated by Sedlock \& Weyandt (2009), who documented the existence of sympatric 'wide sella' and 'narrow sella' forms on Mt. Banahaw, Luzon. It is unclear whether these belong to either of the previously documented R. arcuatus large or R. arcuatus small species: Ingle \& Heaney (1992) list forearm measurements as 4345.5 mm (small morph) and $47-50 \mathrm{~mm}$ (large morph); the specimens of Sedlock \& Weyandt (2009) range from 45.35 ± 1.83 (mean \pm SD, narrow morph) to 46.58 ± 1.73 (wide morph). Thus, they overlap both previously docu-
mented morphs (measurements not available for intermediate morph of Zambales). These data suggest that there may be as many as five species present in Luzon alone, with additional species on the various remaining islands of the archipelago. We recommend that a formal description be undertaken so that at least a comparative framework may be established to assess species limits of Philippine R. arcuatus.

Rhinolophus arcuatus proconsulis, Borneo

Our morphological data show that this taxon is morphologically distinct and unlikely to be conspecific with any R. arcuatus from the Philippines. Furthermore, from an ecological perspective, while Philippine Archipelago R. arcuatus appear to be forest species, this taxon was collected in a cave. Accordingly, this taxon should henceforth be known as Rbinolophus proconsulis Hill, 1959.

Rhinolophus arcuatus proconsulis, Sulawesi

This specimen, another cave dwelling taxon, was assigned by Hill (1988) to R. arcuatus proconsulis. Our morphological data indicate that this taxon is neither conspecific with putatively topotypical Luzon R. arcuatus nor with R. proconsulis from Borneo. No name is available, but an extensive description was provided by Hill (1988), under the assumption that this taxon belonged in R. a. proconsulis. We suggest the name Rbinolophus belligerator. The name (Latin: belligerent combatant, 3rd declension nominative masculine; rather than bellator, a more legitimate soldier or warrior) is suggested because the single known specimen is from Permana Cave, near Poso, Sulawesi Tengah Province, Sulawesi, Indonesia. The name is suggested because the specimen originates in an area where a long-running and senseless Muslim-Christian civil war has been going on for many years. Hill (1988) provided a description and identified the sole known specimen (Natural History Museum, London, 1987.45), which becomes the holotype.
Rbinolophus arcuatus, Sulawesi Central Core area (this paper)

The specimens analysed in this manuscript resulting from the collections of LAR and collaborators in the Central Core of Sulawesi (Toraja Highlands and Danau Lindu regions), all forest bats, are herein definitively shown not to be conspecific with Philippine R. arcuatus and are additionally distinct from the lowland troglodytic R. belligerator. Accordingly, they constitute a novel species. We do not wish to assign a name at this time: a full description will be forthcoming.

Rbinolophus arcuatus mcintyrei, New Guinea

Based on our analysis of the mitochondrial CR sequence data, R. a. mcintyrei (Hill \& Schlitter 1982), from PNG, is distinct from putatively topotypical R. arcuatus. This taxon should henceforth be known as R. mcintyrei Hill and Schlitter, 1982.
Rhinolophus euryotis, New Guinea and outlying islands (Sahul Shelf)

As indicated in the body of the text above, this taxon is as problematic as R. arcuatus. Our data demonstrate the presence of at least two species: one on the Sahul Shelf (Australia, New Guinea and adjacent islands) and another on Sulawesi. The type locality of R. euryotis is Ambon Island, in the Molucca Archipelago, on the Sahul Shelf. Accordingly, and for now, Sahul Shelf populations (to the exclusion of Sulawesi populations, below) should retain the name R. euryotis Temminck, 1834.

Rbinolophus euryotis, Sulawesi

Our data demonstrate that the Sulawesi populations that we examined from the Central Core region of Sulawesi and heretofore assigned to R. euryotis are not conspecific with R. euryotis as restricted above to the Sahul Shelf. Accordingly, the specifically distinct species from Sulawesi is likely R. tatar Bergmans and Rozendaal, 1982 which those authors note was confounded with R. euryotis by Tate \& Archbold (1939). Readers are cautioned that - as is the case with R. arcuatus - there may exist additional, morphologically cryptic species in the R. tatar species complex present on Sulawesi (see Discussion in the text).

Acknowledgements

Field work and some sequencing undertaken for this work were supported by NSF grant DEB-007555 to Juan Carlos Morales and LAR and a National Geographic Society grant to LAR. Travel by LAR to the Natural History Museum (London) was supported in part by the Julia and Albert Smith Foundation. Research and collection permits were granted by the Indonesian Institute of Sciences, Lembaga Ilmu Pengetahuan Indonesia (LIPI). Export permits were granted by the Indonesian Ministry of Forestry under authority of the National Museum of Indonesia, Cibinong ('Bogor Museum'). LEP wishes to thank her former laboratory mates in the Ruedas lab, Mandy Cook, Georgia Cadlo-French, and the collections managers at USNM, FMNH and CMNH.

References

Bergmans, W. \& Rozendaal, F. G. (1982). Notes on Rhinolophus Lacépède, 1799 from Sulawesi, Indonesia, with the description of a new species (Mammalia, Microchiroptera). Bijdragen tot de Dierkunde, 52, 169-174.
Bradley, R. D. \& Baker, R. J. (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy, 82, 960-973.
Chattopadhyay, B., Schuller, G., Garg, K. M. \& Kandula, S. (2010). A new phonic type of the rufous horseshoe bat Rhinolophus rouxii from southern India. Current Science, 99, 114-118.
Cooper, S. J. B., Reardon, T. B. \& Skilins, J. (1998). Molecular systematics of Australian rhinolophid bats (Chiroptera: Rhinolophidae). Australian Fournal of Zoology, 46, 203-220.
Csorba, G., Ujhelyi, P. \& Thomas, N. (2003). Horseshoe Bats of the World (Chiroptera: Rbinolophidae). Bishop's Castle, UK: Alana Books.

Drummond, A. J. \& Rambaut, A. (2007). Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 1-8.
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. \& Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.
Evans, B. J., Supriatna, J., Andayani, N., Setiadi, M. I., Cannatella, D. C. \& Melnick, D. J. (2003). Monkeys and toads define areas of endemism on Sulawesi. Evolution, 57, 1436-1443.
Excoffier, L., Smouse, P. \& Quattro, J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
Excoffier, L., Laval, G. \& Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Excoffier, L., Laval, G. \& Schneider, S. (2006). Arlequin ver 3.1 User Manual Arlequin ver 3.1: An Integrated Software Package for Population Genetics Data Analysis. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne.
Freeman, P. W. (1981). A multivariate study of the Family Molossidae (Mammalia: Chiroptera): morphology, ecology, and evolution. Fieldiana Zoology, 7, 1-173.
Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925.
Funk, D. J. \& Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397-423.
Guillén-Servent, A., Francis, C. M. \& Ricklefs, R. E. (2003). Phylogeny and biogeography of the Horseshoe bats. In G. Csorba, P. Ujhelyi \& N. Thomas (Eds) Horseshoe Bats of the World (Chiroptera: Rinolophidae) (pp. xii-xxiv). Bishop's Castle, UK: Alana Books.
Hall, R. (1996). Reconstructing Cenozoic SE Asia. In R. Hall \& D. J. Blundell (Eds) Tectonic Evolution of Southeast Asia (pp. 153184). London: Geological Society.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353431.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Heaney, L. R., Balete, D. S., Dolar, L., Alcala, A. C., Dans, A., Gonzales, P. C., Ingle, N. R., Lepiten, M. V., Oliver, W. L. R., Ong, P. S., Rickart, E. A., Tabaranza, B. R. Jr., \& Utzurrum, R. C. B. (1998). A synopsis of the mammalian fauna of the Philippine Islands. Fieldiana Zoology, 88, 1-61.
Hill, J. E. (1959). Bats in limestone of Sarawak. The Annals and Magazine of Natural History, 13, 85-91.
Hill, J. E. (1988). A record of Rbinolophus arcuatus (Peters, 1871) (Chiroptera: Rhinolophidae) from Sulawesi. Mammalia, 52, 588589.

Hill, J. E. (1992). Order Chiroptera. In G. B. Corbet \& J. E. Hill (Eds) The Mammals of the Indomalayan Region: A Systematic Review. New York, NY: Oxford University Press.
Hill, J. E. \& Schlitter, D. A. (1982). A record of Rbinolophus arcuatus (Chiroptera: Rhinolophidae) from New Guinea, with the
description of a new subspecies. Annals of Carnegie Museum of Natural History, 51, 455-464.
Ho, S. Y. W. (2007). Calibrating molecular estimates of substitution rates and divergence time in birds. Fournal of Avian Biology, 38, 409-414.
Huelsenbeck, J. P. \& Ronquist, F. (2001). MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755.
Inger, R. F. (1954). Systematics and zoogeography of Philippine Amphibia. Fieldiana Zoology, 33, 181-531.
Ingle, N. R. \& Heaney, L. R. (1992). A key to the bats of the Philippine Islands. Fieldiana Zoology, 69, iii-44.
Kingston, T. \& Rossiter, S. J. (2004). Harmonic-hopping in Wallacea's bats. Nature, 429, 654-657.
Koopman, K. F. (1994). Cbiroptera: systematics. Berlin, Germany: W. de Gruyter.

Lacépède, B. G. E. de. (1799). Mémoire sur une nouvelle table méthodique des animaux à mamelles Mémoires de l'Institut National des Sciences et des Arts. Sciences Mathématiques et Physiques, 3, 469-502.
Losos, J. B., Jackman, T. R., Larson, A., de Queiroz, K. \& Rodri-guez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science, 279, 21152118.

Maharadatunkamsi, Hisheh, S., Kitchener, D. J. \& Schmitt, L. H. (2000). Genetic and morphometric diversity in Wallacea: geographical patterning in the horse shoe bat, Rbinolophus affinis. Fournal of Biogeography, 27, 193-201.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. \& Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemistry and Physics, 21, 1087-1091.
Murray, S. W., Campbell, P., Kingston, T., Zubaid, A., Francis, C. M. \& Kunz, T. H. (2012). Molecular phylogeny of hipposiderid bats from Southeast Asia and evidence of cryptic diversity. Molecular Phylogenetics and Evolution, 62, 597-611.
Nei, M. (1987). Molecular Evolutionary Genetics. New York, NY, USA: Columbia University Press.
Norberg, U. M. \& Rayner, J. M. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy, and echolocation. Pbilosophical Transactions of the Royal Society of London B, 316, 335-427.
Nylander, J. A. A. (2004). MrModeltest. Evolutionary Biology Centre, Uppsala University: Program distributed by author.
Page, R. D. M. (1996). TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357-358.
Peters, W. C. H. (1871). Über die Gattungen und Arten der Huffaisennasen, Rhinolophi. Monatsberichte der Königlichen-Preussischen Akademie der Wissenschaften zu Berlin, 1871, 301-322.
Rambaut, A. \& Drummond, A. J. (2004). Tracer v1.5. [Computer software]. Available via http://tree.bio.ed.ac.uk/software/tracer/
Rohlf, F. J. (1973). Algorithm 76: hierarchical clustering using the minimum spanning tree. Computer Fournal, 16, 93-95.
Schmitt, L. H., Kitchener, D. J. \& How, R. A. (1995). A genetic perspective of mammalian variation and evolution in the Indonesian Archipelago: biogeographic Correlates in the Fruit Bat Genus Cynopterus. Evolution, 49, 399-412.
Sedlock, J. L. \& Weyandt, S. E. (2009). Genetic divergence between morphologically and acoustically cryptic bats: novel
niche partitioning or recent contact? Fournal of Zoology, 279, 388-395.
Shapiro, B., Ho, S. Y. W., Drummond, A. J., Suchard, M. A., Pybus, O. G. \& Rambaut, A. (2011). A Bayesian phylogenetic method to estimate unknown sequence ages. Molecular Biology and Evolution, 28, 879-887.
Sigé, B. (1990). Nouveaux Chiroptères de l'Oligocène Moyen des phosphorites du Quercy, France. Comptes Rendus de l'Académie de Sciences, Série II, 310, 1131-1137.
Simmons, N. B. (2005). Order Chiroptera. In D. E. Wilson \& D. M. Reeder (Eds) Mammal Species of the World: A Taxonomic and Geographic Reference (pp. 312-529). Baltimore, MD, USA: Johns Hopkins University Press.
Smith, H. M. (1912). The chimeroid fishes of the Philippine Islands, with description of a new species. Proceedings of the National Museum of Natural History, 42, 231-232.
Stelbrink, B., Albrecht, C., Hall, R. \& von Rintelen, T. (2012). The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace's "anomalous island"? Evolution, 66, 2252-2271.
Sun, K.-P., Feng, J., Jiang, T.-L., Ma, J., Zhang, Z.-Z. \& Jin, L.-R. (2008). A new cryptic species of Rhinolophus macrotis (Chiroptera: Rhinolophidae) from Jiangxi Province, China. Acta Chiropterologica, 10, 1-10.
Suyanto, A. \& Struebig, M. J. (2007). Bats of the Sangkulirang limestone karst formations, East Kalimantan - a priority region for Bornean bat conservation. Acta Cbiropterologica, 9, 67-95.
Swofford, D. L. (2000). PAUP*. Phylogenetic Analysis Using Parsimony (* and other Methods). Sunderland, MA: Sinauer Associates, Inc.
Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437-460.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595.
Tajima, F. (1993). Measurement of DNA polymorphism. In N. Takahata \& A. G. Clark (Eds) Mechanisms of Molecular Evolution. Introduction to Molecular Paleopopulation Biology (pp. 37-59). Tokyo: Japan Scientific Societies Press and Sunderland, MA: Sinauer Associates, Inc.
Tajima, F. (1996). The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics, 143, 1457-1465.
Tamura, K. \& Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526.
Tate, G. H. H. \& Archbold, R. (1939). Results of the Archbold Expeditions. No. 24. Oriental Rbinolophus with special reference to material from the Archbold Collections. American Museum Novitates, 1036, 1-12.
Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Fournal of Biogeography, 27, 1153-1167.
Weir, B. S. \& Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Zwickl, D. J. (2006). Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion. Austin: The University of Texas at Austin.
Appendix 1 Samples used in the phylogenetic analyses Sequences generated by this study are bolded. 'Species' indicates original collector or museum identification. Field Museum
of Natural History (FMNH), National Museum of Natural History (USNM), Hungarian Museum of Natural History (HMNH), Cincinnati Museum of Natural History and Science of Natural History (FMNH), National Museum of Natural History (USNM), Hungarian Museum of Natural History (HMNH), Cincinnati Museum of Natural History and Science

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
		Hipposideros armiger			DQ297609		No	DQ297585		No
		Hipposideros diadema			HDU95338		No	DQ219421		No
	RCD3809	Hipposideros pomona	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130's, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106254		No	JN106319		No
		Hipposideros pratti			DQ297608		No	DQ297584		No
		Rhinolophus affinis			DQ297606		No	DQ297582		No
	RHSP	R. 'affinis'	Matthew Struebig	Borneo	No		No	JN106280		No
	SA04158	R. 'affinis'	Matthew Struebig	Borneo	No		No	JN106274		No
	MSB93099	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Selatan Province, Kabupaten: Tana Toraja; Kecamatan: Bittuang; Desa: Tiroan; Dusun: Bolokan, $2^{\circ} 56.145^{\prime}$ S, $119^{\circ} 41.872^{\prime} \mathrm{E}$, 1571 m	JN106184	H	Yes	JN106256	H	Yes
	MSB93100	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Selatan Province, Kabupaten: Tana	JN106185	H	Yes	JN106257	H	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
	PDX50	R. 'arcuatus'	PSUMVB	Toraja; Kecamatan: Bittuang; Desa: Tiroan; Dusun: Bolokan, $2^{\circ} 56.145^{\prime}$ S, $119^{\circ} 41.872^{\prime} \mathrm{E}$, 1571 m Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130'S, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106188	H	Yes	Yes		Yes
	PSUT67	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; $2^{\circ} 54.130^{\prime}$, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106189	H	Yes	JN106266	H	Yes
	PSUT68	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; $2^{\circ} 54.130^{\prime}$,	JN106190	H	Yes	No		No

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	Cytb clade	Used Cytb: Y/N (Popn genetic analyses)
	PSUT72	R. 'arcuatus'	PSUMVB	$119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130's, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106191	H	Yes	JN106267	H	Yes
	PSUT73	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130's, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	Same haplotype as RCD3811		Yes	JN106259	H	Yes
	PSUT74	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130's, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106192	H	Yes	JN106260	H	Yes
	RCD3811	R. 'arcuatus'	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province,	JN106193	H	Yes	JN106261	H	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	$\begin{aligned} & \text { CR } \\ & \text { sequence } \end{aligned}$	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	Cytb clade	Used Cytb: Y/N (Popn genetic analyses)
	M1	R. (arcuatus?)	CMNH	Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; 254.130's, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106213	F	No	JN106298	A	Yes
	M12	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106232	F	Yes	JN106297	A	Yes
	M159	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106215	F	Yes	Same haplotype as M50/M357	A	Yes
	M3	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of	JN106237	E	Yes	No		No

Appendix 1. Continued.

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
	M50	R. (arcuatus?)	CMNH	Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106235	E	Yes	JN106299	A	Yes
	M52	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106242	F	Yes	Same haplotype as M53	A	Yes
	M53	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106230	F	No	JN106300	A	Yes
	M57	R. (arcuatus?)	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range)	JN106240	F	Yes	JN106301	A	Yes

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
	M357	R. (arcuatus?)	CMNH	$15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, 4.3 km N , 0.5 km E peak of Mt. High Peak $15.31 \mathrm{~N}, 120.07 \mathrm{E}$, 2037 m	Same haplotype as M159	F	Yes	Same haplotype as M50/M357	A	Yes
177459	JLS184	R. arcuatus	FMNH	Philippine Is., Luzon, Mt. Makiling	JN106195	F	No	JN106268	A	No
3279	M1494	R. arcuatus	CMNH	Philippine Is., Mindanao IS., Sarangani Prov., Municipality of Kiamba, Sitio Binati, S. Slope of Mount Busa, 6.05167N, 125.40537E, 9001200 m	JN106252	G	Yes	JN106311	c	Yes
	M461	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), $11.2331 \mathrm{~N}, 122$. 0911E	Yes	c	Yes	JN106294	A	Yes
3041	M462	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud	JN106222	C	Yes	Same haplotype as M514/M616	A	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
3044	M514	R. arcuatus	CMNH	Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E Philippine Is., Panay	JN106243	c	Yes	JN106293	A	Yes
				Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911 E						
	M525	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E	JN106223	c	Yes	No		No
3045	M540	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E	JN106231	F	Yes	JN106292	A	Yes
3046	M542	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of	JN106238		No	No		No

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
3047	M545	R. arcuatus	CMNH	Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E Philippine Is., Panay	JN106249	c	Yes	JN106291	A	Yes
				Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E						
3616	M616	R. arcuatus	CMNH	Philippine Is., Panay Is., Antique Province, Municipality of Culasi, Barangay Alojipan, Hanggud Tubig (W. face of Mt. Madja-ás), 11.2331N, 122. 0911E	JN106241	c	No	JN106295	A	Yes
		R. arcuatus			AF065090, AF065091	K	Yes			No
180138		R. arcuatus 'narrow'	FMNH	Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt. Banahaw-San Cristobal Park			No	GQ368669	A	Yes
180146		R. arcuatus 'narrow'	FMNH	Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt.			No	GQ368675	A	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	Cytb clade	Used Cytb: Y/N (Popn genetic analyses)
180147		R. arcuatus 'narrow'	FMNH	Banahaw-San Cristobal Park Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt. Banahaw-San Cristobal Park			No	GQ368676	A	Yes
180154		R. arcuatus 'wide'	FMNH	Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt. Banahaw-San Cristobal Park			No	GQ368683	F	Yes
180159		R. arcuatus 'wide'	FMNH	Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt. Banahaw-San Cristobal Park			No	GQ368688	F	Yes
180157		R. arcuatus 'wide'	FMNH	Philippine Is., Luzon Is., Quezon Prov., Municipality of Tayabas, Mt. Banahaw-San Cristobal Park			No	GQ368686	F	Yes
	M127	R. arcuatus 'big'	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) 15.35N, 120.09E, 1160 m	JN106214	D	Yes	JN106304	B	Yes
	M137	R. arcuatus 'big'	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of	JN106250	D	Yes	JN106303	B	Yes

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
	M16	R. arcuatus 'big'	CMNH	Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) 15.35N, 120.09E, 1160 m Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106244	D	Yes	JN106283	B	No
	M17	R. arcuatus 'big'	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	Same haplotype as M195	D	Yes	JN106284	B	Yes
	M64	R. arcuatus 'big'	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, South Slope, Mount Apoy (High Peak Range) $15.35 \mathrm{~N}, 120.09 \mathrm{E}$, 1160 m	JN106251	D	Yes	JN106302	B	Yes
3280	M1576	R. arcuatus 'small'	CMNH	Philippine Is., Mindanao Is., Sarangani Prov., Municipality of Kiamba, Sitio Binati,	JN106227	G	Yes	JN106312	c	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Appendix 1. Continued.

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
	RCD3802	R. celebensis	PSUMVB	Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; $2^{\circ} 54.130^{\prime} \mathrm{S}$, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; $2^{\circ} 54.130^{\prime} \mathrm{S}$, $119^{\circ} 41.839^{\prime} \mathrm{E}$,	JN106200		No	JN106263		No
	RCD3818	R. celebensis	PSUMVB	Indonesia, Sulawesi Island, Sulawesi Tengah Province, Kabupaten: Tana Toraja, Kecamatan: Rindingallo, Desa: Awan; Dusun: Rantekarua; $2^{\circ} 54.130^{\prime} \mathrm{S}$, $119^{\circ} 41.839^{\prime} \mathrm{E}$, elevation 2120 m	JN106194		No	JN106262		No
		Rhinolophus cornutus Rhinolophus euryale			DQ297615		No No	AB085705, DQ297594 DQ120916		No No
	182	R. euryotis	Stephen Rossiter	Sulawesi	JN106202	1	Yes	No		No
	183	R. euryotis	Stephen Rossiter	Sulawesi	JN106203	1	Yes	JN106275	1	Yes
	417	R. euryotis	Stephen Rossiter	Sulawesi	JN106204	1	Yes	Yes	1	Yes
	418	R. euryotis	Stephen Rossiter	Sulawesi	No		No	JN106271	।	Yes
	421	R. euryotis	Stephen Rossiter	Sulawesi	JN106205	।	Yes	JN106276	।	Yes

Appendix 1. Continued.

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
116441	F47528	R. pearsonii	ROM	China, Guangxi, Shiwandashan Nat'I Reserve	No		No	JN106270		No
112363	F48219	R. pearsonii	ROM	Vietnam, Lang Son, Lan Dat, 4 km W of Huu Lien	JN106209		No	JN106281		No
112448	F48304	R. pearsonii	ROM	Vietnam, Lao Cai, Ta Pihn, 10 km N of Sa Pa	JN106210		No	JN106282		No
		R. pearsonii			DQ297611		No	DQ297587		No
		Rhinolophus philippinensis			AF065076, AY568642, AF065070, AF065074, AF065072, AF065078, AY568637, AY568643		No			No
		Rhinolophus pusillus			$\begin{gathered} \text { DQ297618, } \\ \text { DQ297620 } \end{gathered}$		No	$\begin{aligned} & \text { DQ297590, } \\ & \text { DQ297595, } \\ & \text { DQ297597 } \end{aligned}$		No
2005.81.7	2005.81.7	Rhinolophus shameli	HMNH	Cambodia, Preah Vihear Prov., 13.3400 N , 104.5945E, 78 m	JN106212	L	Yes	JN106269	J	Yes
		Rhinolophus sinicus					No	EF517303		No
3307	M1341	Rhinolophus sp.	CMNH	Philippine Is., Mindanao Is., Davao City Province, Municipality of Toril, Barangay Baracatan, Barrio San Roque, Mount Apo Nat'I Park (Parks and Wildlife nature Center), E . face of Mount Talomo	JN106245	A	Yes	No		No

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
3304	M1651	Rhinolophus sp.	CMNH	(Mount Apo Range), 7.00642 N , 125.21304E Philippine Is.,	JN106228	A	Yes	JN106314	E	Yes
				Mindanao Is., Sarangani Prov., Municipality of Kiamba, Sitio Binati, S. Slope, Mount Busa, 6.05357N, 125.41216E, 9001200 m						
3282	M1782	Rhinolophus sp.	CMNH	Kiamba	No		No	JN106316	G	No
3283	M1784	Rhinolophus sp.	CMNH	Kiamba	No		No	JN106317	G	No
3288	M1797	Rhinolophus sp.	CMNH	Kiamba	JN106229	M	Yes	JN106318	G	No
3289	M1798	Rhinolophus sp.	CMNH	Kiamba	No		No	Yes		No
	M195	Rhinolophus sp.	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, 0.5 km E, 0.5 kmS of junction Mabinial and South Lowis rivers, $15.33 \mathrm{~N}, 120.06 \mathrm{E}$, 125-600 m	JN106216	D	Yes	Same haplotype as M64	B	Yes
	M352	Rhinolophus sp.	CMNH	Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Cotó, 4.3 km N , 0.5 km E peak of Mt. High Peak	JN106217	F	Yes	JN106289	A	Yes

Biogeography of the R. arcuatus complex • L. E. Patrick et al.
Appendix 1. Continued.

Appendix 1. Continued.

Museum number	Collector number	Species	Source (Museum or collector)	Location	CR sequence	CR clade	Used CR: Y /N (Popn genetic analyses)	Cytb sequence	$\begin{aligned} & \text { Cytb } \\ & \text { clade } \end{aligned}$	Used Cytb: Y/N (Popn genetic analyses)
				Philippine Is., Luzon Is., Zambales Prov., Municipaity of Masinloc, Barangay Coto, 4.3 km N, 0.5 km E peak of Mt. High Peak $15.31 \mathrm{~N}, 120.07 \mathrm{E}$, 2037 m						
3306	M1493	Rhinolophus subrufus?	CMNH	Philippine IS., Mindanao Is., Sarangani Prov., Municipality of Kiamba, Sitio Binati, S. Slope Mount Busa, 6.05167N, 125.40537E, 9001200 m	JN106226	A	No	JN106310	E	Yes
3302	M1474	Rhinolophus virgo	CMNH	Philippine Is., Mindanao Is., Sarangani Prov., Municipality of Kiamba, Sitio Binati, S. Slope Mount Busa, 6.05167N, 125.40537E, 9001200 m	JN106253		No	JN106309		Yes

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Minimum Spanning Tree (MST) created using Euclidean square distance matrix (distance method: Tamura \& Nei) and the CR +Cytb sequence dataset as input.

Fig. S2. Minimum Spanning Tree (MST) created using Euclidean square distance matrix (distance method: Tamura \& Nei) and the CR sequence dataset as input.

Fig. S3. Minimum Spanning Tree (MST) created using Euclidean square distance matrix (distance method: Tamura \& Nei) and the Cytb sequence dataset as input.
Fig. S4. Co-estimated phylogeny and temporal divergence times within the Rhinolophoidea dataset.

Data S1. Description of morphological measurements.
Table S1. Primers and thermal profiles used for amplification of cytochrome b and control region DNA.

Table S2. Eigenvalues for first three PC's for all variables analyzed together. Abbreviations as in Data S1.

Table S3. Results for analyses of molecular variance (AMOVA) run in Arlequin v 3.5.

Table S4. Pairwise $F_{\text {ST }}$ values between clades produced with the Cytb +CR sequence dataset (distance method: Tamura \& Nei).

Table S5. Pairwise $F_{\text {ST }}$ values between clades produced with the Cytb sequence dataset (distance method: Tamura \& Nei).

Table S6. Pairwise $F_{\text {ST }}$ values between clades produced with the CR sequence dataset (distance method: Tamura \& Nei).

Appendix S1. Specimens examined in the morphological analyses.

