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Time dependent Schrödinger Equation in 3D, 

Many problems concern stationary states, i.e. things do not change over time, then 

we can use the much simpler tine independent Schrödinger Equation in 3D, e.g.

The potential is infinitely high, 

equivalently, the well is infinitely deep

Since potential energy V is zero 

inside the box
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Since the Schrödinger equation is 

linear

Since we 

know k

Now we need to 

normalize
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This sets the scale for the wave function, we need to have it at

the right scale to calculate expectation values, this condition 

means that the particle definitely exist (with certainty, 

probability 100 %) in some region of space, in our case in 

between x = 0 and L

There are infinitely many energy levels, their spacing depends on the 

size of the box, there is on E0 = 0 as this is forbidden by the 

uncertainty principle
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Generalization to three dimensions is straightforward, kind of everything is there three 

times because of the three dimensions, 

not particularly good approximation for a quantum dot (since the potential energy outside 

of the box is assumed to infinite, which does not happen in physics, also the real 

quantum dot may have some shape with some crystallite faces, while we are just 

assuming a rectangular box or cube 

Again, the potential is infinitely high, 

equivalently, the 3D well is infinitely deep

Particle in a cube, there will be 

degenerate energy levels, i.e. wave 

functions with different sets of 

quantum numbers will correspond to 

the same energy eigenvalue, this is 

due to the symmetry of the potential
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Potential in 3D box (infinitely deep 

well) with small edges (L) for 

potential energy function with cubic 

symmetry

Same scenario if dimensions/edges L of 

the box are large, Bohr’s correspondence 

principle, the spacing of the energy level 

gets too small to be detected in classical 

physics
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Note that we still have a square (2D) potential, 

hence there is again degeneracy
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One may approximate this  this then as a 1D problem, for large L in 2D there is 

essentially only quantization in x, the thickness of the quantum well

Note that quantum mechanics thrives on approximations, one can make these 

approximations, as precise as necessary for a desired purpose, 

This is similar to specification in an engineering context
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• The finite square-well potential is

• The Schrödinger equation outside the finite well in regions I 

and III is

the wave function must be zero at infinity, the solutions for this equation are

1D Potential well, created by a finite square potential

The wave function from one 

region to the next must match and 

so must its slope (derivative)
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• Inside the square well, where the potential V is zero, the wave equation 

becomes where

• Instead of a sinusoidal solution we have 

• The boundary conditions require that

and the wave function must be smooth where the regions meet.

• Note that the 

wave function is 
nonzero outside 

of the box. 

Finite Square-Well Solution
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Penetration Depth

• The penetration depth is the distance outside the potential well

where the probability significantly decreases. It is given by

• It should not be surprising to find that the penetration distance 
that violates classical physics is proportional to Planck’s constant.

For the Energy of the lowest energy level, a good approximation is 
the formulae for the infinitely deep well modified by the 

penetration depth
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Simple Harmonic Oscillator

• Simple harmonic oscillators describe many physical situations: springs, 
diatomic molecules and atomic lattices.  

• Consider the Taylor expansion of a potential function:

Redefining the minimum potential and the zero potential, we have

Substituting this into the wave equation:

Let and which yields .
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Parabolic Potential Well

• If the lowest energy level is zero, this violates the uncertainty principle.

• The wave function solutions are where H
n
(x) are Hermite 

polynomials of order n.

• In contrast to the particle in a box, where the oscillatory wave function is a 

sinusoidal curve, in this case the oscillatory behavior is due to the polynomial, 

which dominates at small x. The exponential tail is provided by the Gaussian 

function, which dominates at large x.



14

Analysis of the Parabolic Potential Well

• The energy levels are given by

• The zero point energy is called the Heisenberg 
limit:

• Classically, the probability of finding the mass is 
greatest at the ends of motion and smallest at 
the center (that is, proportional to the amount of 
time the mass spends at each position).

• Contrary to the classical one, the largest 
probability for this lowest energy state is for the 
particle to be at the center.
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If it is a charged particle that is vibrating around an equilibrium position, then there 

would be emission and absorption of electromagnetic radiation connected to 

transitions from one energy level to another

This is modeled by an oscillating expectation value: xm,n times a constant charge

∫ ≠>=< 0*, dxxexe
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For the harmonic oscillator, these integrals are zero, i.e. the oscillating 

expectation values are zero, i.e. the transition is forbidden unless m = n ± 1

just as Max Planck needed to postulate for the derivation of the black body 

radiation formulae

A single electromagnetic mode is completely specified by the parameters of its 

associated photon, i.e. E, p, (alternatively ω, λ or k) and acts like a simple 

harmonic oscillator of circular frequency ω, 

The number of photons in a given mode is not limited (the photons are bosons 

with spin 1), this allows for the operation of a laser

The zero point energy of the harmonic oscillator is equivalent to the “vacuum 

fluctuation” that cause the Casimir force and also for the spontaneous emission 

of electromagnetic radiation from an excited state
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Useful approximation due to Wentzel, Kramers and Brillion, WKB

Wavelength is considered to depend on position 

rather than being constant, there can be smooth 

changes in the wavelength with positionh
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oscillator, a = -b, 

penetration into the 

barriers is ignored, 

will be a better 
approximation for 
large quantum 
numbers
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Condition for standing wave (other than 
sine or cosine) between integration limits 
a and b, where λ(x) is smoothly varying 
as one often obtain for large quantum 
numbers
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En = n h f, n = 1, 2, 3, .. by WKB, also ∆E = 
hf is correct

Solution of the Schrödinger equation gives correct quantization En = (n + ½) h 

f, n = 0, 1, 2, 3, … with zero point energy E0 = ½ h f


