Effects of anisotropic viscosity and texture development on convection in ice mantles

M. L. Rudolph¹ and M. Manga¹

Received 22 June 2012; revised 24 September 2012; accepted 27 September 2012; published 7 November 2012.

[1] Convection may occur in the ice shells of satellites in the outer solar system. The style of convection, rate of heat transport, and resulting surface features depend on the rheology of ice, which in turn depends on temperature, grain size, stress, and crystallographic preferred orientation (CPO). Here we study the effect of CPO development and anisotropic viscosity on convection by coupling a model of polycrystalline ice deformation with a macroscopic flow model. Despite having a first-order effect on velocities and heat transport in a convecting ice shell, fabric development is unlikely to be observable either directly by spacecraft-based radar or indirectly based on changes in the wavelength or amplitude of dynamic topography.

1. Introduction

[2] The ice mantles of satellites in the outer solar system may transport heat by solid-state convection. Convection affects the thermal and rheological structure of a planetary ice shell, with implications for the location and amount of tidal dissipation, the elastic layer thickness, the stress state in the elastic layer, and for surface tectonic and flexural features. The occurrence and style of convection depend on rheology. Below pressures of 2×10^8 Pa and above ~72 K, ice Ih is the stable phase of water ice. Under some temperature and stress conditions, ice Ih crystals deform most easily by basal slip (occurring on planes perpendicular to the crystal’s c axis, the axis of sixfold symmetry). The resolved shear stress on the basal planes depends on the orientation of the ice crystal, and hence the single crystal has anisotropic viscosity. When polycrystalline ice develops crystallographic preferred orientation (CPO), the ice has anisotropic viscosity [e.g., Cuffey and Paterson, 2010].

[3] Understanding and identifying current or past convection is important for three reasons. First, convection affects the overall rate of heat transport and governs thermal evolution [Consolmagno and Lewis, 1978; McKinnon, 1999; Ruiz and Tejero, 2003; Barr et al., 2004; Mitri and Showman, 2005; Freeman et al., 2006; Barr and McKinnon, 2007a; Roberts and Nimmo, 2008; Ruiz, 2010; Travis et al., 2012], and consequently, the rheological properties of an icy body. In turn, temperature and rheology affect the location and amount of tidal dissipation [Hussmann et al., 2002; Sotin et al., 2002; Tobie et al., 2003; Moore, 2006; Mitri and Showman, 2008; Běhouňková et al., 2010; Han and Showman, 2010]. Second, convection may produce some of the surface features observed on icy bodies. For instance, Europa’s ridges [Han and Showman, 2008], pits [Showman and Han, 2004] and domes [Rathbun et al., 1998; Pappalardo et al., 1998; Nimmo and Manga, 2002; Pappalardo and Barr, 2004; Han and Showman, 2005; Ruiz et al., 2007], and chaos features [Schenk and Pappalardo, 2004; Showman and Han, 2005] have been linked to convective processes. Third, convection transports mass vertically and may carry material from a subsurface ocean to the near surface or create conditions that allow other processes to transport this material to the surface [Fagents et al., 2000; Manga and Wang, 2007; Rudolph and Manga, 2009].

[4] Here, we study how convection is affected by the development of crystallographic preferred orientation (CPO) and the resulting viscous anisotropy. We describe an anisotropic viscoplastic model linking single-crystal deformation to polycrystal deformation. Next, we present a method to include the polycrystal deformation model within geodynamic models and present the results of numerical simulations. We discuss the implications of these simulations in the context of whether the resulting features might be detectable and whether fabric development affects topographic features and thermal evolution of icy satellites.

2. Methods

[5] In order to model the deformation of textured polycrystalline ice, we first describe a model linking grain-scale deformation to macroscopic stress and strain. We then include the micromodel in a macroscopic convection calculation in which we employ Lagrangian tracer particles...
to track texture. The constitutive laws typically used in ice sheet modeling take the form [Cuffey and Paterson, 2010]

\[\varepsilon_{ij} = A \tau^{n-1} \sigma_{ij}^D \]

(1)

where \(\tau = \sqrt{\frac{2}{3} \sigma_{ij} \sigma_{ij}} \) and \(\sigma_{ij}^D \) is the deviatoric stress invariant, \(\sigma_{ij}^D \) is the deviatoric stress tensor, and \(\varepsilon \) is the strain rate tensor. The term \(A \) depends foremost on temperature, as well as pressure, melt fraction, the presence of impurities, and grain size for some creep mechanisms. The key features of equation (1) are that if \(n \neq 1 \) a nonlinear relationship exists between stress and strain rate and that if the effective stress \(\tau \) is known, \(\varepsilon_{ij} \) depends only on \(\sigma_{ij}^D \) and not any other components of the stress tensor. Fluids with anisotropic viscosity have constitutive equations of the form

\[\varepsilon_{ij} = M_{ijkl} \sigma_{kl}^D \]

(2)

where \(M \) is a fourth rank tensor that is, in general, a nonlinear function of stress, temperature, grain size, and fabric.

2.1. Model for Polycrystal Deformation and Texture Development

[6] We write the single-crystal stress and strain rate tensors \(s \) and \(d \) and the polycrystal stress and strain rate tensors \(S \) and \(D \) following the notation of Castelnau et al. [1996]. The rate of shear on a slip system \(s \) is

\[\dot{\gamma}^s = \gamma_0 \left| \frac{\varepsilon^s \cdot s^{n-1} \varepsilon \cdot s}{\tau_0} \right| \]

(3)

where \(\varepsilon^s \) is the Schmid tensor for slip system \(s \), \(b \) is the Burgers vector and \(n \) the unit normal to slip system \(s \), \(n^s \) is the power law exponent (equation (1)) for slip system \(s \), \(\otimes \) denotes the tensor product [e.g., Chadwick, 1999], \(\gamma_0 \) and \(\tau_0 \) are reference slip rate and stress, and the colon denotes the tensor inner product (\(a : b = a_{ij} b_{ij} \)). Temperature dependence enters through the term \(\gamma_0 \), which we modify to take the form \(\gamma_0 / (\tau_0) \) where \(A(T) = A_0 \exp(-Q/RT) \) [Thorsteinsson, 2002]. The single-crystal velocity gradient tensor \(l \) is computed from \(\dot{\gamma} \) (equation (3)) by summation over all slip systems:

\[l = \gamma_0 \sum_s \left| \varepsilon^s \cdot s^{n-1} \varepsilon \cdot s \right| \tau_0. \]

(4)

[7] In order to relate single-crystal stress and strain to macroscopic stress and strain, we must make assumptions about how stress is distributed within the polycrystal, in particular whether and how much each grain affects its neighbors. Some closure relationships ignore neighbor interactions entirely, while others explicitly account for this effect [Thorsteinsson, 2002], which requires tracking the spatial distribution of individual crystals in addition to their orientation and shape. The Thorsteinsson [2002] model is attractive for our purposes because it captures the essential features of texture development through grain reorientation and compares favorably with viscoplastic self-consistent (VPSC) models [Lebensohn and Tome, 1993] with significantly reduced computational expense. Thorsteinsson [2002] introduces a relationship between single crystal and macroscopic stress tensors of the form

\[\dot{S} = E^c \dot{S}. \]

(5)

The polycrystal is represented as a three-dimensional grid of crystals and \(E^c \) is a neighbor interaction term defined as

\[E^c = \frac{1}{\zeta + 6\xi} \left(\zeta + \sum_{i=1}^{6} T_i \right). \]

(6)

Here \(\zeta \) and \(\xi \) are tuning parameters that control the strength of the neighbor interactions. Note that when \(\zeta = 1 \) and \(\xi = 0 \), \(s = S \), recovering the uniform stress approximation [Taylor, 1938]. The superscript \(c \) denotes the crystal for which \(s \) is being computed and the summation index \(i \) denotes the six neighboring crystals (left, right, up, down, front, back) in the three-dimensional grid. The term \(T_i \) is a measure of the total resolved shear stress on all active slip systems in crystal \(i \):

\[T_i = \sum_s s^{n-1} s : \dot{\gamma}^s. \]

(7)

and \(b^s \) is the Burgers vector for slip system \(s \). [8] Substituting equation (5) into equation (4), we obtain an expression for the single crystal velocity gradient:

\[l = \gamma_0 \sum_s \left| \varepsilon^s \cdot s^{n-1} \varepsilon \cdot s \right| \tau_0. \]

(8)

By assumption, the macroscopic velocity gradient is the volumetric average of the macroscopic velocity gradients over \(N \) single crystals:

\[L = \frac{1}{N} \sum_{i=1}^{N} l_i. \]

(9)

[9] To obtain a numerically useful constitutive equation, we first combine equations (8) and (9):

\[L = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_s \left| \varepsilon^s \cdot s^{n-1} \varepsilon \cdot s \right| \right] \tau_0. \]

(10)

Noting that \(\varepsilon^c (s : \dot{S}) = (\varepsilon^s : \dot{S}) : \dot{S} \),

\[L = \left[\frac{1}{N} \sum_{i=1}^{N} \sum_s \left| \varepsilon^s \cdot s^{n-1} \varepsilon \cdot s \right| \right] : \dot{S} = M(\dot{S}) : \dot{S}. \]

(11)

where \(M(\dot{S}) \) is a fourth rank tensor, conceptually identical to the elasticity tensor \(C \), but which is in this case a nonlinear function of the macroscopic stress tensor \(\dot{S} \). The tensor inner product between mixed order tensors here is defined \((A : B)_{ij} = A_{ijkl} B_{kl} \). The velocity gradient tensor \(L \) is related
to strain rate $D = \frac{1}{2}(L + L^T)$. Substitution of \mathbf{M} yields in index notation:

$$D_{ij} = \frac{1}{2} (M_{ijkl} + M_{klji}) S_{kl} = M_{ijkl} S_{kl}. \quad (12)$$

[8] In order to express stress in terms of strain rate, we take the common approach of vectorizing as
denote the vectorized stress and strain rate tensors, and grain sizes considered here. One key feature of this
proposed composite rheology is that the reciprocal grouping inhibition factor
of grain boundary sliding (gbs) and basal slip (bs) strain rates
proposed composite rheology is that the reciprocal grouping
mechanisms:

\[
 \text{bs encompass all of the deformation accounted for by our microscale model:}
\]

\[
 D_i = \left(\frac{\alpha}{1 + \alpha} \right) \mathbf{D}_{bs} + \mathbf{D}_{\text{diff}}.
\]

Recalling that $\mathbf{D}_{bs} = \mathbf{M} \cdot \dot{\mathbf{S}}$, we introduce a modified visco-
plasticity tensor \mathbf{M}' that accounts for all deformation mechanisms:

\[
 \mathbf{M}'_{ijkl} = \frac{\alpha}{1 + \alpha} \mathbf{M}_{ijkl} + 2\delta_{kl} \epsilon_{ij} \eta_{\text{diff}} \quad (17)
\]

where η_{diff} is the effective viscosity for diffusion creep. Because we model two-dimensional convection but the anisotropic viscous response is three-dimensional, we impose a constraint on the polycrystal to prohibit out of plane deformation.

[13] We calibrate the micro-macro model against the basal slip component of the Goldsby and Kohlstedt [2001] model. We assume temperature dependence of the form

\[
 \gamma_n = A_0 \exp(-Q/(RT)) (\gamma_0)^n. \quad (18)
\]

For basal slip, $n = 2$ is favored by Castelnau et al. [1997]. We choose $Q = 60 \text{ kJ mol}^{-1}$ [Goldsby and Kohlstedt, 2001]. We impose an isotropic initial fabric on a grid of $20 \times 20 \times 20$ crystals at a temperature of $-10^\circ C$ and find a best fit value of $A_0 = 7.35 \times 10^7 \text{ Pa}^{-1} \text{s}^{-1}$. The effective viscosity for diffusion creep is chosen to be identical to that used by Barr and Stillman [2011]:

\[
 \eta_{\text{diff}} = \frac{1}{2} \frac{3 R_T D_0^2}{4 D_0 V_m} \exp(Q/(RT)). \quad (19)
\]

Here $V_m = 1.97 \times 10^{-5} \text{ m}^3\text{s}^{-1}$, $D_0 \gamma = 9.10 \times 10^{-4} \text{ m}^2\text{s}^{-1}$, $Q^* = 59.4 \text{ kJ mol}^{-1}$.

2.3. Macroscopic Flow Model

[14] We solve equations for the balance of momentum and mass conservation:

\[
 \begin{align*}
 \rho \frac{\partial \mathbf{u}}{\partial t} & = -\nabla p + \nabla \cdot \mathbf{S} + \rho g \\
 \nabla \cdot \mathbf{u} & = 0
\end{align*} \quad (20)
\]

and advection and diffusion of heat:

\[
 \rho C_p \frac{DT}{Dt} = \nabla \cdot (k \nabla T) \quad (21)
\]

with parameters defined in Table 1, using a conservative finite difference technique combined with a marker-in-cell approach [Gerya and Yuen, 2003] in two spatial dimensions. Each Lagrangian marker carries information about the local fabric (c axis orientations). The momentum equation is expressed in terms of velocity \mathbf{u}:

\[
 \rho \frac{\partial \mathbf{u}}{\partial t} = \frac{\partial \mathbf{p}}{\partial x_j} + \frac{\partial \mathbf{n}_{ijkl} D_{ij}}{\partial x_j} + \rho g_l \quad (22)
\]

where p is pressure, ρ is density, and g_l are the components of gravitation acceleration. Parallelization was necessary.
boundaries are periodic. The top and bottom are prescribed mechanical boundary conditions are free slip, and the lateral boxes twice as wide as they are deep. The top and bottom factor of 100. The macroscopic flow model uses PETSc even for 2-D problems because calculating the polycrystal increases rapidly between grain sizes of 10^{-6} m and 10^{-3} m. Stagnant lid thickness calculated from numerically versus $\text{Ra}_{1,diff}$ (or equivalently layer thickness) (b) for a grain size of 1.0 mm and (c) for a grain size of 0.5 mm. Vertical red line indicates the critical layer thickness for convection to occur, calculated using a bisection method.

Figure 1. (a) Texture strength (S, defined in text), which increases rapidly between grain sizes of 10^{-4} m and 10^{-3} m. Stagnant lid thickness calculated from numerically versus $\text{Ra}_{1,diff}$ (or equivalently layer thickness) (b) for a grain size of 1.0 mm and (c) for a grain size of 0.5 mm. Vertical red line indicates the critical layer thickness for convection to occur, calculated using a bisection method.

even for 2-D problems because calculating the polycrystal response for each Lagrangian tracer increases runtime by a factor of 100. The macroscopic flow model uses PETSc [Balay et al., 2012] for domain decomposition and parallel communication. We solved the resulting linear system of equations using the parallel direct solver MUMPS [Amestoy et al., 2001, 2006]. After performing resolution tests, we determined that the calculations could be performed on a 41×41 Eulerian grid with 25 Lagrangian markers per cell initially. We eliminated markers if more than 64 were present in one cell using the method described by Leng and Zhong [2011] and added markers (using nearest-neighbor interpolation) to any cell containing fewer than 10 markers.

2.4. Model Parameters

[15] We ran two-dimensional convection simulations in boxes twice as wide as they are deep. The top and bottom mechanical boundary conditions are free slip, and the lateral boundaries are periodic. The top and bottom are prescribed temperature (Dirichlet) with $T = 100$ K and $T = 260$ K. In each case, we run the model with the Goldsby and Kohlstedt [2001] rheology from an initial sinusoidal perturbation with amplitude $\delta T = 15$ K and wavelength equal to the domain width until a steady state, defined by constant Nusselt number (Nu) and root-mean-square velocity V_{rms} [Blankenbach et al., 1989] and steady flow field, is reached. We then continue the simulation using the micro-macro rheology and an initially uniform isotropic fabric. All of the simulations considered feature a thick stagnant lid overlying a convecting subregion. The two cases that we discuss here are a 75 km thick layer with a grain size of 1 mm and a 15 km thick layer with a grain size of 0.1 mm. We assume uniform grain size in our model because our objective is to quantify the effects of anisotropic viscosity in isolation of other processes such as stress-induced grain reduction [Barr and McKinnon, 2007b]. Other model parameters are listed in Table 1.

3. Depth at Which CPO Develops

[16] We illustrate the grain size dependence of fabric strength in Figure 1a. We performed numerical polycrystal deformation experiments with $\sigma_{xx} = -\sigma_{yy} = 10^4$ Pa (all other stress components zero) and $T = 250$ K (representative of the warm convecting interior of an ice shell) until a strain of 1.0 was achieved. Next, we characterized the strength of the c axis fabric using the texture strength $S = \sqrt{\langle f^2 \rangle}$ [e.g., Bunge, 1982], where $f(\theta, \phi)$ is the probability density function of c axis orientations in the simulated polycrystal. A value of $S = 1.0$ indicates an isotropic fabric while higher values indicate development of CPO. For grain sizes smaller than about 0.1 mm, S is close to 1.0. S increases rapidly between grain sizes of 0.1 and 0.5 mm. In convection problems, Lagrangian tracers experience changing stresses as they are advected through a convection cell, and if macroscopic stress changes faster than crystals within the polycrystal can rotate in response to the applied stress, fabric formation can be limited [e.g., Castelnau et al., 2009]. The texture in each of our simulations was steady when the simulations were terminated, and we attribute the steady texture to the competition between reorientation of crystals and changing macroscopic stress.

[17] In order to develop CPO, ice must deform by dislocation creep through strains of at least 10^{-1}, with stronger fabrics requiring strains of $O(1)$. Strains of this magnitude are certainly attainable in the convecting interior of an ice shell but are not achieved in the stagnant lid. Figures 1b and 1c show how stagnant lid thickness varies as a function of $\text{Ra}_{1,diff}$, or equivalently layer thickness (H), based on numerical simulations run to steady state with the isotropic Goldsby and Kohlstedt [2001] rheology. The diffusion creep Rayleigh number is defined as $\text{Ra}_{1,diff} = \rho g \alpha \Delta T H^3/(k \eta_{1,diff})$ where $\kappa = k/(\rho C_p)$ is thermal diffusivity and $\eta_{1,diff}$ is the effective viscosity for the diffusion creep deformation mechanism for the temperature and grain size at the base of the ice shell [Solomatov, 1995; Barr et al., 2004]. We indicate the minimum layer thickness for which convection is possible for our model geometry and amplitude of initial temperature perturbation δT with vertical dashed lines in Figures 1b and 1c. The thickness d_0 of the stagnant lid can be viewed as a lower bound on the depth at which texture will
develop in our simulations. We note that the stagnant lid is thinned locally above convective upwellings, allowing CPO to develop at shallower depths near upwellings than near downwellings, illustrated in Figure 2a. Although the lower temperature within convective downwellings promotes texture development [Barr and Stillman, 2011], the thickened cold thermal boundary layer above these downwellings increases the depth at which texture develops. Figure 3 shows fabrics that develop in our simulations at several depths beneath the surface. When grain size is small (0.1 mm), diffusion creep allows relatively thin ice shells to convect, but because deformation is not accommodated by dislocation creep, CPO does not develop anywhere in the ice shell, illustrated in Figure 2. If grain size is larger (1.0 mm) diffusion creep is sluggish, allowing CPO to form in the convecting interior of the ice shell (Figure 2). Barr and Stillman [2011] suggested that when grain size is large (1.0 mm), the entire ice shell deforms most rapidly by dislocation creep, so CPO could develop throughout the ice shell. However, we find that deformation rates in the stagnant lid are too small to produce CPO.

4. Effects of CPO on Flow Field and Heat Transport

[18] The anisotropic viscosity resulting from texture development has a first-order effect on the velocity in upwellings and downwellings (Figure 4). The more rapid flow is in agreement with studies of the effects of anisotropic viscosity on ice sheets [Mangeney et al., 1996]. We calculated dynamic topography using the normal stress exerted on the upper boundary of the domain with and without texture development (Figure 4). There is negligible difference between the two simulations because, despite differences in velocity in the convecting interior, the stresses driving convection are very similar.
Because it affects the velocities in upwellings and downwellings, we expect that viscous anisotropy will affect heat transport. The steady state Nusselt number achieved using the Goldsby and Kohlstedt [2001] rheology for Case 2 (75 km thickness) was 1.77. After enabling texture development and anisotropy, we ran the simulation for 6 Ma, at which time the Nusselt number had reached 1.94. The Nusselt number between the activation of texture development and the end of the simulation can be well approximated ($R^2 = 0.9999$) as an exponential function of time with the form $Nu(t) = a \exp(-bt) + c$. The term $c = 1.949 \pm 0.001$ is the expected steady state value of Nu (with 95% confidence bounds). Thus, the state achieved during our run had Nusselt number within 0.5% of the steady state value predicted by exponential extrapolation, and the anisotropic model transports 10% more heat than the isotropic model. We computed a steady Nu for anisotropic Case 1 of 1.746 ± 0.001, an increase of 5% relative to the value of 1.67 computed for the isotropic case. We expect enhanced heat transport for larger grain sizes because dislocation creep is more rapid at the smaller grain size used in Case 1. Although convective heat transport is enhanced in our model, the general uncertainty in grain size and amount of internal heating leads to much larger variations in heat transport [e.g., Ruiz et al., 2007].

5. Detectability

Fabric development in an ice mantle is most interesting if it produces an observable signature. Detection of CPO would imply past or ongoing deformation accommodated by specific creep mechanisms, which in turn provides insight into thermal and tectonic evolution, including constraints on grain size, stress magnitude and orientation, and strain history. A spacecraft carrying ice-penetrating radar can in principle measure preferred orientation remotely [Barr and Stillman, 2011]. The radar planned for European Space Agency’s (ESA) JUICE spacecraft, likely the next mission to the Jovian system, is expected to be able to probe depths 100 m to 6–9 km below the surface.

With a grain size of 1.0 mm, the minimum stagnant lid thickness in our isotropic simulations was 18 km (Figure 1b). With somewhat smaller grain size (0.5 mm), some CPO development may be possible (though lower texture strength is expected) and stagnant lids as thin as 14 km may develop (Figure 1c). The stagnant lids in Case 2 (75 km thickness, 1.0 mm grain size), and each of the simulations shown in Figures 1b and 1c, are sufficiently thick to preclude radar detection of CPO in the convecting interior.

JUICE is expected to perform flybys of Europa and Callisto before entering orbit around Ganymede. Our calculations were performed with Europa-like $g = 1.3$ m s$^{-2}$.

Figure 3. CPO fabrics calculated for locations marked by numbered squares, corresponding to numbered pole figures (right). Warmer colors in the pole figures indicate higher concentrations of $(c$ axes. Horizontal dashed lines indicate the maximum depth (9 km) to which the proposed ice-penetrating radar on the European Space Agency (ESA) JUICE spacecraft may penetrate. (a) Layer thickness of 75 km, grain size 1.0 mm. (b) Layer thickness 15 km, grain size 0.1 mm.
Acknowledgments. Computational resources were provided through the Texas Advanced Computing Center under Teragrid allocation TG-MCA06S100032 to M.L.R., by David A. Yuen at the Minnesota Supercomputing Institute, and by Bruce Buffett. We thank the Editor, Francis Nimmo, and an anonymous reviewer for their comments which improved the quality of the manuscript. We thank T. Becker, K. Cuffey, Allen McNamara, and D. Kohlstedt for helpful discussions. This work was funded in part by a grant from NASA.

References

but Ganymede and Callisto both have g within 10% of Europa. Because Ra is linearly proportional to g, we expect our results to be applicable to all three bodies. However, other processes not accounted for in this study could affect stagnant lid thickness, allowing texture to develop at depths where it could be detectable. In particular, plastic yielding could lead to episodic overturn of the stagnant lid [Showman and Han, 2005]. During overturn events, ice with CPO could be exhumed and the depth at which CPO develops could be reduced. Frictional heating on faults could lead to local temperature variations and hence localized CPO development at shallow depths [Nimmo and Gaidos, 2002; Nimmo et al., 2007]. Internal heating by tidal dissipation could thin the stagnant lid globally, bringing CPO development nearer to the surface [Solomatov and Moresi, 2000; Nimmo and Manga, 2002, Figure 2]. Regardless of depth of formation, Figure 1a shows that deformation of polycrystalline ice with grain size >0.5 mm through strains \(O(1) \) should produce CPO, and if this does occur within a few km of the surface of an icy satellite, CPO may be remotely detected.

Figure 4. (a) Profiles of surface uplift (dynamic topography) for case with layer thickness 75 km and grain size \(d = 1.0 \text{ mm} \) with (black line) and without (dashed red line) anisotropy. (b) Temperature profiles at a depth of 37 km. (c) Velocity profiles at a depth of 37 km.

References

