Lecture Outline Crystallography

Qoo OO0 OOoO0d

Short and long range Order
Poly- and single crystals, anisotropy, polymorphy
Allotropic and Polymorphic Transitions

Lattice, Unit Cells, Basis, Packing, Density, and
Crystal Structures

Points, Directions, and Planes in the Unit Cell
Structures with more than one atoms per lattice
point

Interstitial Sites

lonic Crystal Structures

Covalent Crystal Structures

Metallic Crystal structures

Diffraction and modern microscopy



Lowest ENERGY state at each temperature

' There is still
. short range
order

Non dense, random packing AEnergy

typical neighbor
¢bond length

“‘ typical neighbor

bond energy —p —

* Dense, regular packing AEnergy

There is long range
order in addition to
short range order

typical neighbor

typical neighbor

bond energy—.,,r _

#bond length
|
|
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Dense, regular-packed structures tend to have lower
energy, of course everything depends on temperature, at
low enough temperatures many materials crystallize



MATERIALS AND PACKING

Crystalline materials...
e atoms pack in periodic, 3D arrays
e typical of: -metals

Glass is actually a -many ceramics

cold melt, over long

enough times, it - semiconductors One of many forms of
crystallizes, old -some polymers crystalline SiO2
church windows are

thicker at the bottom ° Sl ® Oxygen

Noncrystalline materials...

e atoms have no periodic packing
e occurs for: -complex structures
- rapid cooling

"Amorphous" = Noncrystalline noncrystalline SiO2

Quartz glass, a cold melt



Single Crystal
Examples: Si, GaAs

C: Liquid Crystals
‘Short Range Order
and Long Range Order
in Small Volumes
Example: LCD polymers

Classification of materials based on type of
atomic order.



materials:
(a) Inert monoatomic
@ gases have no
regular ordering of

Ar
Q o H H @ atoms:
Q (b,c) Some materials,

including water
(a) (b) vapor, nitrogen
gas, amorphous
silicon and silicate
glass have short-
range order.

(j Levels of atomic
arrangements in

(d) Metals, alloys,
many ceramics,
semiconductors
and some polymers
have regular
ordering of
atoms/ions that
extends through

() (d) the material

= crystals




(b)

Crystobalite
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FIGURE 6.5-1

A comparison of the X-ray
scans for (a) amorphous
silica and (b) a crystalline

polymorph of silica (crysto-

balite).  (Source: Adapted
from B. E. Warren and J.

Biscal, Journal of American

Ceramic Society, 27149,
1938.)

Basic “Si-0” tetrahedron
In silicate glass. X-ray
diffraction shows only
short range order.

Note that this cannot exist
In quartz at room
temperature, there the
tetrahedron is distorted
resulting in pronounced
anisotropy effects such as
piezoelectricity.

In 3-cristobalite, a high
temperature phase of
quartz, we have an
undistorted tetrahedron
again, X-ray diffraction
shows long range order



Crystallographic Bravice
Form lattice
2000 T
I 1723 (melting point)
High cristobalite fce
(shown in Fig. 3-11)
1500 1 L 1470
A
High tridymite Hexagonal
T(C) 1000
Y
-+ 867
High quartz Hexagonal
1 573
500 +
Low quartz Hexagonal
oL 7

Figure 3-12 Many crystallographic forms of SiO are stable as they are heated
from room temperature to the melting temperature. Each form represents a

different way to connect adjacent SiOﬁ' tetrahedra.

Again there
are different
crystallograp
hic phases,
I.e. long
range order
structures
until the
crystal melts
and only
short range
order
remains



Hydrogen
atom

~ Silicon
atom

(a) (b)

Atomic arrangements in (a) Amorphous silicon with H
(b) Crystalline silicon. Note the variation in the inter-
atomic distance for amorphous silicon, but there still is
short-range order



POLY-CRYSTALS

. Most englneerlng materlals are poly- Crystalllne '
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 Nb-Hf-W plate W|th an electron beam Weld

« Each "grain" is a single crystal.
 If crystals are randomly oriented, component properties are

not directional, but frequently we have texture, preferred
orientation of poly-crystals resulting in pronounced anisotropy
e Crystal sizes range from 1 nmto 2 cm, (i.e., from a few to millions

of atomic layers). o)



SINGLE versus POLY-CRYSTALS

Single (Mono-)crystals E (diagonal) = 273 GPa

) hal
- Properties vary with ./.
direction: anisotropy.
- Example: the modulus

of elasticity (E) in BCC iron: ./.

E (edge) = 125 GPa

Poly-crystals

- Properties may/may not
vary with direction,
depending on
degree of texture.

- If grains are randomly
oriented: isotropic.
(Epoly iron = 210 GPa)

anlsotroplc 10



Allotropic and Polymorphic
Transitions

1 Allotropy - The characteristic of an element
being able to exist in more than one crystal
structure, depending on temperature and
pressure.

[0 Polymorphism - Compounds exhibiting more
than one type of crystal structure.

[0 Everything depends on temperature and
pressure, e.g. coefficient of thermal expansion
can, therefore, only be defined over a certain
region of temperature

11



Covalently bonded layer

Cubic crystal ! \ Layers bonded by van der
d / Waals bonding
Covaently — Covalently bonded
bonded network layer

of atoms

EE —~—— Hexagona unit cell

(a) Diamond unit cell (b) Graphite

9

@— (b)
: - Figure 3-19 (a) Ceo molecule, or
The FQC unit cell of the _ 'Il3uckm|nst'(|erfullerene (Cgy) molecule (the buckyball. (b) Cylindrical
Buckminsterfullerene crystal. Each lattice buckyball" molecule) array of hexagonal rings of

point has a C,, molecule

carbon atoms, or buckytube.
(Courtesy of Molecular Sim-
ulations, Inc.)

(c) Buckmingterfullerene
12
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(a) (b)

Figure 3-18 (a) An exploded view of the graphite (C) unit cell. (From F. H. Norton, Elements
of Ceramics, 2nd ed., Addison-Wesley Publishing Co., Inc., Reading, Mass., 1974.) (b) A
schematic of the nature of graphite’s layered structure. (From W. D. Kingery, H. K. Bowen,
and D. R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, Inc., New York,
1976.)

13



U(X) = PE = mgh Unstable (Activated State)

M etagtable

X X px XB
System Coordinate, X = Pogtion of Center of Mass

Fig. 1.27: Tilting afiling cabinet from state A to its edge in state A*
requires an energy Ea. After reaching A*, the cabinet spontaneoudly

dropsto the stable position B. PE of state B islower than A and
therefore state B is more stable than A. 14



Example: heating and cooling of a
hanging Iron wire The same group of atoms

has more than one crystal
structure.

« Demonstrates "polymorphism"“~ The actual structure
depends on temperature

A Temperature, C and pressure.
Liquid

1536

BCC Stable
1391

heat up

FCC Stable
914

BCC Stable

cool down
|
— o———Shorter

15



Lattice, Unit Cells, Basis, and
Crystal Structures

Lattice - a 3D collection of points that divide space
Into smaller equally sized units.

Basis - a group of atoms associated with a lattice
point. This may be one single atom or a group of
atoms.

Unit cell - a subdivision of the lattice that still retains
the overall characteristics of the entire lattice,
contains at least one atom may contain many
atoms.

Atomic radius - apparent radius of an atom, typically
calculated from the dimensions of the unit cell, using
close-packed directions (depends upon type of

bonding, coordination number, guantum mechanics).

Packing factor - The fraction of space in a unit cell

occupied by atoms.
16



; 1o Al
F_ o E The fourteen

types of Bravais)
Simple cubic Face-centered Body-centered

cubic cubic lattices grouped
_ In seven crystal
q ' -
j ‘ iﬂ | systems:
: triclinic
Simple Body-centered Hexagonal

tetragonal _
monocline

S
rhombohedral =
(trigonal)
L
Simple Body-centered Base-centered Face-centered -
orthorhombic orthorhombic orthorhombic orthorhombic O rthorhombic
tetragonal
vy
g . hexagonal
Rhombohedral Simple Base-centered Triclinic cubic

monoclinic manoclinic

17



oy

a b
Cubic Orthorhombic

For cubic crystals, however,
calculations are just like with
Cartesian coordinates

120°

a

Hexagonal

Definition of lattice
parameters in
cubic,
orthorhombic, and
hexagonal crystal
systems.

Note that angles
are not always
90° degrees and
coordination axis
lengths are not
necessarily all
equal, as you
know them to be
from Cartesian
coordinates

18



TABLE 3-1 W Characteristics of the seven crystal systems

Structure Axes Angles between Axes Volume of the Unit Cell
Cubic a=bh=c All angles equal 90° ad

Tetragonal a=bh#c All angles equal 90¢ a’c

Orthorhombic a#£b#c All angles equal 90° abc

Hexagonal a=hb#c  Twoangles equal 90°. 0.866a’c

Ore angle equals 120¢.
Rhombohedral a=b=c Al angles are equal ard a*v1-3cos? u+2cosd «

or trigonal none equals 90¢
Monoclinic a#b#c  Twoangles equal 90°. abc sin f#
Ore angle () is not
equal to 90°
Triclinic a#b#c Al anglesare different abcy/1 — cos? & —cos? f — cos? p+ 2 oS 2 cos i Cos §
and nore equals 90°

19



Lattice Points and Directions In
the Unit Cell

O Miller-indices - A shorthand notation to describe

certain crystallographic directions and planes in a
material.

Lattice directions are in direct space and are denoted

by [ ] brackets. A negative number is represented
by a bar over the number.

Directions of a form (also called family) -
Crystallographic directions that all have the same
characteristics, although their “sense” may be
different. Denoted by <> brackets, they are
symmetrically equivalent

20



Lattice Planes in the Unit Cell are
an altogether different matter !

O Miller-indices - A shorthand notation to describe

certain crystallographic directions and planes in a
material.

Lattice planes are represented by the vector that is
normal (perpendicular to them), these are 3D
vectors In reciprocal (or dual) space (reciprocal
space is nothing fancy - it is just a mathematical
convenience !)

Directions of a form (also called family) — lattice planes
that all have the same characteristics, although
their “sense” may be different. Denoted by {}

brackets, they are symmetrically equivalent. Now if
the lattice point represents more than one point the front side and the
back side of one and the same plane may have very different chemical
properties as different atoms will be exposed, e.g. ZnS structure

21



-1

“‘l ﬂ‘l 1 We start with the
coordinates of
1, 1, 1 lattice points in

order to define
the Miller indices
of lattice
directions

0,0,0

1,0,0 1,1,0

Coordinates of selected points in the unit cell. The
number refers to the distance from the origin in
terms of lattice parameters.

22



Determining Miller Indices of Directions

Z
A
0,0, 1

Determine coordinates of two
points that lie in direction of
Interest,

u, v, w;, and u,v, w,
calculations are simplified if the second

point corresponds with the origin of the
coordinate system

Subtract coordinates of second
point from those of first point
u = u;-U,, V. =V;-V,, W = W,;-W,

Clear fractions from the
differences to give indices in
lowest integer values. Write
indices in [] brackets. Negative
iInteger values are indicated with
a bar over the integer,

[uvw] and Juvw] are running in
opposite directions 23



Direction A

1. Two pointsare 1, 0, 0,and 0, 0, O
2.1,0,0,-(0,0,0)=1,0,0

3. No fractions to clear or integers to reduce
4. [100]

Direction B

1. Two pointsare1,1,1and0, 0,0
2.1,1,1,-(0,0,0)=1,1,1

3. No fractions to clear or integers to reduce
4. [111]

Direction C

1. Two points are 0, 0, 1 and 1/2, 1, O
2.0,0,1—-(1/2,1,0)=-1/2,-1,1
3.2((-1/2,-1,1) =-1,-2,2

4.1122]

24



N

100]

Equivalency of crystallographic directions of a form in

cubic systems.

>y

X -

2

010]

25



TABLE 3-3 W Directions of the form {110 in cubic systems
(110] [110]
101] [101]
011] [011]
MO =1 10y 110
101] [101]
011] [011]

26



Determining Miller Indices of Planes

M\
/TN

/ZZ/’::”\\

/ %f!fff:,\

//47‘ H_,..--"'Hfl_,.-'"' \

/ ﬁ,:f’::ffj:5>

b il = —» )
Zﬂ- T/ y=2

Identify the coordinate

intersects of the plane, if plane

Is parallel to one of the axes,
this intercept is taken to be
infinite

Take the reciprocal of the
intercept

Clear fractions, but do not
reduce to lowest integers

Cite in (h k I) parentheses

Negative integer values are
indicated with a bar over the
integer

(—h _k_l) Is the same plane as
(h k1), justits back side

27



Plane A
1.x=1,y=1,z=1
2.1/x=1,1/y=1,1/z=1
3. No fractions to clear

4. (111D)

Plane B

1. The plane never intercepts the z axis, sox =1,y =2,andz= ¥
2.1/x =1, 1/y =1/2, 1/z =0

3. Clear fractions: 1/x =2,1/y=1,1/z=0

4. (210)

Plane C

1. We shall move the origin, since the plane passes through O, 0O, O.
Let’s move the origin one lattice parameter in the y-direction. Then,

X = ¥,y=—1, and z = ¥

2.1/x=0, -1/y=-1,1/z=0 —

3. No fractions to clear. 4. (010)

that seemed a bit arbitrary, we could have moved the origin in the —

y direction as well, then we would have gotten (010), which is just

the back side of (010) 28



zintercept at f
Miller Indices (hk) :
111 .o
xintercept at &/, 2
y
a .
X Unit cell yintercept a b

(a) Identification of aplanein acrysta

Z
/ (010)—(010) ,Z (0/10) (0/10)
(010)
y
Yy
X X
(001) A (/110)
7
L > >
yd

(100) .

A
z 111
(110) a11) 4 0
// .,"_/ _

2T Ty
B T

X 4 R S B
2 y yd I R E"' I/

X v

—Z

(b) Various planes in the cubic | attice

29



TABLE 3-4 W Planes of the form {110} in cubic systems

(110)
(101)
(011)
{110}{ 17,
(101)
(01T

Note: The negatives of the planes are nat unique planes.

30



Drawing Direction and Plane

Draw (@) the [121] direction and (b) the [210] plane in a
cubic unit cell.

zZ <
(ﬂ) A A
| 5 .
1, = ls’-iv{
A [13; :
— E | IXJ Construction
>y | /,J ————— —_ Y of a (a)
P N - =
. 0,0,0 x 0,0.0 djrection and
(b) plane
(b) z Z within a unit
A A cell
—_— 210)
1 |
y = y
-
5 0,0,0 X 0,0,0

31



SOLUTION

a. Because we know that we will need to move in the
negative y-direction, let’s locate the origin at O, +1, O.
The “tail” of the direction will be located at this new
origin. A second point on the direction can be
determined by moving +1 in the x-direction, 2 in the
negative y-direction, and +1 in the z direction.

b. To draw in the [210] plane, first take reciprocals of
the indices to obtain the intercepts, that is:

X=1/-2=-1/2 y=1/1=1 z=1/0 = ¥

Since the x-intercept is in a negative direction, and we
wish to draw the plane within the unit cell, let’'s move
the origin +1 in the x-direction to 1, O, 0. Then we can

locate the x-intercept at 1/2 and the y-intercept at +1.

The plane will be parallel to the z-axis.

32



Determining Miller-Bravais Indices for
Planes and Directions in hexagonal system

> O

VAN

= (1>

Miller-Bravais indices
are obtained for
crystallographic
planes, directions,
and points In
hexagonal unit cells
by using a four-axis
coordinate system.

For planes (hkil), the
index | = -(h+k), I.e.
h+k = -i

For directions [uvtw],
we have also t =
(u+v), l.e. u+v = -t

33



Miller-Bravais indices for planes are straightforward,
just as we obtained the intersects for 3 axes, we
have to obtain them now for 4 axes

SOLUTION

Plane A

l.a,=a,=a;= ,c=1

2.1/a, = 1/a, = 1/a¥=0,1/c =1
3. No fractions to clear

4. (0001)

Plane B
l.a,=1,a,=1,a,=-1/2,c=1
2.1/a, =1,1/a,=1,1/a;=-2,1/c =1
3. No fractions to clear

4. 1121

34



Determining directions in the hexagonal system
IS a bit more challenging it is easier to calculate
with 3 indices and then simply make up the forth

SOLUTION (Continued)
Direction C

1. Two points are 0, 0, 1 and 1, O, O.
2.0,0,1,-(1,0,0)=-1,0,1
3. No fractions to clear or integers to reduce.

4. [109 or[2113]

Direction D

1. Two points are 0, 1, O and 1, O, O.
2.0,1,0,-(1,0,0)=-1,1,0

3. No fractions to clear or integers to reduce.

4. [110]or[1100] extension to 4 indices looks easy, but is not !

How did we get the forth index ? All have to be relabeled,
say [UVW] are the three indexes, u = 1/, (2U —V),

v=1/,2V-U),t=-1/, (u+v), w=W

35



Miller-Bravais Indices of important directions

c
A
|
T~ _
\ »1 ~r100] = [21T0]
as
_ | +2
[110] =[1120] -3 1 _ S L ;i\:-— a,
/// \\-\ -_ \§

a [010] =[1210]
Typical directions in the hexagonal unit cell, using both three-
and-four-axis systems. The dashed lines show that the
[1210] direction is equivalent to a [010] direction.

Densely packed lattice directions in the basal plane (0001),
e.g. [100], [010], and [110] have similar Miller-Bravais
indices, important for dislocation slip systems

36



Now as we have coordinates for lattice points,
lattice directions and lattice planes, we can start
making crystallographic calculations

Good news: everything is easy In the cubic system angle
between two different direct [uvw] (or reciprocal — (hkl))
space directions

U, +ViV, + 2,7,
\/u12+v12 +212 x\/u22+v22 +222
WW+MQ+U2
\/|”112+k12+|12 X\/h22+k22+|22
So angle between planes is calculated as angle between

their normals, if you were to use a protractor (or contact
goniometer), you would just measure an angle 180 ° - 3

a = ar'CCOS

b = arccos

37



Bad news: everything gets a bit more difficult in non
cubic systems for two reasons, the coordinate axes
are no longer perpendicular to each other, the unit
vectors of coordinate axes have different length

No problem: we have the metric tensor G, a 3 by 3
matrix

N

& a°  abcosg accosh® _ 2 0 00
cabcosg b*  bccosa + ;Trﬁl;?;c cO a° 0=
gaccosb bcecosa ¢F 50 0 a’

So angle between lattice directions become
u'Gv
JU'GUAV' GV

a = adrccos
38



Example: what is the angle between [100] and
[111] in (tetragonal) [3-Sn?

a =0.583 nm, ¢c =0.318nm, Solution:

gaz 0 00 & gaz'g
1 0 0 ¢cO a 0= gl;:(l 0 0) ca’+ =a
X0 0 ¢’ &y xc’

Ju'Gu =a = 0.583nm

0
1 1 1)>G >§1; =Ja® +a’ +c? =0.8836nm

\ i

39



Putting into relation from above

a = arccos UGy
JU'GUA/V' G
a2
a = arccos =27.91°
a>).8836

So that was not all that difficult 11!

40



Same basic idea for lattice planes, i.e. their normals
which are vectors in reciprocal (or dual) space
everything is easy in cubic systems, in other crystal
systems we use reciprocal metric tensor, the
reciprocal 3 by 3 matrix of the metric tensor

ge b*c’sin‘a abc?(cosa cosb - cosg ab®c(cosa cosg - cosb ©
cabc’(cosa cosb - cosg) a‘c’sin’b a“bc(cosb cosg - cosa +
gabzc(cosa cosg - cosb  a’bc(cosb cosg - cosa a’b’sin’g o

If cubic

simply, o So angle between

_ 8%[2 0 0 H normals of lattice
this also g 0 , 0 planes become
defines g 4 :
N A5 h'Gk

the *% a =arccos

reciproc JH'Ghk'Gk

al lattice

41



Metric tensor (and its reciprocal) also define
reciprocal lattice

a* = (vb’c?sina )t =b’ ¢
b* :(\/azczsin2 b)y'=a'c

c* = (\/bzazsinzg)'1 =b" a

It Is just a mathematical convenience, particularly
useful for interpretation of (X-ray and electron
diffraction) data

d* =H = h a;* + ka,* + | ag*= 1/,
a
Vh? +k? +]2

In cubic systems simply: d,, =

42



Other geometric considerations, valid for all
crystal systems, that is the great thing about Miller indices !!!

When does a direction lie in a plane?
If their dot product is zero, e.g. [I()]_] and (111) ,-1+0+1=0

But [101] does not lie in (13) as1+0+120

What are the indices of the direction that
mediated the intersection of two plane?

We have to determine cross products

(111) x (123) =[523]

43



Centered lattices and structures with more than one
lattice point per unit cell

Face center atom

shared between (® (a) lllustration
two unit cells Jo ® - © showing sharing
>§L\ N of face and
\\l ON ST O corner atoms.
o : -

~® (b) The models for
simple cubic

™~
Y
- @5 @ (SC), body
Each corner atom is centered cubic
shared by 8 unit cells
(1-4 1n front, 5-8 in back) (BCC) y and fa_lce—
@ centered cubic

(FCC) unit cells,

assuming only
AT sl Wl one atom per
Simple cubic Body-centered Face-centered I atti ce pOin t

cubic cubic
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1/8th of an aom

Half of an atom

Fig. 1.38: The FCC unit cell. The atomic radius iSR and the | attice

parameter isa
45



Determining the Number of Lattice Points
In Cubic Crystal Systems

Determine the number of lattice points per cell in the cubic
crystal systems. If there is only one atom located at each
lattice point, calculate the number of atoms per unit cell.

SOLUTION
In the SC unit cell: lattice point / unit cell = (8 corners)1/8 =1

In BCC unit cells: lattice point / unit cell
= (8 corners)1/8 + (1 center)(1) =2

In FCC unit cells: lattice point / unit cell
= (8 corners)1/8 + (6 faces)(1/2) =4

If there is only on atom per lattice point, as in typical metal
structures, the number of atoms per unit cell would be 1, 2,
and 4, for the simple cubic, body-centered cubic, and face-
centered cubic, unit cells, respectively. But there are also
many structures with more than one atom per

lattice point

46



Determining the Relationship between

Atomic Radius and

Lattice Parameters

Determine the relationship between the atomic radius
SC, BCC, and FCC structures
each lattice point.

and the lattice parameter in
when one atom is located at

-:—ao—:a-

(SC) (BCC)

(FCC)

The relationships between the atomic radius and the lattice

parameter in cubic systems

47



SOLUTION

Referring to Figure above, we find that atoms touch
along the edge of the cube in SC structures.

do = 2r

In BCC structures, atoms touch along the body diagonal.
There are two atomic radii from the center atom and one
atomic radius from each of the corner atoms on the body
diagonal, so Ar
do = —
V3

In FCC structures, atoms touch along the face diagonal
of the cube. There are four atomic radii along this
length—two radii from the face-centered atom and one
radius from each corner, so: 4

r

Ao =
T2

48



THEORETICAL DENSITY, r

# atoms/unit Ce||\
r=_"

Volume/_unit Ce”/vVCNAV\Avogadro's number
(cm3/unit cell) (6.023 x 1023 atoms/mol)

Example: Copper

e crystal structure = FCC: 4 atoms/unit cell
e atomic weight =63.55g/mol (1 amu=1 g/mol)
e atomic radiusR=0.128nm (1 nm=10 "cm)

Ve=a3;ForFCC,a=4RN2; Ve =4.75x 1023cm3

Result: theoreticalr cy =8.89 g/cm3 So there must
be some real

Compare to actual: r ¢ = 8.94 g/cm3  structure in

addition ! 49



Determining the Density of BCC lron

Determine the density of BCC iron, which has a lattice
parameter of 0.2866 nm.

SOLUTION
Atoms/cell = 2, a; = 0.2866 nm = 2.866 = 108 cm

Atomic mass = 55.847 g/mol

Volume of unit cell = af’; (2.866 ° 108 cm)3=23.54" 1024
cm3/cell

Avogadro’s number N, = 6.023 °~ 1023 atoms/mol

_ (number of atomg/cell )(atomic massof iron)

B (volume of unit cdl)(Avogadro' s number)

- - (2)(55.847)
(2354~ 10 “*)(6.02 ~ 10%)

Density r

= 7.882g / cm’

50



DENSITIES OF MATERIAL CLASSES

Metals typically have
 close-packing
(metallic bonding)
 large atomic mass
Ceramics have
* less dense packing
(covalent bonding)
 often lighter
elements
Polymers have...
 poor packing
(parts often
amorphous)
e lighter elements
(C,H,0)
Composites have...
e intermediate values

Metals/ Graph!te/ Composites/
Ceramics/ Polymers :
Alloys : fibers
Semicond
30
. ) Based on data in Table B1, Callister
20 — o g‘&%ﬂlw‘ *GFRE, CFRE, & AFRE are Glass,
® Tantalum Carbon, & Aramid Fiber-Reinforced
Epoxy composites (values based on
_ 60% volume fraction of aligned fibers
10 — * Silver, Mo in an epoxy matrix).
—1 ®*Cu,Ni
—1 $ Steels
=1 "Tin, Zinc ) )
— ® Zirconia
5 eriian
4 — tanium e Al oxide
e Diamaond
3 _ Si nitride
® Aluminum 4 Glass-soda eGlass fibers
e Concrete
2 — Silicon PTFE o *
*Magnesium e Graphite - ggle:eron*n fibers
Silicone ¢ x P
PVC ramid fibers
PET AFRE
1 — PC
— HDPE, PS
—_ PP, LDPE
0.5— °
sWood
0.4 —
0.3—
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ATOMIC PACKING FACTOR

Volume of atoms in unit cell*
Volume of unit cell

APF =

*assume hard spheres

 APF for a simple cubic structure = 0.52

volume
T atoms 7 “~ atom
a unit Ce||\1 —p (O.5a)3
L R=0.5a APF = 3
| as__volume
close-packed directions unit cell

contains 8 x 1/8 =
1 atom/unit cell
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ATOMIC PACKING FACTOR: BCC

 APF for a body-centered cubic structure = 0.68

Close-packed directions:
length = 4R

=/3 a

Unit cell contains:
1+8x1/8
= 2 atoms/unit cell

atoms

4 volume
unit cell ™2 Ep(\l§a/4)3 y atom
APF =
3 volume
a“- «
unit cell
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ATOMIC PACKING FACTOR: FCC

 APF for a body-centered cubic structure =0.74

Close-packed directions:

length = 4R :
-I2 a That iIs
| _ the
Unit cell contains: highest
6x1/2+8x1/8  nogsible
= 4 atoms/unit cell packing
factor !!
atoms
A volume
unit cell ™4 Ep (2a/4)3 atom
APF =
3 volume
a° =

unit cell
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Volume = ag Co COS 3°

/
77

\
ag \
120°

The hexagonal close-packed (HCP) structure (left)
and its unit cell. The packing factor is also 74 %50, i.e.
the highest possible, just as we had for FCC spheres
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Stacking sequences of closed packed
structures, i.e. those with 74 % Packing factor

The ABABAB
stacking
seguence of
close-packed
planes produces
the HCP
structure.
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The ABCABCABC stacking sequence of close-

packed planes produces the FCC structure.

o7



Coordination and nearest neighbors

(a) (b)

lllustration of coordinations in (a) SC- six fold and (b) BCC —
8 fold unit cells. Six atoms touch each atom in SC, while the

eight atoms touch each atom in the BCC unit cell.
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TABLE 3-2 W Crystal structure characteristics of some metals
Atoms per Coordination

Structure ap Versus r Cell Number FIEH"IE Factor Examplas
Simple cubic (5C) ag=2r 1 6 0.h2 Folonium (Po),
a-Mn
Body-centered a5 =4ri3 . 8 0.68 Fe, Ti. W. Mo, Nb,
cubic Ta, K, Na, V, Zr,
Cr
Face-centered ag = 4ri\/? 4 12 0.74 Fe, Cu, Au, Pt Ag,
cubic Fb, Ni
Hexagonal close- 8g=2r 2 12 0.74 Ti, Mg, Zn, Be,
packed cg = 1.633ay Co, Zr, Cd
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L attice Crystal

. . R . . ® 6 © & ©
(] @ () ()
e e e e e Basis ® 6 6 & ¢
‘ (] o [ ) (]
e o e« o . =+ . - ® O ‘ ' @
(] [}
[ [ ] [ ] IOg-O-o-a""? ‘ . ‘ ‘ -’
: )
a:
e e e e ® . ® ‘ '
Unit cell Unit cell

(a) (b) (c)

Basis placement in unit cell
(0,0)

@ @iy

Fig. 1.70: () A simple square lattice. The unit cell isasguare with a
side a. (b) Basis hastwo atoms. (c) Crystal = Lattice + Basis. The unit
cell isasimple square with two atoms. (d) Placement of basis atomsin
the crystal unit cell.
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Figure 3.7.1a Figure 3.7.1b
L Tha MeGraw-Hill Companéas, Inc_, 1990 Malardals in Focus D ROM 2 The MeGraw-Hill Compandas, Inc._, 1998 Matarials In Focus GD ROM
1/a Schaller: The Science and Dasign ol Enginsating Matarals, 2/e tia SchaMer: The Sclence and Desigh ol Englneering Matardals, 2fe

M.C. Escher’s two dimensional patterns are filling the
whole 2D space. We can determine a unit cell which
happened to be composed off many details, regardless of
which periodic detail we use for the choice of the unit cell,
these cells will always be identical. So we can think about
It iIn a way that all the details are shrunk into a lattice

points and all that remains is the geometrical array of
lattice points we had in the previous slide

61



(a) (b)

FIGURE 3.7-2 The CsCl crystal structure: (a) A simple cubic lattice with two different atoms per lattice point;

(b) Alternatively, the structure can be viewed as a pair of interwoven simple cubic lattices.
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FCC unit cell FCC unit cell
with Nat located with CI- located
at FCC positions at FCC positions

(a) (b)

FIGURE 3.7-3 The NaCl crystal structure: {a) An FCC lattice with two different atoms per lattice point; (b) Alternatively, the
structure can be viewed as a pair of interwoven FCC lattices.
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® Zn2+

§2-

(b)

FIGURE 3.7-4 (a) The diamond cubic crystal structure is composed of an FCC lattice with two atoms per lattice
point. One atom from each pair is centered on each lattice point, and the second atom is positioned at (ao\/§/4)

[1 1 T]. (b) The zinc blende crystal structure is similar to the diamond cubic structure, except that the basis is com-
posed of two different atoms.
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S%ion
at %- of
height of
unit cell

S%"ion
at = of
8 Zn?* jon in midplane (tetrahedrally coordinated by $%°)

height of
unit cell

(a) (b)

Structure: wurtzite (ZnS)-type

Bravais lattice: hexagonal

Ions/unit cell: 2Zn?* + 28%

Typical semiconductors: ZnS, CdS, and ZnO.

gure 325 Wurtzite (ZnS) unit cell showing (a) ion positions and (b) full-
size ions.
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® Ti# '
Ca2+ __?__ ﬁ,&% :_-__ C)
O o- o 1-77 0

(b)

FIGURE 3.7-7 The perovskite unit cell forfCaTiog drawn (a) with the arigin coinciding with a Ca?* ion, and (b) with
the origin coinciding with a Ti** ion.

Offset between top
plane of Ba* ions and
top center O2- ion

" @ ——{}l—1%
o Tit+ ki
() Ba2+ h_ Offset between central
403 nm © 5=== @ td o= Ti4* ions and
O o* K midplane of O2- ion

i

O——=c=—¢€
(a) (b)
FIGURE 3.7-8 The tetragonal unit cell of BaTiO; shown (a) in 3-D, and (b) in 2-D.
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Interstitial Sites

Interstitial sites - Locations between the ‘“normal”
atoms or ions in a crystal into which another -
usually different - atom or ion is placed. Typically,
the size of this interstitial location is smaller than
the atom or ion that is to be introduced.

Cubic site - An interstitial position that has a
coordination number of eight. An atom or ion In
the cubic site touches eight other atoms or ions.

Octahedral site - An interstitial position that has a
coordination number of six. An atom or ion in the
octahedral site touches six other atoms or ions.

Tetrahedral site - An interstitial position that has a
coordination number of four. An atom or ion in the
tetrahedral site touches four other atoms or ions.



Octahedral

The location of the interstitial sites in cubic unit cells. Only
representative sites are shown.
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FIGURE 3.6-1

The locations of the inter-

stitial sites in the common
crystal structures: {a) octa-
hedral sites in FCC, (b) te-
trahedral sites in FCC,

(c) octahedral sites in BCC,

(d) tetrahedral sites in BCC,

(e) octahedral sites in HCP,
and (f) tetrahedral sites in
HCP.

Octahedral site

(e)

FCC

BCC

HCP

Tetrahedral site

U Ve UV

]

Interstitial sites
are important
because we can
derive more
structures from
these basic FCC,
BCC, HCP
structures by
partially or
completely
different sets of
these sites
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Calculating Octahedral Sites

How many octahedral sites are there in one FCC unit
cell?

SOLUTION
The octahedral sites include the 12 edges of the unit cell,
with the coordinates

1 0,0 1 1,0 1 0,1 1 11
2 2 2 2
0020 110 111 o2
2 2 2 2
00~ 101 111 o011
2 2

plus the center position, 1/2, 1/2, 1/2.
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SOLUTION (Continued)

Each of the sites on the edge of the unit cell is shared
between four unit cells, so only 1/, of each site belongs
unigquely to each unit cell.

Therefore, the number of sites belonging uniquely to each
cell is:
(12 edges) (*/, per cell) + 1 center location
= 4 octahedral sites
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How much space is there available to fill the
different sites with “hard sphere” atoms?

TABLE 3.6-1 The size and number of tetrahedral and octahedral interstitial sites in the BCC, FCC, and HCP crystal
structures. The sizes of the interstitial sites are given in terms of the radius ratio (kx/r) where « is
the radius of the largest atom that can “fit" into the interstitial position and r is the radius of the
host atoms. The number of interstitial sites is given in terms of both the number of sites per cell
and, in parentheses, the number of sites per host atom.
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The radios ratios have to be of course the same
as the once we discussion in connection with

coordination

TABLE 3-6 W The coordination nummrber and the radios ratio

Coordination

Location of Number Interstitial Radius Ratio Represemation
2 Linear 00155 CX)

3 Center of riangle 01550225 % >:

< Center of tetrahedron 02250414

6 Center of octahedron  0.414-0.732 .l.l

8 Center of cube 07321000 @
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Crystal Structures of lonic Materials

[0 Factors that need to be considered in order to
understand crystal structures of ionically
bonded solids:

= lonic Radii for filling of various interstitial
sites

= Electrical Neutrality as a structural principle
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STRUCTURE OF NacCl

« Compounds: Often have close-packed structures
— there is more than one atom per lattice point.

e FCC + octahedral

» Structure of NaCl Interstitial site filled
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Fig. 1.36: A possible reduced sphere unit cell for the NaCl (rock
sdlt) crystal. An aternative unit cell may have Na*t and Cl °
Interchanged. Examples. AgCl, CaO, CsF, LiF, LiCl, NaF, NaCl,
KF, KCl, MgO 76



Simple cubic packing with the cube interstitial site filled
by another atom, note that there are two atoms per
lattice point, i.e. the lattice as such is still simple cubic

Cl

Fig. 1.37: A possible reduced sphere unit cell for the CsCl crystal.

An alternative unit cell may have Cs * and Cl ° interchanged.

Examples. CsCl, CsBr, Cdl, TICI, TIBr, TII. -



b2 —

&
'S

®
=W

b

1
2

(a) (b)

(a) The zinc blende unit cell, (b) plan view. There
IS usually a large covalent contribution to these

bonds. The coordination is quite low for ionic bonds.
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Flourite cell Plan view
(a) (b)

(a) Fluorite unit cell, (b) plan view. All 8 tetrahedral interstitial
sites are filled by F anions, as the formula is CsF,, there is three atoms
per lattice point. U)2, ThO2 and ZrO2 have the same structure, there
is also the “antifluorite” structure for Li,O, Na,O, K,O with cations and

anions reversed
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—Vacancy

, C

@,

—

S
O A3+ a \_l,

: A3

(% = y

0%~

Corundum structure of alpha-alumina (a-Al,03), O In
HCP and Al in some of the octahedral interstitial sites,
possibly the most widely used ceramic
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Covalent Structures

[0 Covalently bonded materials frequently have
complex structures in order to satisfy the
directional restraints imposed by the bonding.

[0 Diamond cubic (DC) - A special type of face-
centered cubic crystal structure found In

carbon, silicon, a-Sn, and other covalently
bonded materials.
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Fig. 1.33: The diamond unit cell is cubic. The cell has eight atoms.
Grey Sn (a-Sn) and the elemental semiconductors Ge and Si have

this crystal structure.
82



Fig. 1.34: The Zinc blende (ZnS) cubic crystal structure. Many
Important compound crystals have the zinc blende structure.

Examples: AlAs, GaAs, GaP, Ga3b, InAs, InP, InSb, ZnS, ZnTe. a3



o~
Q@ Si+t

The silicon-oxygen tetrahedron and the resultant 3-
cristobalite form of silica. Note: there is six atom at
every lattice point, i.e. one Si in the center, 4 O
within the tetrahedron and 4 times ¥4 Si at the
apexes of each tetrahedron
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a=7414A
b=494 A
c=255A

O Hydrogen
@ Carbon

The unit cell of crystalline polyethylene,
Orthorhombic, there are typically many defects in
polymer crystals
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METALLIC CRYSTALS

« tend to be densely packed.

 have several reasons for dense packing:

-Typically, only one element is present, so all atomic
radil are the same.

-Metallic bonding is not directional.

-Nearest neighbor distances tend to be small in
order to lower bond energy.

 have the simplest crystal structures.

We will revisit the two closest packed

structures and give some examples for
each of them
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(a) FCC Unit Cdll

<«<— ad ——

(b) (©)

Fig. 1.30: () The crystal structure of copper is Face Centered Cubic
(FCC). The atoms are positioned at well defined sites arranged
periodically and there is along range order in the crystal. (b) An FCC unit
cell with closed packed spheres. (c) Reduced sphere representation of the
FCC unit cell. Examples: Ag, Al, Au, Ca, Cu,g-Fe (>912- C), Ni, Pd, P,
Rh
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Layer B

Layer A

—a—]

(©) (d)

Examples. Be, Mg, a-Ti (<882°C), Cr, Co, Zn, Zr,Cd

Fig. 1.32: The Hexagonal Close Packed (HCP) Crystal Structure. (a)
The Hexagonal Close Packed (HCP) Structure. A collection of
many Zn atoms. Color difference distinguishes layers (stacks).

(b) The stacking sequence of closely packed layersis ABAB

(c) A unit cell with reduced spheres (d) The smallest unit cell with
reduced spheres.

Be very
careful,
the yellow
and blue
spheres
represent
one and
the same
type of
atoms
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What i1s steel?

It’s not an element, it’s an intestinal alloy,

about 1 C atom every 50 Fe atoms, i.e. 0.4 weight 26 C

C atom dissolved interstitially at a
Ll e
)N +—— — 0 —-type position in the bec

structure of o-Fe

Figure 4-4 Interstitial solid solution of carbon in a-iron. The carbon
atom is small enough to fit with some strain in the interstice (or open-
ing) among adjacent Fe atoms in this structure of importance to

the steel industry. [This unit cell structure can be compared with
Figure 3-4b.]

So the crystal structure is BCC, as it is Fe at room temperature,
every now and then a much smaller c atom fits into one of the
cubic interstitial sites and this increases the strength from
about 15 MPa to more than 1500 MPa

How is that little amount of C accomplishing so much ?

More about things such as this in next lecture on lattice defects 39



SUMMARY Crystals

« Atoms typically assemble into crystals some
materials e.]. glass are amorphous, i.e. have only short range order

 We can predict the density of a material, provided
we know the atomic weight, atomic radius, and
crystal geometry (e.g., FCC, BCC, HCP).

« Material properties generally vary with single
crystal orientation (i.e., they are anisotropic),

but properties are frequently quite non-directional
(i.e., they are isotropic) in polycrystals with randomly
oriented grains as e.g. in steel and other engineering

materials
90



Diffraction Technigques for Crystal
Structure Analysis

[ Diffraction - The constructive interference, or
reinforcement, of a beam of x-rays or electrons
Interacting with a material. The diffracted beam
provides useful information concerning the
structure of the material.

[0 Bragg’s law - The relationship describing the angle
? at which a beam of x-rays of a particular
wavelength diffracts from crystallographic planes of
a given interplanar spacing.

0 In a diffractometer a moving x-ray detector records
the 2? angles at which the beam is diffracted,
giving a characteristic diffraction pattern
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X-radiation | vigible light Microwaves

y-radiation uv ir . Radio waves
= | ’ | -
| | | % | ! | —
1076 1073 1 103 100 10° 1012

Wavelengh (nm)

I} Electromagnetic radiation spectrum. X-radiation represents that por-
tion wzth wavelengths around 0.1 nm.

Lattice constants range from about 0.1 nm to some 50
- 100 nm. Most crystals’ lattice constants are in the 1-5
NnMm range, since crystals are periodic, they are the

Ideal diffraction grating for X-rays, Max von Laue’s 1914
Nobel prize that proved both, crystals are periodic 3D arrangements
of atoms and X-rays are waves (well wave-particles actually)



X-ray source X-ray detector

Bragg angle = 6

26 = diffraction angle

Figure 3-36 Relationship of the Bragg angle (0 ) and the experimentally measured
diffraction angle (20 ).

The diffraction angle is always 2?

Bragg’s law: nl =2 dhkl sin ?

N — the order of reflection can be
dropped by allowing indices for hkl
that are not smallest integers, i.e.
HKL
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Area Detector(s)

SOkeV ‘:\
Electrons ® .
[ ] . ]
Focussing Mirrors ®
{or Monoc hromator) e *

Primary X-ray Beam

Rotating
Anode {Cu)

4-Circle Gonoimeter { Eulerian or Kappa Geometiry)

Single crystal diffractometers are more sophisticated
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Scan
directions

Computer display

(b)

Figure 3-40 (a) An x-ray diffractometer. (Courtesy of Scintag,
Inc.) (b) A schematic of the experiment.

Powder
diffractometers
(for polycrystalline
powder)

are less
sophisticated and
can be found in
many places
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Intensity

Powdered
sample

(@)

70

80 90

100 110

(a) sketch of a
diffractometer viewed
from above, showing
powder sample,
Incident and diffracted
beams.

(b) diffraction pattern
obtained from a
sample of gold
powder, notice the
Miller indices of the
diffracting crystal
planes
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&

- 3 ﬁ" l@
+,9 4 |
Y /)) reflections must

% //)0 o &1, beinphase to

/ detect signal

extra K
distance NS
travelled q
by wave “2% spacing
d between
lanes
® e o "
. _ X-ray A
Il/leasur_em”ent of: intensity d=nl /2sinqc
reflection” angles (from
(Bragg angles), q, detector)
for X-rays provide K > 0

atomic spacing, d.



(a) Destructive
and (b) reinforcing
(constructive)
Interference
between x-rays
“reflected on a set
of planes.
Reinforcement
occurs only at
angles that satisfy
Bragg’s law.

| =2 dyg, SIN?

No other X-ray
diffraction peaks

OCCur
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X-ray Diffraction for an forensic examination

The results of a x-ray diffraction experiment on some metal
powder found at a crime scene using characteristic x-rays
with ? = 0.7107 A (a radiation obtained from molybdenum
(Mo) target) show that diffracted peaks occur at the
following 2? angles:

Peak 20 Peak 20

1 20.20 5 46.19
2 28.72 6 50.90
3 35.36 7 b5.28
q 41.07 8 59.42

Determine the indices of the plane producing each peak, and

from that the lattice parameter of the material and from that
Identify the material (you know it is some metal so it is a

good guess to assume the crystals in the powder are cubic) 99



SOLUTION

| =2 d SIn?

dHKL o

VHZ+K2+

2dHKL
= (Ha* +Kb* +Lc*) = (dry )

)* =din’g

=0

We first determine the sin? ? value for each peak, then divide

through by the lowest denominator, 0.0308, “guess” the indices

sin 6/0.0308

Peak

O ~1 O 0 B L R =

20

20.20
28.72
35.36
41.07
46.19
h0.90
h5.28
h9.42

sin? g

0.0308
0.0615
0.0922
0.1230
0.1539
0.1847
0.2152
0.2456

O~ O O P L P e

he+ k2 + 2

(hkl)

(110)
(200)
(211)
(220)
(310)
(222)
(321)
(400)

100



SOLUTION (Continued)

We could then use 2?7 values for any of the peaks to
calculate the interplanar spacing and thus the lattice
parameter. Picking peak 8:

2?7 =59.42 or ? = 29.71
I 0.7107

28ing  2sn(29.7])
a0 = daooVh? + k* + 1% = (0.71699(4) = 2.8684

= 0.71699A

daoo =

This is the lattice parameter for body-centered cubic iron.

So the gardener did steal the cookies —
only kidding

Since out of all metals only Po has the simple cubic structure,
and we do know our material was not radioactive and difficult
to obtain, we didn’t check for an indexing scheme for a single

cubic lattice, It would have gotten us nowhere anyway 0
101



There are certain systematic absences of

refl eCtI ons Rules for Determining the Diffracting {hk/} Planes in Cubic
Crystals

You may have noticed that Bravais lattice Reflections present  Reflections absen

there are no (hkl) triplets

: — BCC (h+ k + 1) =-even (h+ k + 1) =odd

with h+k+I = odd. FCC (h k) alloddorall  (h, k /) not all oad
even or all even

Laue’s kinematical theory
of X-ray diffraction (1912)

explains why, Miller Indices of the Diffracting Planes for BCC and FCC
Lattices
different structures have
: : : Cubic
forbldo_len reflections, i.e. diffracting
reflections that do not Cublc planes {hki}
- - : planes Sum
show up in diffraction but Bk, his ki Ih 1 KT+ F)  FOC  BOC
these planes do of course
exist in the crystals, it is {100} 12+ 02+ 02 1
- . . {110} 12 + 12 + 02 2 110
just that diffraction on 1y 12412 412 3 11
) ) 2 2 2 200 200
them is destructive S S A : 0
{211} 22 + 12 + 12 6 211
_ _ 7
Simple cubic crystals o Zezo 8 220 220
have no forbidden {310} 37+ 17 + 07 10 310

l
.

reflections 102



A TEM micrograph of an aluminum alloy
(Al-7055) sample. The diffraction pattern
at the right shows large bright spots that
represent diffraction from the main
aluminum matrix grains. The smaller
spots originate from the nano-scale
crystals of another compound that is
present in the aluminum alloy.




rhombohedral unitcell

(In,Ga)P, an important semiconductor for visible light
lasers can show a variety of atomic ordering

“Average”
w gold-copper atom

(a) Disordered (b) Ordered

Figure 4-3 Ordering of the solid solution in the AuCus alloy system. (a) Above ~
390°C, there is a random distribution of the Au and Cu atoms among the fec sites.
(b) Below ~ 390°C, the Au atoms preferentially occupy the corner positions in the
unit cell, giving a simple cubic Bravais lattice. (From B. D. Cullity, Elements of
X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1978.)

The very same
thing, 1.e. atomic
ordering exist in
metals as well
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2/3 -2/3 -2

-1/3 173 -1
Ll

1/2 -1/2 3/2

[ J-111]

I1-VI semiconductors with
atomic ordering, (Cd,Zn)Se
quantum dots in ZnSe, [001]
plan view

(Cd,Mn,Zn)Se quantum dots
In <110> cross section
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Unknown crystallographic phase in (In,Ga)(Sb,As)
quantum dots in InAs matrix,

a Fourier transform power spectrum of a high resolution
TEM Iimages replaces frequently a diffraction pattern as
much of the information is contained in such calculated

Images 106



False color
convergent
beam electron
diffraction

pattern,

From the symmetry
of the lines (Kikuchi
lines), the crystal
system can be
determined

From the fine
structure of the
diffraction disk, the
space group can be
determined

Works for extremely
tiny specs of matter,
perhaps 2 nm
across
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L
L

oY Wow, what is that?
ey e
REDMNEE It can’t be a crystal as it
e ® e . .
REPeR® obviously has a five fold
':‘,;;'.:..' symmetry, It Is not
RO amorphous either as it
clearly has a diffraction
_ pattern?
Figure 4-2]  Electron diffraction pat- _ _
tern of a rapidly cooled Al¢Mn It S_a qu_aSFC"VStaI’ l.e. and
alloy showing fivefold symmetry, entity with short range order
that is, the pattern is identical with (&S amorphous and crystalline
each rotation of 360°/5, or 72°, materials) and long range
about its center. Such symmetry order (as a crystal), the
is impossible in traditional crystal-  crucial difference is, the long
lography. [After D. Schechtman range order is non periodic
et al., Phys. Rev. Letters 53, 1957
(1984).]
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Diffrac tion Cone

Pattern  enter

Specimen Phosphorus Screen

Crystallographic work
can also be done In
modern SEMs !

Electron backscatter
(Kikuchi) diffraction
(EBSD), here of a Si
crystal
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scanning probe microscopy, STM, AFM, ...

Atoms can be arranged and imaged!

F T = — 7
i - r

Front atom
o A

Figure 441 Schematic of the principle by which
the probe tip of either a scanning tunneling mi-
croscope (STM) or an atomic force microscope

(AFM) operates. The sharp tip follows the con- .

tour A-A as it maintains either a constant tun- Carbon monoxide Iron atoms ar:[i‘?-ged
neling current (in the STM) or a constant force on aco er

(in the AFM). The STM requires a conductive mOIeCUIe_S arranged PP ( ) .-
sample while the AFM can also inspect insula- onap latinum (1 1 1) surface. These Kanj |

tors.

surface. characters represent
the word “atom”.

Pt |

Lo ] Something more useful, the square of

’I AL the quantum mechanical wave function

| ' of an electron that is trapped in a

cage” of Cu atoms 110




