
1

Lecture Outline Crystallography 
o Short and long range Order
o Poly- and single crystals, anisotropy, polymorphy
o Allotropic and Polymorphic Transitions
o Lattice, Unit Cells, Basis, Packing, Density, and 

Crystal Structures
o Points, Directions, and Planes in the Unit Cell
o Structures with more than one atoms per lattice 

point
o Interstitial Sites
o Ionic Crystal Structures
o Covalent Crystal Structures
o Metallic Crystal structures
o Diffraction and modern microscopy
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• Non dense, random packing

• Dense, regular packing

Dense, regular-packed structures tend to have lower 
energy, of course everything depends on temperature, at 
low enough temperatures many materials crystallize

Energy   

r 

typical neighbor  
 bond length   

typical neighbor  
 bond energy   

Energy   

r 

typical neighbor  
 bond length   

typical neighbor  
 bond energy   

Lowest ENERGY state at each temperature

There is long range 
order in addition to 
short range order

There is still 
short range 
order
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• atoms pack in periodic, 3D arrays
•  typical of:

Crystalline materials...

-metals
-many ceramics
- semiconductors
-some polymers

• atoms have no periodic packing
•  occurs for:

Noncrystalline materials...

-complex structures
- rapid cooling

Si Oxygen 

One of many forms of 
crystalline SiO2

noncrystalline SiO2

Quartz glass, a cold melt

"Amorphous" = Noncrystalline

MATERIALS AND PACKING

Glass is actually a 
cold melt, over long 
enough times, it 
crystallizes, old 
church windows are 
thicker at the bottom
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Classification of materials based on type of 
atomic order.
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Levels of atomic 
arrangements in 
materials: 

(a)Inert monoatomic 
gases have no 
regular ordering of 
atoms: 

(b,c) Some materials, 
including water 
vapor, nitrogen 
gas, amorphous 
silicon and silicate 
glass have short-
range order. 

(d) Metals, alloys, 
many ceramics, 
semiconductors 
and some polymers 
have regular 
ordering of 
atoms/ions that 
extends through 
the material 

= crystals



6

Basic “Si-0” tetrahedron 
in silicate glass. X-ray 
diffraction shows only 
short range order.

Note that this cannot exist 
in quartz at room 
temperature, there the 
tetrahedron is distorted 
resulting in pronounced 
anisotropy effects such as 
piezoelectricity.

In ß-cristobalite, a high 
temperature phase of 
quartz, we have an 
undistorted tetrahedron 
again, X-ray diffraction 
shows long range order
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Again there 
are different 
crystallograp
hic phases, 
i.e. long 
range order 
structures 
until the 
crystal melts 
and only 
short range 
order 
remains
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Atomic arrangements in (a) Amorphous silicon with H 
(b) Crystalline silicon.  Note the variation in the inter-
atomic distance for amorphous silicon, but there still is 
short-range order
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• Most engineering materials are poly-crystalline !

• Nb-Hf-W plate with an electron beam weld.
•  Each "grain" is a single crystal.
•  If crystals are randomly oriented, component properties are 
not directional, but frequently we have texture, preferred 
orientation of poly-crystals resulting in pronounced anisotropy
•  Crystal sizes range from 1 nm to 2 cm, (i.e., from a few to millions 
of atomic layers).

1 mm

POLY-CRYSTALS
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• Single (Mono-)crystals
- Properties vary with
direction:  anisotropy.

- Example: the modulus
of elasticity (E) in BCC iron:

• Poly-crystals
- Properties may/may not
vary with direction, 
depending on 
degree of texture.

- If grains are randomly
oriented: isotropic.
(Epoly iron = 210 GPa)

- If grains are textured,
anisotropic.

E (diagonal) = 273 GPa

E (edge) = 125 GPa

200 µm

SINGLE versus POLY-CRYSTALS
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o Allotropy - The characteristic of an element 
being able to exist in more than one crystal 
structure, depending on temperature and 
pressure.

o Polymorphism - Compounds exhibiting more 
than one type of crystal structure.

o Everything depends on temperature and 
pressure, e.g. coefficient of thermal expansion 
can, therefore, only be defined over a certain 
region of temperature

Allotropic and Polymorphic 
Transitions 
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Covalently
bonded network
of atoms

Cubic crystal

(a) Diamond unit cell

Covalently bonded layer

Layers bonded by van der
Waals bonding

Hexagonal unit cell

Covalently bonded
layer

(b) Graphite

Buckminsterfullerene (C60) molecule (the
"buckyball" molecule)

The FCC unit cell of the
Buckminsterfullerene crystal.  Each lattice
point has a C60 molecule

(c) Buckminsterfullerene
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U(X) = PE = mgh

X

System Coordinate, X = Position of Center of Mass

A
B

A*U
A*

U
A

U
B

E
A

XA XBXA*

Metastable

Unstable (Activated State)

Stable

∆U

Fig. 1.27: Tilting a filing cabinet from state A to its edge in state A*
requires an energy EA. After reaching A*, the cabinet spontaneously
drops to the stable position B. PE of state B is lower than A and
therefore state B is more stable than A.
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• Demonstrates "polymorphism"

The same group of atoms 
has more than one crystal 
structure.
The actual structure 
depends on temperature 
and pressure.

Example: heating and cooling of a 
hanging iron wire

Temperature, C

BCC Stable

FCC Stable

914

1391

1536

shorter

longer!
shorter!

longer

Tc 768 magnet falls off

BCC Stable

Liquid

heat up

cool down
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o Lattice - a 3D collection of points that divide space 
into smaller equally sized units.

o Basis - a group of atoms associated with a lattice 
point. This may be one single atom or a group of 
atoms.

o Unit cell - a subdivision of the lattice that still retains 
the overall characteristics of the entire lattice, 
contains at least one atom may contain many 
atoms.

o Atomic radius - apparent radius of an atom, typically 
calculated from the dimensions of the unit cell, using 
close-packed directions (depends upon type of 
bonding, coordination number, quantum mechanics).

o Packing factor - The fraction of space in a unit cell 
occupied by atoms.

Lattice, Unit Cells, Basis, and 
Crystal Structures 
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The fourteen 
types of Bravais) 
lattices grouped 
in seven crystal 
systems:

triclinic

monocline

rhombohedral = 
(trigonal) 

orthorhombic

tetragonal

hexagonal

cubic



18

Definition of lattice 
parameters in 
cubic, 
orthorhombic, and 
hexagonal crystal 
systems.

Note that angles 
are not always 
90° degrees and 
coordination axis 
lengths are not 
necessarily all 
equal, as you 
know them to be 
from Cartesian 
coordinatesFor cubic crystals, however, 

calculations are just like with 
Cartesian coordinates
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o Miller-indices - A shorthand notation to describe 
certain crystallographic directions and planes in a 
material. 

Lattice directions are in direct space and are denoted 
by [ ] brackets. A negative number is represented 
by a bar over the number.

Directions of a form (also called family) -
Crystallographic directions that all have the same 
characteristics, although their ‘‘sense’’ may be 
different. Denoted by <> brackets, they are 
symmetrically equivalent

Lattice Points and Directions in 
the Unit Cell 
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o Miller-indices - A shorthand notation to describe 
certain crystallographic directions and planes in a 
material. 

Lattice planes are represented by the vector that is 
normal (perpendicular to them), these are 3D 
vectors in reciprocal (or dual) space (reciprocal 
space is nothing fancy - it is just a mathematical 
convenience !) 

Directions of a form (also called family) – lattice planes 
that all have the same characteristics, although 
their ‘‘sense’’ may be different. Denoted by {} 
brackets, they are symmetrically equivalent. Now if 
the lattice point represents more than one point the front side and the 
back side of one and the same plane may have very different chemical 
properties as different atoms will be exposed, e.g. ZnS structure

Lattice Planes in the Unit Cell are 
an altogether different matter !
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Coordinates of selected points in the unit cell. The 
number refers to the distance from the origin in 
terms of lattice parameters.

We start with the 
coordinates of 
lattice points in 
order to define 
the Miller indices 
of lattice 
directions
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Determining Miller Indices of Directions
Determine coordinates of two 
points that lie in direction of 
interest, 
u1 v1 w1   and  u2 v2 w2

calculations are simplified if the second 
point corresponds with the origin of the 
coordinate system

Subtract coordinates of second 
point from those of  first point
u’ = u1-u2, v’ = v1-v2, w’ = w1-w2

Clear fractions from the 
differences to give indices in 
lowest integer values. Write 
indices in [] brackets. Negative 
integer values are indicated with 
a bar over the integer, 

[uvw] and [uvw] are running in 
opposite directions 
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Direction A
1. Two points are 1, 0, 0, and 0, 0, 0
2. 1, 0, 0, - (0, 0, 0) = 1, 0, 0
3. No fractions to clear or integers to reduce
4. [100]

Direction B
1. Two points are 1, 1, 1 and 0, 0, 0
2. 1, 1, 1, - (0, 0, 0) = 1, 1, 1
3. No fractions to clear or integers to reduce
4. [111]

Direction C
1. Two points are 0, 0, 1 and 1/2, 1, 0
2. 0, 0, 1 –(1/2, 1, 0) = -1/2, -1, 1
3. 2 (-1/2, -1, 1)  = -1,-2, 2

2]21[  .4



25

Equivalency of crystallographic directions of a form in 
cubic systems.
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Determining Miller Indices of Planes

Identify the coordinate 
intersects of the plane, if plane 
is parallel to one of the axes, 
this intercept is taken to be 
infinite

Take the reciprocal of the 
intercept

Clear fractions, but do not 
reduce to lowest integers

Cite in (h k l) parentheses

Negative integer values are 
indicated with a bar over the 
integer

(h k l) is the same plane as 
(h k l) , just its back side
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Plane A
1. x = 1, y = 1, z = 1
2.1/x = 1, 1/y = 1,1 /z = 1
3. No fractions to clear
4. (111)

Plane B

1. The plane never intercepts the z axis, so x = 1, y = 2, and z = 
2.1/x = 1, 1/y =1/2, 1/z = 0
3. Clear fractions: 1/x = 2, 1/y = 1, 1/z = 0
4. (210)

Plane C

1. We shall move the origin, since the plane passes through 0, 0, 0. 
Let’s move the origin one lattice parameter in the y-direction. Then, 

x =    , y = -1, and z =
2.1/x = 0, -1/y = -1, 1/z = 0
3. No fractions to clear.

that seemed a bit arbitrary, we could have moved the origin in the –
y direction as well, then we would have gotten (010), which is just 
the back side of

)010( .4

∞

∞∞

)010(
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(100)

(001) (110)

Miller Indices (hkl ) :
1 1

1
1
× (210)

1
2

z intercept at ∞

a

b

c

x

y

x intercept at a/2

y intercept at bUnit cell

z

(a) Identification of a plane in a crystal

(111)

–z

y

x

z

x

(110)
z

–y
y

(111)

y

z
(010) (010) (010)(010)

x

(010)

x

z

y

(b) Various planes in the cubic lattice
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Drawing Direction and Plane

Draw (a) the          direction and (b) the          plane in a 
cubic unit cell.

1]2[1 10]2[

Construction 
of a (a) 
direction and 
(b) plane 
within a unit 
cell
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SOLUTION

a. Because we know that we will need to move in the 
negative y-direction, let’s locate the origin at 0, +1, 0. 
The ‘‘tail’’ of the direction will be located at this new 
origin. A second point on the direction can be 
determined by moving +1 in the x-direction, 2 in the 
negative y-direction, and +1 in the z direction.

b. To draw in the          plane, first take reciprocals of 
the indices to obtain the intercepts, that is: 

x = 1/-2 = -1/2  y = 1/1 = 1  z = 1/0 =

Since the x-intercept is in a negative direction, and we 
wish to draw the plane within the unit cell, let’s move 
the origin +1 in the x-direction to 1, 0, 0. Then we can 
locate the x-intercept at 1/2 and the y-intercept at +1. 
The plane will be parallel to the z-axis.

10]2[

∞
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Determining Miller-Bravais Indices for 
Planes and Directions in hexagonal system

Miller-Bravais indices 
are obtained for 
crystallographic 
planes, directions, 
and points in 
hexagonal unit cells 
by using a four-axis 
coordinate system. 

For planes (hkil), the 
index i = -(h+k), i.e. 
h+k = -i
For directions [uvtw], 
we have also t = 
(u+v), i.e. u+v = -t
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Miller-Bravais indices for planes are straightforward, 
just as we obtained the intersects for 3 axes, we 
have to obtain them now for 4 axes

SOLUTION

Plane A
1. a1 = a2 = a3 =   , c = 1
2. 1/a1 = 1/a2 = 1/a3 = 0, 1/c = 1
3. No fractions to clear
4. (0001)

Plane B
1. a1 = 1, a2 = 1, a3 = -1/2, c = 1
2. 1/a1 = 1, 1/a2 = 1, 1/a3 = -2, 1/c = 1
3. No fractions to clear
4. 

∞

)1211(
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Determining directions in the hexagonal system 
is a bit more challenging it is easier to calculate 
with 3 indices and then simply make up the forth

SOLUTION (Continued)
Direction C
1. Two points are 0, 0, 1 and 1, 0, 0.
2. 0, 0, 1, - (1, 0, 0) = -1, 0, 1
3. No fractions to clear or integers to reduce.
4.

Direction D
1. Two points are 0, 1, 0 and 1, 0, 0.
2. 0, 1, 0, - (1, 0, 0) = -1, 1, 0
3. No fractions to clear or integers to reduce.
4. extension to 4 indices looks easy, but is not !100]1[or  ]101[

113]2[or  ]011[

How did we get the forth index ? All have to be relabeled, 
say [UVW] are the three indexes, u = 1/3 (2U –V), 

v = 1/3 (2V-U), t = - 1/3 (u+v), w = W
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Typical directions in the hexagonal unit cell, using both three-
and-four-axis systems.  The dashed lines show that the 
[1210] direction is equivalent to a [010] direction.

Miller-Bravais Indices of important directions

Densely packed lattice directions in the basal plane (0001), 
e.g. [100], [010], and [110] have similar Miller-Bravais 
indices, important for dislocation slip systems
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Now as we have coordinates for lattice points, 
lattice directions and lattice planes, we can start  
making crystallographic calculations

Good news: everything is easy in the cubic system angle 
between two different direct [uvw] (or reciprocal – (hkl)) 
space directions

So angle between planes is calculated as angle between 
their normals, if you were to use a protractor (or contact 
goniometer), you would just measure an angle 180 ° - ß

2
2

2
2

2
2

2
1

2
1

2
1

212121arccos
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Bad news: everything gets a bit more difficult in non 
cubic systems for two reasons, the coordinate axes 
are no longer perpendicular to each other, the unit 
vectors of coordinate axes have different length

No problem: we have the metric tensor G, a 3 by 3 
matrix



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So angle between lattice directions become
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If cubic 
simply
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Example: what is the angle between [100] and 
[111] in (tetragonal) ß-Sn?

a = 0.583 nm, c =0.318nm, Solution:
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GvvGuu
Gvu

''
'

arccos=α

Putting into relation from above

°=
⋅

= 91.27
8836.0

arccos
2

a
a

α

So that was not all that difficult !!!
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Same basic idea for lattice planes, i.e. their normals 
which are vectors in reciprocal (or dual) space
everything is easy in cubic systems, in other crystal 
systems we use reciprocal metric tensor, the 
reciprocal 3 by 3 matrix of the metric tensor
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So angle between 
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this also 
defines 
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reciproc
al lattice
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Metric tensor (and its reciprocal) also define 
reciprocal lattice

ababc

cacab

cbcba

×==

×==

×==

−

−

−

1222

1222

1222

)sin(*

)sin(*

)sin(*

γ

β

α

It is just a mathematical convenience, particularly 
useful for interpretation of (X-ray and electron 
diffraction) data

d* = H = h a1* + ka2* + l a3*= 1/d

In cubic systems simply: 
222 lkh

a
dhkl

++
=
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Other geometric considerations, valid for all 
crystal systems, that is the great thing about Miller indices !!!

When does a direction lie in a plane? 

If their dot product is zero, e.g. and (111) , -1 + 0 +1 = 0

But              does not lie in               as 1 + 0 + 1 ?  0

What are the indices of the direction that 
mediated the intersection of two plane?

We have to determine cross products

(111) x           =

]011[

]011[ )311(

)321( ]235[
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(a) Illustration 
showing sharing 
of face and 
corner atoms. 

(b) The models for 
simple cubic 
(SC), body 
centered cubic 
(BCC), and face-
centered cubic 
(FCC) unit cells,

assuming only
one atom per
lattice point.

Centered lattices and structures with more than one 
lattice point per unit cell
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1/8th of an atom

Half of an atom

2R

a

R

R

a

a

Fig. 1.38: The FCC unit cell. The atomic radius is R and the lattice
parameter is a
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Determine the number of lattice points per cell in the cubic 
crystal systems. If there is only one atom located at each 
lattice point, calculate the number of atoms per unit cell.

SOLUTION

In the SC unit cell: lattice point / unit cell = (8 corners)1/8  = 1

In BCC unit cells: lattice point / unit cell                                     
= (8 corners)1/8  + (1 center)(1) = 2

In FCC unit cells: lattice point / unit cell                                     
= (8 corners)1/8  + (6 faces)(1/2) = 4

If there is only on atom per lattice point, as in typical metal 
structures, the number of atoms per unit cell would be 1, 2, 
and 4, for the simple cubic, body-centered cubic, and face-
centered cubic, unit cells, respectively. But there are also 
many structures with more than one atom per 
lattice point

Determining the Number of Lattice Points 
in Cubic Crystal Systems
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Determine the relationship between the atomic radius 
and the lattice parameter in SC, BCC, and FCC structures 
when one atom is located at each lattice point.

Determining the Relationship between 
Atomic Radius and Lattice Parameters

The relationships between the atomic radius and the lattice 
parameter in cubic systems 
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SOLUTION

Referring to Figure above, we find that atoms touch 
along the edge of the cube in SC structures.

3
4

0
ra =

In FCC structures, atoms touch along the face diagonal 
of the cube. There are four atomic radii along this 
length—two radii from the face-centered atom and one 
radius from each corner, so:

2
4

0
ra =

ra 20 =

In BCC structures, atoms touch along the body diagonal. 
There are two atomic radii from the center atom and one 
atomic radius from each of the corner atoms on the body 
diagonal, so
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Example:  Copper

ρ = n A
VcNA

# atoms/unit cell Atomic weight (g/mol)

Volume/unit cell 
(cm3/unit cell)

Avogadro's number 
(6.023 x 1023 atoms/mol) 

• crystal structure = FCC:  4 atoms/unit cell
•  atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
•  atomic radius R = 0.128 nm   (1 nm = 10   cm)-7

Vc = a3 ; For FCC, a = 4R/  2 ;  Vc = 4.75 x 10-23cm3

Compare to actual: ρCu = 8.94 g/cm3

Result:  theoretical ρCu = 8.89 g/cm3

THEORETICAL DENSITY, ρ

So there must 
be some real 
structure in 
addition !
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Determining the Density of BCC Iron

Determine the density of BCC iron, which has a lattice 
parameter of 0.2866 nm.

SOLUTION

Atoms/cell = 2, a0 = 0.2866 nm = 2.866 × 10-8 cm

Atomic mass = 55.847 g/mol

Volume of unit cell =    = (2.866 × 10-8 cm)3 = 23.54 × 10-24

cm3/cell

Avogadro’s number NA = 6.023 × 1023 atoms/mol

3
0a

3
2324 /882.7

)1002.6)(1054.23(
)847.55)(2(

number) sadro'cell)(Avogunit  of (volume
iron) of mass )(atomicatoms/cell of(number 

Density 

cmg=
××

=

=

−ρ

ρ
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ρ 
(g

/c
m

3 )

Graphite/ 
Ceramics/ 
Semicond

Metals/ 
Alloys

Composites/ 
fibersPolymers

1

2

20

30
Based on data in Table B1, Callister 

*GFRE, CFRE, & AFRE are Glass, 
Carbon, & Aramid Fiber-Reinforced 
Epoxy composites (values based on 

60% volume fraction of aligned fibers 
in an epoxy matrix).  10  

3  
4  
5  

0.3  
0.4  
0.5  

Magnesium  

Aluminum  

Steels  

Titanium  

Cu,Ni  

Tin, Zinc  

Silver, Mo  

Tantalum  
Gold, W  
Platinum  

Graphite  
Silicon  

Glass-soda  
Concrete  

Si nitride  
Diamond  
Al oxide  

Zirconia  

HDPE, PS  
PP, LDPE  

PC  

PTFE  

PET  
PVC  
Silicone  

Wood  

AFRE*  

CFRE*  
GFRE*  
Glass fibers  

Carbon fibers  

Aramid fibers  

Metals typically have
• close-packing

(metallic bonding)
• large atomic mass

Ceramics have
• less dense packing

(covalent bonding)
• often lighter  

elements
Polymers have...
• poor packing
(parts often
amorphous)

• lighter elements
(C,H,O)

Composites have...
• intermediate values

DENSITIES OF MATERIAL CLASSES
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APF = 
Volume of atoms in unit cell*

Volume of unit cell

*assume hard spheres

• APF for a simple cubic structure = 0.52

APF = 
a3

4

3
π (0.5a)31

atoms
unit cell

atom
volume

unit cell
volume

close-packed directions

a

R=0.5a

contains 8 x 1/8 = 
           1 atom/unit cell

ATOMIC PACKING FACTOR
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a
R

• APF for a body-centered cubic structure = 0.68

Close-packed directions: 
     length = 4R 

       =  3 a

Unit cell contains: 
     1 + 8 x 1/8  
  = 2 atoms/unit cell

ATOMIC PACKING FACTOR:  BCC

APF = 
a3

4

3
π ( 3a/4)32

atoms
unit cell atom

volume

unit cell

volume
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APF = 
a3

4

3
π ( 2a/4)34

atoms
unit cell atom

volume

unit cell

volume

Unit cell contains: 
     6 x 1/2 + 8 x 1/8  
  = 4 atoms/unit cell

a

• APF for a body-centered cubic structure = 0.74

Close-packed directions: 
     length = 4R 

       =  2 a

ATOMIC PACKING FACTOR:  FCC

That is 
the 
highest 
possible 
packing 
factor !!
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The hexagonal close-packed (HCP) structure (left) 
and its unit cell. The packing factor is also 74 %, i.e. 
the highest possible, just as we had for FCC spheres
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The ABABAB
stacking 
sequence of 
close-packed 
planes produces 
the HCP 
structure.

Stacking sequences of closed packed 
structures, i.e. those with 74 % Packing factor
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The ABCABCABC stacking sequence of close-
packed planes produces the FCC structure.
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Illustration of coordinations in (a) SC- six fold and (b) BCC –
8 fold unit cells. Six atoms touch each atom in SC, while the 
eight atoms touch each atom in the BCC unit cell.

Coordination and nearest neighbors
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Lattice

Basis

Crystal

Unit cell Unit cell

a

a

(a) (b) (c)

90°

x

y

Basis placement in unit cell
(0,0)

(1/2,1/2)

(d)

Fig. 1.70: (a)  A simple square lattice. The unit cell is a square with a
side a. (b) Basis has two atoms. (c)  Crystal = Lattice + Basis. The unit
cell is a simple square with two atoms. (d) Placement of basis atoms in
the crystal unit cell.
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M.C. Escher’s two dimensional patterns are filling the 
whole 2D space. We can determine a unit cell which 
happened to be composed off many details, regardless of 
which periodic detail we use for the choice of the unit cell, 
these cells will always be identical. So we can think about 
it in a way that all the details are shrunk into a lattice 
points and all that remains is the geometrical array of 
lattice points we had in the previous slide 
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o Interstitial sites - Locations between the ‘‘normal’’ 
atoms or ions in a crystal into which another -
usually different - atom or ion is placed. Typically, 
the size of this interstitial location is smaller than 
the atom or ion that is to be introduced.

o Cubic site - An interstitial position that has a 
coordination number of eight. An atom or ion in 
the cubic site touches eight other atoms or ions.

o Octahedral site - An interstitial position that has a 
coordination number of six. An atom or ion in the 
octahedral site touches six other atoms or ions.

o Tetrahedral site - An interstitial position that has a 
coordination number of four. An atom or ion in the 
tetrahedral site touches four other atoms or ions.

Interstitial Sites 
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The location of the interstitial sites in cubic unit cells.  Only 
representative sites are shown.
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Interstitial sites 
are important 
because we can 
derive more 
structures from 
these basic FCC, 
BCC, HCP 
structures by 
partially or 
completely 
different sets of 
these sites
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Calculating Octahedral Sites

How many octahedral sites are there in one FCC unit 
cell?

SOLUTION

The octahedral sites include the 12 edges of the unit cell, 
with the coordinates

2
1

1,,0      
2
1

1,,1      
2
1

0,,1      
2
1

,0,0

,1
2
1
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,0
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2
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      0,1,
2
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      1,0,
2
1

      0,0,
2
1

plus the center position, 1/2, 1/2, 1/2.
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SOLUTION (Continued)

Each of the sites on the edge of the unit cell is shared 
between four unit cells, so only 1/4 of each site belongs 
uniquely to each unit cell. 

Therefore, the number of sites belonging uniquely to each 
cell is:

(12 edges) (1/4 per cell)  + 1 center location 
= 4 octahedral sites
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How much space is there available to fill the 
different sites with “hard sphere” atoms?
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The radios ratios have to be of course the same 
as the once we discussion in connection with 
coordination
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o Factors that need to be considered in order to 
understand crystal structures of ionically 
bonded solids:

§ Ionic Radii for filling of various interstitial 
sites

§ Electrical Neutrality as a structural principle

Crystal Structures of Ionic Materials
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• Compounds: Often have close-packed structures 
– there is more than one atom per lattice point.

• FCC + octahedral 
Interstitial site filled • Structure of NaCl

STRUCTURE OF NaCl
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Cl°

Na+

Fig. 1.36: A possible reduced sphere unit cell for the NaCl (rock
salt) crystal. An alternative unit cell may have Na+ and Cl °
interchanged. Examples: AgCl, CaO, CsF, LiF, LiCl, NaF, NaCl,
KF, KCl, MgO
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Cl°

Cs+

Fig. 1.37: A possible reduced sphere unit cell for the CsCl crystal.
An alternative unit cell may have Cs + and Cl °  interchanged.
Examples: CsCl, CsBr, CsI, TlCl, TlBr, TlI.

Simple cubic packing with the cube interstitial site filled 
by another atom, note that there are two atoms per 
lattice point, i.e. the lattice as such is still simple cubic
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(a) The zinc blende unit cell, (b) plan view. There 
is usually a large covalent contribution to these 
bonds. The coordination is quite low for ionic bonds.  
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(a) Fluorite unit cell, (b)  plan view. All 8 tetrahedral interstitial 
sites are filled by F anions, as the formula is CsF2, there is three atoms
per lattice point. U)2, ThO2 and ZrO2 have the same structure, there 
is also the “antifluorite” structure for Li2O, Na2O, K2O with cations and 
anions reversed



80

g

Corundum structure of alpha-alumina (a-AI203), O in 
HCP and Al in some of the octahedral interstitial sites, 
possibly the most widely used ceramic
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o Covalently bonded materials frequently have 
complex structures in order to satisfy the 
directional restraints imposed by the bonding.

o Diamond cubic (DC) - A special type of face-
centered cubic crystal structure found in 
carbon, silicon, α-Sn, and other covalently 
bonded materials.

Covalent Structures
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a

C

a

a

Fig. 1.33: The diamond unit cell is cubic. The cell has eight atoms.
Grey Sn (α-Sn) and the elemental semiconductors Ge and Si have
this crystal structure.
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S

Zn

a

a

a

Fig. 1.34: The Zinc blende (ZnS) cubic crystal structure. Many
important compound crystals have the zinc blende structure.
Examples: AlAs, GaAs, GaP, GaSb, InAs, InP, InSb, ZnS, ZnTe.
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The silicon-oxygen tetrahedron and the resultant ß-
cristobalite form of silica. Note: there is six atom at  
every lattice point, i.e. one Si in the center, 4 O 
within the tetrahedron and 4 times ¼ Si at the 
apexes of each tetrahedron 
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The unit cell of crystalline polyethylene, 
Orthorhombic, there are typically many defects in 
polymer crystals



86

• tend to be densely packed.

• have several reasons for dense packing:
-Typically, only one element is present, so all atomic
radii are the same.

-Metallic bonding is not directional.
-Nearest neighbor distances tend to be small in
order to lower bond energy.

• have the simplest crystal structures.

We will revisit the two closest packed 
structures and give some examples for 
each of them

METALLIC CRYSTALS
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2R

a

a

a

a

(c)(b)

FCC Unit Cell(a)

Fig. 1.30: (a) The crystal structure of copper is Face Centered Cubic
(FCC). The atoms are positioned at well defined sites arranged
periodically and there is a long range order in the crystal. (b) An FCC unit
cell with closed packed spheres. (c) Reduced sphere representation of the
FCC unit cell.  Examples: Ag, Al, Au, Ca, Cu, γ-Fe (>912•C), Ni, Pd, Pt,
Rh
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Layer A
Layer B
Layer A

(a) (b)

Layer A

Layer B

Layer A

c

a

(c) (d)
Examples: Be,  Mg,  α-Ti ( < 882°C ),  Cr,  Co,  Zn,  Zr, Cd

Fig. 1.32: The Hexagonal Close Packed (HCP) Crystal Structure. (a)
The Hexagonal Close Packed (HCP) Structure. A collection of
many Zn atoms. Color difference distinguishes layers (stacks).
(b) The stacking sequence of closely packed layers is ABAB
(c) A unit cell with reduced spheres (d) The smallest unit cell with
reduced spheres.

Be very 
careful, 
the yellow 
and blue 
spheres 
represent 
one and 
the same 
type of 
atoms
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What is steel?
It’s not an element, it’s an intestinal alloy, 

about 1 C atom every 50 Fe atoms, i.e. 0.4 weight % C 

So the crystal structure is BCC, as it is Fe at room temperature, 
every now and then a much smaller c atom fits into one of the 
cubic interstitial sites and this increases the strength from 
about 15 MPa to more than 1500 MPa 

How is that little amount of C accomplishing so much ?

More about things such as this in next lecture on lattice defects
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• Atoms typically assemble into crystals some 
materials e.g. glass are amorphous, i.e. have only short range order

• We can predict the density of a material, provided 
we know the atomic weight, atomic radius, and 
crystal geometry (e.g., FCC, BCC, HCP).

• Material properties generally vary with single
crystal orientation (i.e., they are anisotropic),

but properties are frequently quite non-directional 
(i.e., they are isotropic) in polycrystals with randomly 
oriented grains as e.g. in steel and other engineering 
materials

SUMMARY Crystals
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o Diffraction - The constructive interference, or 
reinforcement, of a beam of x-rays or electrons 
interacting with a material. The diffracted beam 
provides useful information concerning the 
structure of the material.

o Bragg’s law - The relationship describing the angle 
? at which a beam of x-rays of a particular 
wavelength diffracts from crystallographic planes of 
a given interplanar spacing.

o In a diffractometer a moving x-ray detector records 
the 2? angles at which the beam is diffracted, 
giving a characteristic diffraction pattern

Diffraction Techniques for Crystal 
Structure Analysis
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Lattice constants range from about 0.1 nm to some 50 
- 100 nm. Most crystals’ lattice constants are in the 1-5 
nm range, since crystals are periodic, they are the 
ideal diffraction grating for X-rays, Max von Laue’s 1914 
Nobel prize that proved both, crystals are periodic 3D arrangements 
of atoms and X-rays are waves (well wave-particles actually)
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The diffraction angle is always 2?

Bragg’s law: n λ = 2 dhkl sin ?
n – the order of reflection can be 
dropped by allowing indices for hkl 
that are not smallest integers, i.e. 
HKL 
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Single crystal diffractometers are more sophisticated
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Powder 
diffractometers 
(for polycrystalline 
powder) 

are less 
sophisticated and 
can be found in 
many places
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(a) sketch of a 
diffractometer viewed 
from above, showing 
powder sample, 
incident and diffracted 
beams.

(b) diffraction pattern 
obtained from a 
sample of gold 
powder, notice the 
Miller indices of the 
diffracting crystal 
planes
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d=nλ/2sinθc

x-ray 
intensity 
(from 
detector)

θ

θc

• Measurement of:
“reflection” angles 
(Bragg angles), θ,
for X-rays provide
atomic spacing, d.

reflections must 
be in phase to 
detect signal

spacing 
between 
planes

d

incoming 

X-rays

outgoing
 X-ra

ys

detector

θ
λ

θ
extra 
distance 
travelled 
by wave “2”

“1”

“2”

“1
”

“2
”
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(a) Destructive 
and (b) reinforcing 
(constructive) 
interference 
between x-rays 
“reflected on a set 
of planes.  
Reinforcement 
occurs only at 
angles that satisfy 
Bragg’s law.

λ = 2 dHKL sin ?

No other X-ray 
diffraction peaks 
occur
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The results of a x-ray diffraction experiment on some metal 
powder found at a crime scene using characteristic x-rays 
with ? = 0.7107 Å (a radiation obtained from molybdenum 
(Mo) target) show that diffracted peaks occur at the 
following 2? angles:

X-ray Diffraction for an forensic examination

Determine the indices of the plane producing each peak, and 
from that the lattice parameter of the material and from that 
identify the material (you know it is some metal so it is a 
good guess to assume the crystals in the powder are cubic)
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SOLUTION

λ = 2 dHKL sin ?

We first determine the sin2 ? value for each peak, then divide 
through by the lowest denominator, 0.0308, “guess” the indices

gdLcKbHa
LKH

d HKLHKL

r
==++=

++
= −− 1*1

222
)(*)**(

1

θλ 22 sin)
2

( =
HKLd
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SOLUTION (Continued)

We could then use 2? values for any of the peaks to 
calculate the interplanar spacing and thus the lattice 
parameter. Picking peak 8:
2? = 59.42 or ? = 29.71

Å

Å868.2)4)(71699.0(

71699.0
)71.29sin(2

7107.0
sin2

222
4000

400

==++=

===

lkhda

d
θ

λ

This is the lattice parameter for body-centered cubic iron.

Since out of all metals only Po has the simple cubic structure, 
and we do know our material was not radioactive and difficult 
to obtain, we didn’t check for an indexing scheme for a single 
cubic lattice, it would have gotten us nowhere anyway 

So the gardener did steal the cookies –
only kidding
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There are certain systematic absences of 
reflections

You may have noticed that 
there are no (hkl) triplets 
with h+k+l = odd.

Laue’s kinematical theory 
of X-ray diffraction (1912) 
explains why, 

different structures have 
forbidden reflections, i.e. 
reflections that do not 
show up in diffraction but 
these planes do of course 
exist in the crystals, it is 
just that diffraction on 
them is destructive 

Simple cubic crystals 
have no forbidden 
reflections
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A TEM micrograph of an aluminum alloy 
(Al-7055) sample. The diffraction pattern 
at the right shows large bright spots that 
represent diffraction from the main 
aluminum matrix grains. The smaller 
spots originate from the nano-scale 
crystals of another compound that is 
present in the aluminum alloy.
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(In,Ga)P, an important semiconductor for visible light 
lasers can show a variety of atomic ordering

The very same 
thing, i.e. atomic 
ordering exist in 
metals as well
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II-VI semiconductors with 
atomic ordering, (Cd,Zn)Se 
quantum dots in ZnSe, [001] 
plan view

(Cd,Mn,Zn)Se quantum dots 
in <110> cross section
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Unknown crystallographic phase in (In,Ga)(Sb,As) 
quantum dots in InAs matrix,

a Fourier transform power spectrum of a high resolution 
TEM images replaces frequently a diffraction pattern as 
much of the information is contained in such calculated 
images
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False color 
convergent 
beam electron 
diffraction 
pattern,
From the symmetry 
of the lines (Kikuchi 
lines), the crystal 
system can be 
determined

From the fine 
structure of the 
diffraction disk, the 
space group can be 
determined

Works for extremely 
tiny specs of matter, 
perhaps 2 nm 
across
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Wow, what is that?

It can’t be a crystal as it 
obviously has a five fold 
symmetry, it is not 
amorphous either as it 
clearly has a diffraction 
pattern? 

It’s a quasi-crystal, i.e. and 
entity with short range order 
(as amorphous and crystalline 
materials) and long range 
order (as a crystal), the 
crucial difference is, the long 
range order is non periodic
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Crystallographic work 
can also be done in 
modern SEMs !

Electron backscatter 
(Kikuchi) diffraction 
(EBSD), here of a Si 
crystal
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Atoms can be arranged and imaged!

Carbon monoxide 
molecules arranged 
on a platinum (111) 
surface.

Iron atoms arranged 
on a copper (111) 
surface.  These Kanji 
characters represent 
the word “atom”.

scanning probe microscopy, STM, AFM, …

Something more useful, the square of 
the quantum mechanical wave function 
of an electron that is trapped in a 
“cage” of Cu atoms


