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Time dependent Schrédinger Equation in 3D,
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Many problems concern stationary states, i.e. things do not change over time, then
we can use the much simpler tine independent Schrédinger Equation in 3D, e.g.

Particle in a Potential Box
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?ri]gc;er the Schrddinger equation is P(x) = Aelkx 4 pe—ikx

Note that the wavefunction should satisfy the boundary condi-

tion that i(x = 0) = 0, this leads to the requirement that B = —A.
Hence we have

P(x) = A(e™ — e7™*) = 2i A sin(kx) = Csin(kx)

What about the other boundary condition that {p(x = L) = 07?
Where does it lead us? We have the following equation

(L) = Csin(kL) =0

Since C cannot be zero (otherwise we will have no wavefunc-
tion), therefore sin(kL) = 0 and this implies kL = ns where n is

an integer. Substituting this equation back 12 h2

E= SmlL*2

The number n is known as the Quantum Number.

Since we 8mm*E
know k K = 2

Now we need to
P(x) = Csin(nmtx/L) normalize 3



dx =1 the right scale to calculate expectation values, this condition
o/ —e0 means that the particle definitely exist (with certainty,
probability 100 %) in some region of space, in our case in
between x = 0 and L

/m This sets the scale for the wave function, we need to have it at
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Generalisation to 3D Potential Box

Again, the potential is infinitely high,
equivalently, the 3D well is infinitely deep

Generalization to three dimensions is straightforward, kind of everything is there three
times because of the three dimensions,

not particularly good approximation for a quantum dot (since the potential energy outside
of the box is assumed to infinite, which does not happen in physics, also the real
quantum dot may have some shape with some crystallite faces, while we are just

assuming a rectangular box or cube

L, > Ly x L,

P(x,y,z) = Dsin (kyx) sin (kyy) sin (k.z)

set of integer quantum numbers (71y, Hy, )
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Particle in a cube, there will be

Case 1: Ly = Li; =L; =1L degenerate energy levels, i.e. wave

functions with different sets of
(nf. - nf, + n%)hz quantum numbers will correspond to
3] 2 the same energy eigenvalue, thig is
due to the symmetry of the potential

E:




14E

128,
1E,

(2,2,2)

aE,

EEI}
% = (1,1.1)
Quantum
Energy MNumbers
Levels (n.n.n)
€y E

Potential in 3D box (infinitely deep
well) with small edges (L) for
potential energy function with cubic
symmetry

(1.2.3), (1.3.2), (2.1.3)
(2,3,1), (3.1,2), (3,2,1)

(3.1,1), (1,2,1), (1.1.3)

(2,2,1), (1,2.2), {2,1,2)

(2,1,1), (1,21), (1,1.2)

Same scenario if dimensions/edges L of
the box are large, Bohr’s correspondence
principle, the spacing of the energy level
gets too small to be detected in classical
physics 8



Case 2: L, = Ly = Land L, > L,, Ly. In such a case, the quan-
tisation condition (3.29) along the z-direction becomes essentially
continuous, i.e. there is only a small difference in k; and energy
for n, and n, + 1. Thus we can write the energy of the particle as

W2 | n2  ng Note that we still have a square (2D) potential,

2
E= 3 Lg + 2 +k hence there is again degeneracy

where now we have the quantised band characterised by n, and

E 4
ny while k; is essentially a continuous variable

(1.3)
- Such a potential system where the particle is confined by
(2.2) potential wells in two dimensions but free in the third dimension
(1.2) is known as a quantum wire.
(n.n)=(1,1)

>k ,




Case 3: Ly, L, = Ly = L. In such a case, the quantisation con-
dition (3.29) along both y- and z-directions becomes essentially
continuous. Thus we can write the energy of the particle as

h% [n? 5 5
E = - {L—‘;—ky—l—k:}

where the quantised band is characterised by 7, while k, and
k- are essentially continuous variables. Such a potential system
where the particle is confined by potential wells in one dimension
but free in the other two dimensions is known as a quantum well.

One may approximate this this then as a 1D problem, for large L in 2D there is
essentially only quantization in x, the thickness of the quantum well

Note that quantum mechanics thrives on approximations, one can make these
approximations, as precise as necessary for a desired purpose,

This is similar to specification in an engineering context



1D Potential well, created by a finite square potential

. . ) o Vo, x<0 region |
The finite square-well potential is V(x)=40 O<x<L regionll
Vo, x>L region III

« The Schrodinger equation outside the finite well in regions |

and lll is
2 2
_h71ld f:E—VO regions I, 111 a’ =2m(V, - E)/h°
2my dx
d’ >
TV _ a2y
dx
the wave function must be zero at infinity, the solutions for this equation are
Vi(x)
w(x) = Ae™ region I, x <0 Vo
Y1 (JC) = Be ™ region HI: x>L Region I | Region II | Region III
The wave function from one
region to the next must match and 001 X
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so must its slope (derivative) Position



Finite Square-Well Solution

Inside the square well, where the potential Vis zero, the wave equation

2
becomes di'g’ — _j*y Where k = \/(ZmE)/hz
dx

Instead of a sinusoidal solution we have
wy =Ce™ +De™  regionIl, 0<x <L
The boundary conditions require that
wi=ygatx=0and y; =yyy atx =1L
and the wave function must be smooth where the regions meet.
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Penetration Depth

« The penetration depth is the distance outside the potential well
where the probability significantly decreases. It is given by

5x%l e

a \/Zm(VO —-F)

It should not be surprising to find that the penetration distance
that violates classical physics is proportional to Planck’s constant.

For the Energy of the lowest energy level, a good approximation is
the formulae for the infinitely deep well modified by the
penetration depth

n2ﬂ.2h2

E, ~
2m(L + 20x)
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Simple Harmonic Oscillator

Simple harmonic oscillators describe many physical situations: springs,
diatomic molecules and atomic lattices.
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Consider the Taylor expansion of a potential function:
Vix)=V,+V(x—xy)+ %Vz(x—xo)2 Y g
Redefining the minimum potential and the zero potential, we have
V(x) =V5(x—xp)°
Substituting this into the wave equation:
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Parabolic Potential Well

V(x)
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If the lowest energy level is zero, this violates the uncertainty principle.

The wave function solutions are , _ g (y)e @<*/2 Where H (x) are Hermite

) Wy
polynomials of order n.

In contrast to the particle in a box, where the oscillatory wave function is a
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial,
which dominates at small x. The exponential tail is provided by the Gaussian
function, which dominates at large x.
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Analysis of the Parabolic Potential Well

Wave functions

© 2006 Brooks/Cole - Thomson
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.+ The energy levels are given by
E =(n+ %)h\/x/m =(n+ %)ha)
« The zero point energy is called the Heisenberg

limit:

E,="h
020’

1

« Classically, the probability of finding the mass is
greatest at the ends of motion and smallest at
the center (that is, proportional to the amount of
time the mass spends at each position).

« Contrary to the classical one, the largest
probability for this lowest energy state is for the

particle to be at the center.
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If it is a charged particle that is vibrating around an equilibrium position, then there
would be emission and absorption of electromagnetic radiation connected to
transitions from one energy level to another

This is modeled by an oscillating expectation value: x,, , times a constant charge
— 3k
e<x,,>= ejw xy dx #0

For the harmonic oscillator, these integrals are zero, i.e. the oscillating
expectation values are zero, i.e. the transition is forbidden unless m=n + 1

just as Max Planck needed to postulate for the derivation of the black body
radiation formulae

A single electromagnetic mode is completely specified by the parameters of its
associated photon, i.e. E, p, (alternatively w, A or k) and acts like a simple
harmonic oscillator of circular frequency w,

The number of photons in a given mode is not limited (the photons are bosons
with spin 1), this allows for the operation of a laser

The zero point energy of the harmonic oscillator is equivalent to the “vacuum
fluctuation” that cause the Casimir force and also for the spontaneous emission
of electromagnetic radiation from an excited state =



Useful approximation due to Wentzel, Kramers and Brillion, WKB

— Wavelength is considered to depend on position
I = \/2m[E U(x)] rather than being constant, there can be smooth
A(x) h changes in the wavelength with position

Condition for standing wave (other than
, : . : L.
2m[E—-U, ] sine or cosine) between integration limits
j \/ P —dx = / ,1,% a and b, where A(X) is smoothly varying
a as one often obtain for large quantum

numbers
In case of harmonic 1 T
oscillator, a = -b, 1 \/Zm[E — éma)o x° ] b= 2E
penetration into the = na.’
barriers is ignored, A(x) h 0

will be a better
approximation for

|arge quantum En _= n h f! n= 1! 2! 35 um by WKB, also AE —
numbers hf is correct

Solution of the Schrodinger equation gives correct quantization E, = (n + '2) h

f,n=0,1,2,3, ... with zero point energy E, =2 h f 10



