Lecture 15: Kinetic theory

Overview

· Semipermeable membranes

· Osmotic pressure

· Donnan Equilibrium

· Active vs. Passive Transport

· Colligative properties

Today

· Dynamics of molecular motion

· Kinetic theory of gases

· Equipartition of theorem

· Calculation Pressure in terms average molecular velocities. Implications

· Molecular collisions

· Maxwell-Boltzmann distribution

Dynamics of molecules

The motion of molecules has been studied over last 200 years by range of experimental methods. These have included simple methods such as microscopic observations to emerging techniques such as AFM/STM. The fundamental principles that describe the molecular motions are well known and utilize the familiar Newton’s laws and the application of Einstein’s theory molecular diffusion. 

In 1827 Botanist Robert Brown observed motion of pollen grains under microscope, and found that the motion is not simple translation along the straight line but it involved abrupt changes in direction of the motion. In 1905 Albert Einstein provided an elegant solution to the problem in terms of diffusion to describe the motion of molecules in liquids. 

Later part of 19th century, the kinetic theory of gases was developed to understand the nature of molecular motion in gases, which are conceptually simpler to understand in that the intermolecular interactions can be ignored. Even then it became clear that at given temperature it is incorrect to assume that all molecules have identical instantaneous velocities. Rather they have a distribution of velocities whose width depends on temperature and average velocity depends inversely on the molecular mass. Maxwell and Boltzmann clarified this, independently. 

Brown’s observations and its relevance
A motion of pollen grain on surface of water is: 
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The path of a flucrescently labeled
phospholipid molecute undergoing
Brownian motion in a lipid bilayer.
The molecule is first observed at
position A, and then at successive
time intervals of 35 ms it is found at
B, C, ..., K The straight-line distance
traveled is directly proportional to the
square root of time. Einstein showed
that the mean-square displacement
{d? is directly proportional to the
time and to the diffusion coefficient D
of the molecule.




It clearly shows abrupt changes in the direction of motion. Clearly any change in direction of a particle can be only caused by external force. Owing to random nature of the force, the change in direction of the particles is random. Einstein realized that the average distance a particle travels from its initial position is not linearly dependent on time but it depends as a square root of time:
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Where D is the diffusion coefficient. Note if we applied Newton’s law we would have predicted a linear dependence of the distance with time. What is remarkable about this result is the fact that the image shown was actually for fluorescently labeled phospholipids in bilayer membrane. In other words, Einstein’s law applies for particles that are few mm in dimension to the particles whose size approaches a few nanometers!

Molecular Kinetic Theory: Calculation of pressure

Here we consider a “typical” molecule (of mass M) having an average velocity of u, confined to a three dimensional cubic box of length l as shown below. To calculate the pressure exerted by this molecule on the walls of the container,
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Molecule of mass m and velocity
#in a cubic container of side /. To
calulate the pressure, we need

to now the number of collisions
between the molecule and the
shaded face labeled A, The velocity
is shown as a vectar; it has com-
ponents along three perpendicular
directions. To calculate the pressure,
we need to use the x-companent of
the velocity ,.




We calculate the force exerted by the molecule per unit area of the box. Since the force is rate of change of momentum, we must identify its source, i.e. collisions with wall since they change the direction of velocity. Now if the molecule is traveling in positive x- direction, its momentum will be Mu, and upon collision it’s value would be –Mu, since the molecule now travels in the –x direction. The net change in the momentum would be 2Mu. As time goes on, after traveling distance of l the molecule will collide with the other wall and similar magnitude of change in its momentum will occur. Thus, in unit time, there will be u/l collisions, each contributing 2Mu to change in momentum. Thus the net force exerted will be 2Mu2/l

Calculation of Pressure: Continued

The pressure is given by force per unit area. During the process just described, the molecule interacted with two walls, each of area l2. Hence the pressure exerted by the single molecule:
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Since there are N molecules, this pressure will need to be corrected. However, not all the molecules are traveling along the x-direction, and in general their direction will be random. We can resolve the velocity u in its three components and assume that the velocity components, on the average, are equal. Then :
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Thus, in pressure of an ideal gas made up on N molecules would be:
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The last relationship is fundamental: equipartition of energy!

Maxwell-Boltzmann Distribution

In the above derivation, we assumed that all the molecules had identical speed. This is hardly justifiable. Consider a pool table. When we strike not all the balls have an identical speed.  Boltzmann showed, from vary general consideration, the probability that a given molecule will have energy Ei is given by:
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where g is the degeneracy of the ith the energy state, meaning the number of states having identical energy. Since the molecule must be in some energy state, if we sum the P the net must be equal to one. Now, we define an another quantity f(u), which indicates the fraction of molecules between speed u and u+du. Note:


[image: image8.wmf]du

u

f

u

P

d

).

(

))

(

(

=


Maxwell suggested that for ideal gas we could use KE energy of particle as Ei. Then, it can be shown that:
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This is the famous Maxwell-Boltzman equation!
Maxwell-Boltzmann Equation (part II)

The distribution function f(u) is plotted below for two different temperatures. The primary effect of increasing the temperature is to shift the most probable speed to higher velocities and also to increase the width of the molecular velocity distribution function.
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The Maxwell-Boltzmann distribu-
tion of speeds at two temperatures
for O, gas. Notice that as the tem-
perature increases the maost prob-
able speed increases (the maximum
in the curve), but the spread of the
speeds increases more markedly.
This means that the fraction of
molecules with the highest speeds
increases much faster with temper-
ature than the average speeds. This
is ane reason why temperature has
such a large effect on reaction rates.
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Such distribution functions are of fundamental importance in statistical mechanics since they allow us to calculate average and rms fluctuations of any quantity that depends on the corresponding variables. Consider for example:
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Note the square root of root mean squared velocity differs from the average velocity!

Number of collisions and Mean free path

Consider a single molecule in an ideal gas; the number of collisions it may undergo in unit time will depend on:

· Density of the gas (N/V)

· It’s average velocity (u)

· It’s size ((), more precisely it’s cross sectional area  (( (2).
It can be shown that the z is:
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Since there are N/V such molecules per unit volume, there are zN/V such collisions per unit time. Since a typical collision involves two molecules the total number is reduced by factor of two:
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Knowing the average velocity and the number of collisions that a single molecule undergoes, we can calculate the average length over which the molecule travels without undergoing a collision. This is called as mean free path of the molecule:


[image: image14.wmf]2

)

/

(

2

1

s

p

V

N

z

u

l

=

>

<

=


Note it depends inversely on the particles cross sectional area and the density of the gas.
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