PHY 481/581 Intro Nano-
MSE:

Simple Quantum Mechanics lll: from atoms
to molecules and solids, effects of size and
dimensionality on electronic structure of
solids

@creative
commons

http://creativecommons.org/licenseslby-nc-salZlSl



From Atoms and Molecules
to Nanoscale Materials

An electron from one hydrogen atom
just tunnels back and forth to the other
0 Proong _PogRb hydrogen atom, the result is a H,
molecule, there is a higher probability
density of the electron being between
the two protons, that corresponds to
an electrostatic attraction which
balances the electrostatic repulsion of
the two protons
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Total
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energy
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Figure 8.4 (a) Potential energy of an electron in the electric field of two nearby protons. The total
energy of a ground-state electron in the hydrogen atom is indicated. (b) Two nearby protons corre-
spond quantum-mechanically to a pair of boxes separated by a barrier.
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Chemical Bonds

Electron sharing lowers kinetic energy (covalent
bond).

For atoms with very different electron affinities,
electrons can transfer (almost completely in an
lonic bond).

Coulomb interactions (+ and -) and the exclusion
principle contribute.

Even for rare gas elements at 0°K quantum
fluctuations contribute to attractive forces



Table 4.2 Types of molecular interactions.

Strong Interactions
(Primary bonding)
20-200 kcal mol !

Weak Interactions
(Secondary bonding)
0.1-5 kcal mol—!

Covalent bonding
lonic bonding
Metallic bonding

Electrostatic interaction
van der Waals forces
Dipole-dipole interaction
London dispersion forces
Hydrogen bonding




Chemical Bonds

Covalent extreme



Simplest Example H,* ion
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» Best linear combination of unperturbed
wave functions (minimum E) comes from
solving the Schrodinger equation for the
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S0 back to the H,* ion

Let’s combine the two 1s states with unknown coefficients a and b:

ay, +by,

There is only really one unknown here (a/b) as the other comes from
normalization.

{ﬁo +H’J(aw1 +by,)=E(ay, +by,)

using o¥i2=EW12 and W |¥n) = B, (not really true — there

IS some overlap as there is a non-orthogonal basis, but approximately
OK)



Perturbation Theory for the H,*ion

Multiplying form the left by ¥, ™ or ¥, * we get two versions of the SE
a(E, — E)+a(y, [H'|y,)+b(y, |H |y,) =0

b(E, —E)+aly, |H|y,)+b(y, |H’

W2>:O

with <W2 \ﬁ’\w1> <;y1 \ﬁ’\wz>sA
<W1 ‘ﬁ/‘W1> = <W2 ‘I:\I,‘W2> =0



Perturbation Theory for the H,*ion

We get two equations with 2 unknowns (a/b, E)

(E,+5—E)a+Ab=0

Aa+(E,+0—E)bh =0

The secular equation gives

(E,+0-E) -=A*=0

Leading to E = EO +0TA (note A <0)
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Perturbation Theory for the H,* ion

for E=FE,+0+A

WA:\/E(WI_Wz) for E=E,+0—-A

O is s shift
from E,
and small
compared
to

A, which
must be
negative

A_

——hq i) ﬂ
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/t\ /c\ e

Ha-—hf+ul i‘

(lower energy bonding

state)

(higher energy, anti-bonding

state)

\r

——

E +5-A

E,+0+A

We neglected
coulomb repulsion
between the two
protons, taking it
into account will
give equilibrium
bonding distance
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W Contours of
electron probability
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Figure 8.5 (a)~(d) The combination of two hydrogen-atom 1s wave functions to form the symmetric
H," wave function 5. The result is a stable H," molecular ion because the electron has a greater
probability of being between the protons than outside them. (¢) If the protons could join together,
the resulting wave function would be the same as the 1s wave function of a He™ ion.

Noninteracting
AOs

f\m(zw
R=0 U '

(e)

Figure 8.6 (@)~(d) The combination of two hydrogen-atom 1s wave functions to form the antisymmetric
H," wave [unction ¢i,. A stable Hy" molecular ion is not formed because now the electron has a smaller
probability of being between the protons than outside them. (e) If the protons could join together,
the resulting wave function would be the same as the 2p wave function of a He™ ion. In the 2p state
a He" ion has more energy than in the 2s state.



1 U/, = Proton potential energy E t' d t 3
p S
Eg = Electron energy (symmetric state) n e rg e ICS e e rl I l I n eS
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Figure 8.7 Electron, praton repulsion, and total energies in H," as a function of nuclear separation R -6
for the symmetric and antisymmetric states. The antisymmetric state has no minimum in its total Ry 0. 0.2 03 0.4
energy. Nuclear separation R, nm
ks (0 :E:) Figure 8.8 The variation of the energy of the system H + H with their distances apart when the electron
* spins are parallel and antiparallel.
. . P io) P
"‘ “\
-
y(1s) * v (Is)
£, S—
H at
atom ) ( *
. V(o) A | H atom
v Covalent bonds are strong
H2

Figure 4.4. Schematic MO energy level diagram for H; molecule, with H - H mo I eCU Ie

2 electrons of opposite spins occupying the bonding orbital.
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In molecular orbital (MO) theory, molecules are described by
MOs in an analogous way as atoms by AOs. A technique
known as Linear Combination of Atomic Orbitals (LCAQ) is
used for constructing MOs. Here, a MO (Y) is represented as
the summation of i overlapping AOs (¢;), each multiplied by a
corresponding coefficient (¢;) representing their respective contri-
butions to that MO:

¥ = Z ci; (4.1)

The coefficients ¢; may be determined from the normalization of
wavefunctions, similar to Eq. (3.25), and taking into account the
overlap of orbitals.

If y, and g, are solutions to the Schrdédinger equation, @, =

ay, + by, will also be a solution to this equation ! o



MO energy level

g*(2p) ,
diagram for N,
molecule
™(2p) I3 ' This does not mean that there are actually 4

"\ electrons in this orbital !! Rather, there are two
spatially distinct (2p,) and 1(2p,) orbitals with

G*(%s) 1) degenerate energy level

2s ¥ 2s

N=N molecule

ol The electronic
configuration of N, is:
o*(1s) ¢ (618)?(0*1s)?(02s)?
1s I Is (6*2s)2(m2p)*(c2p)?2 two
N atom 4| Natom  times 7 electrons in total
a(ls) Iv

N, 15



Effective overlap between AQOs

oo T #-8

(@) Overlap of

. (b) Head-on overlap of (C) Sideway overlap of
Ig?ﬂiﬁﬁ"ﬁﬁ 4 two p orbitals to form o bond tworr orbitals to
form p bond

T bonds are
considered
secondary bonds
since they are much

Pz Pz ppo
weaker than covalent
o bonds
+ =
Px ppr
Figure 8.10 The formation of sso, ppo, and pp7 bonding molecular orbitals. Two p, atomic orbitals 16

can combine to form a ppe molecular orbital in the same way as shown for twe p, atomic orbitals
but with a different orientation.



(a)

(b)

Figure 8.14 (a) The ethylene (C,H,) molecule. All the atoms
lie in a plane perpendicular to the plane of the paper. (b) Top
view, showing the sp” hybrid orbitals that form ¢ bonds be-
tween the C atoms and between each C atoms. (¢) Side view,
showing the pure p, orbitals that form a 7 bond between
the C atoms.

(a)

H
(b) (0

Figure 8.15 The benzene molecule. (a) The overlaps between the sp”
hybrid orbitals in the C atoms with each other and with the s orbitals
of the H atoms lead to o bonds. (b) Each C atom has a pure p, orbital
occupied by one electron. (¢) The bonding 7 molecular orbitals formd
by the six p, atomic orbitals constitute a continuous electron probability
distribution around the molecule that contains six delocalized electrons.
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Success of MO theory, quantum mechanical
explanation of sp,; hybridization

¥ (033 ) = e (1) + ey {¥ (25)c + ¥ (2p)c)

z
Y
5
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y /}f | y
X _~/—}: ¥ X
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=

Also C in diamond (Si,
Ge) is(are) bonded
covalently (tetrahedral)
on the basis sp3 hybrid
orbitals

r

Combined to generate
four sp* hybrid orbitals

|

CH, molecule, perfect
tetrahedron, partly
due to the influence of
the four bound
protons at the apexes



Tendencies for hybridization can be explained from perturbation theory

sp° orbitals

Diamond

Since all 4 outer electrons contribute

to bonding, diamond is transparent

and an electric insulator as there are
no free electrons

109.5°

p orbital, making for van der
Waals interaction in graphite

Graphite

sp? orbitals

& For every C atom in graphite,

“ there is an electron in a p-orbital,
this electron is nearly free to

move and gives graphite it luster,
good electric ant thermal
conductivity and non-transparency

120 o

Fig. 3.1 Carbon bonding in diamond and graphite. Illustration of bonding of carbon
in diamond and graphite crystal structures. There are four electrons in each carbon atom
that produce bonding with nearest neighbors and in diamond (top) the charge distribution
associated with these electrons forms a tetrahedral structure (sp> orbitals) around each
atom. The atoms thus come together in a tetrahedral arrangement. In graphite (bottom)
the bonding electrons form a charge distribution of three equally spaced lobes in a plane
(sp? orbitals) with the charge distribution of the fourth being out of the plane (sp hybrid
orbital). In graphite the carbon atoms are thus strongly bonded in a hexagonal arrangement

in sheets with weak bonding between the sheets (see Advanced Reading Box 3.1). 19



Since the proton is very small but highly charged, it gives rise
to permanent electromagnetic dipole moments in many
molecules, e.g. H,O, HCI, HF, ... These dipoles in turn lead to
weak hydrogen bonds (so called secondary bonds) between

molecules

H-F--H-F or H-Cl-H-Cl Nz He N
2 A AN

Simple hydrogen bonding between two
diatomic molecules Hydrogen bonding between carbonyl

I:fTJ == U ﬁ7¢" ( H 0 ?%(tlj (Zf_} and amide group

0-H--0 00
SRS
O----H-0
Hydrogen bonFling between two Intramolecular hydrogen bonding
carboxylic molecules within one carboxylic molecule
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When water freezes, the
molecules move slightly
further away from their
average position in the
liquid state to each other,
that reduces the density,
ice floats on water for
that reason

Figure 4.12. Hydrogen bonding in H,O molecules.

Table 4.4 Properties of water and related substances.

NHj H,O HF H,S
Melting point (K) 195 2 184 187
Boiling point (K) 240 % Vi 293 212
Dipole moment (D) 1.47 1:85 1.82 0.97

21



H-bonding in Proteins

i
T)\n"L\H\T’LY S

Beta-pleated sheets

Alpha-helices
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H-bonding in Deoxyribonucleic acid, DNA

rﬁ 7\
U

Guanine " Cytosine
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Concept of electro negativity

24



From two atoms to solids

Energy

Energy
Energy

|
l r
o

(b)

& 2005 Brooks/Cole - Thomson

Just as we had for two hydrogen atoms coming Bp{
together an binding and an anti-binding solution to

the Schrédinger equation ... 33{ _ N

when two, six and a very large number of Na atoms

come together in a solid with a crystalline structure, 2/ 6N
we get two, six, or a very large number of orbitals 2s 2N
with closely spaced energy levels, The 3s band is,

i.e. in effect we get an energy band for each of the therefore, half filled, it
atomic orbitals, shown here is only the 3s band also overlaps with the
where each Na atom contributes one electron, this empty 3p band in

will the outermost energy band, the conduction band sodium o




A Energy of Electrons

Conduction Band A
Large energy A
gap between - _
valence and Conduction Band lern':l
- eve
conductionbands. [ / \ Conduction Band
a. Insulator b. Semiconductor c. Conductor

Distinction between classes of solid (crystalline materials), conduction and
valence bands overlap in metals, there is “no bandgap” for metals as far as

the temperature dependence of electric conductivity is concerned, not that
semiconductors will have a different temperature dependence of electric
conductivity than metals because the latter have a gap between the valence 4
band and the conductions band



Conduction Conduction Conduction
Band Band Band
"gap T some electrons have High
At absolute | the Fermi Tlg
zero. 0 K energy a :ulmrel e Fermi emperature
Fermi Vel _
Level
flE] f(E)
valence Band | Valence Band Valence Band [
Mo electrons can be above the valence band At high temperatures, some
at 0 K, since none have energy above the electrons can reach the conduction
Fermi level and there are no available energy band and contribute fo electric current.

states in the band gap.

In an intrinsic semiconductor, electric conductivity, (electron mobility)
increases with temperature, remember from earlier lecture that in metals
electric conductivity falls more or less linearly with increasing temperature

27



Table 12.8 Energy-Gap

Values for Some

Semiconductors®
Eq(eV)

Crystal 0K 300K
S 1.17 1.14
Ge 0.744 0.67
[nP 1.42 1.35
GaP 2.32 2.26
GaAs 1.52 1.43
CdS 2.582 2.42
CdTe 1.607 1.45
ZnO 8.436 3.2
ZnS 8.91 3.6

@® holes -

o o Fre o Fre Valence band

©2005 BrooksiCole - Thomson

Applied E field

Valence band

Semiconductor
Eg =]eV

A Conduction band

A

Energy gap

_____________ E:EF

/

Valence band

©2005 Brooks/Cale - Thomson

E=0

Insulator
Eg =10 eV
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A one-dimensional crystalline lattice,
repeat distance a, can support long

wavelength (low energy) electrons without
scattering, i.e. they are quite free to move

in a periodic potential of height V, in the

conduction band

for certain sets of angles of incidence and
electron wavelengths, there will be Bragg
reflection, either for a surface grating or a

bulk crystal, electron’s of these

wavelength are repeatedly scattered into

different directions, so will not portage
“unaffected” through the lattice

Atomic planes

I ©
Q

o—o0
o—o0
o—0

f
!

For 206 = 1802 and
an electron
wavelength of 2a,
there is an incoming
wave and a reflected
wave of the same
wavelength in the
opposite direction 29



Positive 1ons

© 2005 Brooks/Cole - Thomson

There are two possible waves with a periodicity matching that of the lattice. One has
its troughs and the other its crests at the position of the ions in the lattice. The p__
wave concentrates charge midway between the ions. The y, wave concentrates
charge at the position of the ions. The W+ wave should, therefore, represent lower
average potential energy. For a wave number k = 211/A, there must be two energy
values in a plot E versus k - next slide - their energy separation corresponds to the
width of the forbidden gap,

very loosely speaking, because the valence and conduction bands overlap in
metals, Bragg scattering inside the crystal does for this particular class of materialg
not result in a “band gap” as it does in semiconductors
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FIGURE 14-5 Electron plane waves propagating in a
sodium crystal.

(a) The direction of propagation is chosen to be in the direction
from one atom to its nearest neighbor, which is separated by a
distance x = a. (») Electron energy versus wave number . The
parabola corresponds to a free electron. After J. C. Slater,
“Electronic Energy Bands in Metals,” Phys. Rev. 45,794 (1934).
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on

T
a a

The second derivate of E with respect to k
gives the effective mass of the electron (and/or
hole if semiconductor) in the lattice, the
effective mass is actually a tensor, different in

different crystallographic d
These forbidden ba

irections

nds are not

between the valence band and

the conduction band, we were

31

talking about metals !!
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Band structure in
semiconductors is
often more
complicated, also
valence and
conduction bands do
not overlap so that
there is a genuine
band gap in the eV
range that defines the
electric conduction
properties

Absorbed
photon

<~
// 1
o f::g
s \_- l

¢ (D e o o o o Valence
® ¢ © o o o

L I X L

Figure 5.15 Energy band structures for Silicon (left) and GaAs

5

(right). Energy is shown vertically, and k horizontally. The hori-

zontal line marks the top of the filled “valence” bands; in pure
samples the upper bands are empty except for thermal excita-

tions (indicated by ++ and —-symbols.) The zero of momentum
is indicated as “I™, and separate sketches are given for Evs k in

(111) left and (100) right directions.

X

Conduction
band

® band

(b) Light absorption

Direct (GaAs) and
indirect (Si)
semiconductors, only
the direct ones are
good for
optoelectronic devices

Porous and defective Si

can have direct bandgap
32
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Donor levels
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In a chemical context, the Fermi level is referred to as
electron chemical potential

Valence
band

ng 1 eV
Eﬁf_:’ 005 EV
(b)
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Free electron gas for 0-
reduced dimensionalities

n(E) dE = g(E) f(E) dE
will be number of =

Empty energy levels

L
electrons as a function L N
-V, - v oy
O.I: en ergy Vacuum Metal Vacuum
Figure 5.8 Metal as a 3D box filled with non-interacting
o electrons up to the Fermi energy Er, following the Pauli

2y1,2
(n2 + n.i +nz)h

exclusion principle. The total depth of the potential well is Vo,

E = = infinitely the sum of Er and the work function, here labeled W
8ml? deep
cube well
Table 5.1 Fermi energy Er, Fermi temperature T, and free electron density n = N/V for metals 1
Element NV (x 10% m™) Fermi energy (eV) Fermi temperature (x 10° K) F(E) = plE—Er)/kT 4 1
Al 18.1 1157 13.6
i e s s Changes in the density of
o . o ross (electronic) states g(E) will
K 1.40 213 247 happen with changes in
A 60 i oo dimensionality, this will give
i T e 2 different numbers of electrons
s: 1;8 103 11.9 with an energy E + dE 35

Zn 13.2 9.50 11.0




Spherical volume of radius R encompassing a
number of possible states

Rayleigh scheme for
counting: number of states
is proportional to the
volume in the “state-space”

Define a radius R

K =

E =

R:

!

2 12 0 232
(ny +mny +nz)h

[ 12 2 2
\/ My + My + Nz

8ml?2

2v2mEL

h

Note that the n-space associated with the particle-in-a-box
involves only positive values of #, so the volume must be divided
by 8. It must also be multiplied by 2 to account for the two possi-
ble spin values of the electron. Hence the total number of available
states N is:

. 1 4 3 87T _ 3/2 LS
N=2 (g) gnR = ( 3 ) (2mE) 3 (6.8)

(.
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The number of states per unit volume n is:

n

N _ (8m\ (2mE)*/?
L3\ 3 I3

The final DOS as a function of energy g(E) is the derivative of
this population 1 with respect to energy:

dn  4m (2,*”)3”’2 Ve
g(E)=—r=—753—VE

This 3D DOS function g(E) represents the number of electron
states per unit volume per unit energy at energy E. This expres-
sion can be applied to bulk 3D materials, and is independent of
the dimension L.

n(E) dE = g(E) f(E) dE

carrier density 7 in a 3D bulk semiconductor

oo from the bottom of the conduction band E;, to the top of

Hn = / n(E)dE = / g(E)f(E)AE  the conduction band
E’c E‘i 37



= /n(E)dE — /q{E)f(E)dE Represents the shaded area in

. graph below
Ec Ec
1.2
" 1.0
@
(Q —
= 0.8 :;'*
'-E a L)
2 06 =
= 04 a
a
1 0.2
0
Energy (eV)
Substituting the expressions for ¢(E) and f(E)
mél:e‘t 2m*)3/2 1 ilibri
o — [ ( J;SE) JVE_E. —dE In thermal equilibrium .
Ec 1+e m, is the effective electron mass



Density of states for 3D, 2D, 1D, and 0D structures

&7

3D oD
(bulk) (Quantum Well)  (Quantum Wire)  (Quantum Dot)
o(E) 1 a(E)} a(E) 4 - gt
| || | A set of
- | |l Dirac
/ \\ \ delta
functions

- : o Eal

E E E E

d a7t (2m*)3/? d [2m* 1
gBD(E) = :;ED = :‘T( ;;; ) E — Emir. ng(E) = :;.;ED - ;:.;. \/m

dnpp _ 47m”  Effective mass changes in 39
dE h? step like fashion

2p(E) =



Table 6.2 The table summarizes the ratio of allowed energies to ground state energy and degeneracy of the energy level for 2D, 1D
and 0D structures.

2D 1D oD

State E/Ey n(E) E/Ep Degenerate States niE) E/Eg Degenerate States n(E)

1 1 1 2 (1,1) 1 3 (1,1,1) 1

2 4 1 5 (2,1),(1,2) 2 6 (2 1L100L21)01,1,2) 3

3 Y 1 8 (2,2) 1 L (2,21)01,2,2),(2,1,2) 3

4 16 1 10 (3,1),(1,3) 2 11 (3,1,1)01,31)i1,1,3) 3

o 25 1 13 (3,2),(2,3) 2 12 (2,2.2) 1

(&) 36 1 17 (4,1),(1,4) 2 14 (3,2.1),03,1,2),(2.3.1) B
(2,1,3).01,3.2),(1,2,3)

7 44 1 18 (3.3) 1 17 (3,2,2),(2,3,2),(2.2.3) 3

el 64 1 20 (4,2),(2,4) 2 1= (4,1,1)01,41)i1,1,4) 3

9 81 1 25 (4,3).(3.4) 2 21 (4.2.1),04.1,2),(1,4.2) B
(1,24)02,4.1),(2,1,4)

10 100 1 26 (5,1),(1,5) 2 X7 (3,3.3) 1

electron Fermi wavelength,

1D electron transport is ballistic if L ~ AF ihat domtinates electron
ranspor

2¢2  quantum of electrical conductance/resistance 7
Co= often called the contact resistance h/2e” = 12.9k()

conductance of ballistic structures is independent of the length of the sample.

on the length of the wire [, Ohm’s law for a 3D
structure, A cross section area of the wire

-1 ] Classically the electric resistance does depend
k=0 7,
40



Electron transport at the nanoscale depends on the relationship
between the sample dimensions and three important characteris-
tic lengths:

1. The mean free path L¢,, which represents the average
distance an electron travels before it collides inelastically
with impurities or phonons;

2. The phase relaxation length L,,, which is the distance
after which the phase memory of electrons, or electron
coherence, is lost due to time-reversal breaking processes
such as dynamic scattering;

3. The electron Fermi wavelength Ar, which is the wave-
length of electrons that dominate electrical transport.

The transport is
ballistic if the sample length L < L fps Lphr i.e. the electron does

not scatter and the electron wave function is coherent.

41



ballistic transport involves only electrons close to the Fermi energy, Er

h/2e* ~ 12.9kC)

Q
=)

conductance

0 | |
0 1000 2000 3000
depth (nm)

Figure 6.10. Walt de Heer and co-workers measured the conductance of
individual multiwall carbon nanotubes. Conductance increases in units
of the quantum of conductance as the number of individual nanotubes
making contact with the mercury increases, suggesting that nanotubes
are ballistic 1D conductors. [Image courtesy of Prof. Walter A. de Heer.]

When two carbon nanotubes make contact, the quantized conductance is

twice as large, analogously for 3, ... 42



single electron transistor (SET

eV = e%C <<k,T

effect of a
very small
voltage (V)
on the gate,
that allows
one other
electron to
tunnel from
the source
all the way
to the drain

Figure 6.13.
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for a flat disc,

C = Bereg R, where g, 1s the dielectric constant of the materal

Energy level diagram of the single electron transistor.

Instead of metal disc, also single Cg, molecules
with tunnel contacts, molecular electronics

The SET has effectively two states:

1. Blocking state: As seen in Fig. 6.13(a), no accessible energy
levels are within tunneling range of the electron (red) on
the source contact. All energy levels on the island elec-
trode with lower energies are occupied.

2. Positive voltage applied to gate electrode: Energy levels of the
island electrode are lowered and the electron (green 1) can
tunnel onto the island (2), occupying a previously vacant
energy level. From there it can tunnel onto the drain elec-
trode (3) where it inelastically scatters and reaches the
drain electrode Fermi level (4).

gate it connected to “metal disc” of less than
20 nm radius with self capacitance C , ¢/, is a
voltage on the bottom gate, e times this
voltage must be significantly larger than 25
meV for the device to work at room
temperature (so C as small as possible),
without this voltage, electron cannot tunnel due
to so called “Coulomb blockade”

tunnel resistances R; of the barriers

h
Ri = 7 43
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Fig. 5.11 Coulomb Blockade in a nanoparticle FET. (a) Energy level diagram of
nanoparticle with discrete states due to the quantum size effect connected to source and
drain electrodes via thin insulating tunnel barriers and a gate electrode in close proximity.
The highest filled state of the particle approximately aligns with the highest filled electron
level of the continuum in the source and drain electrodes (the Fermi level). The gray
empty states are available to the N electron population of the nanoparticle but not to
N + 1 electrons. If an extra electron was forced onto the particle the extra energy due to
its charge (e?/2C, where C is the capacitance — see Advanced Reading Box 5.3) would
shift the available empty states to the red ones so tunneling from the source onto the
particle is forbidden. If a voltage e/2C is applied to the gate electrode the lowest red state
18 pulled down into line with the Fermi level and if a bias is applied between the source
and drain a single electron can tunnel onto the particle and off again. The device thus
acts as an FET with the gate controlling whether tunneling conductance is allowed (one
electron at a time), or not. To conduct two electrons at a time would require a further
increase in the gate voltage.

Of course electrons
are fermions, also
the unoccupied
energy levels for
n+1 electrons are
different to n
electrons, so the
voltage is to make
the shift to fit the
n+1 (unoccupied)
electron levels for
that electron to
‘hop onto the
island™
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