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Potential Barrier Penetration: Potential Step
We divide the system into two regions (I and II). In region I, the
particle is free to move around as the potential energy V = 0. The

Schrodinger equation can be simplified to
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Since the particle can travel in the forward as well as backward
directions, we can express the wavefunction as

pr(x) = Fe'** 4+ Ge '™ (3.36)

where the first term represents the incident wave while the second
term represents the reflected wave. F and G are coefficients that
can be determined using the buundar}f conditions.



For region II, the potential has a finite height of V, such that
V, > E, where E is the energy of the particle. The Schrodinger
equation can be expressed as
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= (E — Vo)yq; (3.37)

R We simply change sign to
d<yr — 2y K2 = 8mm2(Vo — E)/h? avoid going complex

P (x) = He ™ (3.39)

To determine the coefficients F, G and H in Eqgs. (3.36) and
(3.39), ¥(x) and d¢(x)/dx must be continuous at the boundary
points x = 0. We have

p1(0) = ¢rr(0) (3.40)
dypr  dyy
dx  dx (3.41)

and thus

F+G=H ik(F-G)= —«H



For region |

P1(x) = F (fﬁ“ + He—’“) (3.42)
For region 11
2ik .
yi(x) = F- K2 3.43
Pri(x) = Fo—-ce (3.43)

Hence we can see that (x) is non-zero inside the potential step
and thus it is possible for a particle to penetrate into the potential
barrier! This is not allowed in classical physics.
Y, is called the evanescent wave, it is rapidly (exponentially) decaying,

also note that it has a real exponent, so it is not traveling (as the exponent
cannot be converted into cos kx — i sin kx as we can for y,), it cannot be
detected in the barrier as it would not move into any detector, but has a non-

zero probability density of being detected there

Also note that y, is actually the sum of two traveling waves, one traveling to

the right, (i.e. coming in) with exp (ikx) and one traveling to the left with exp (-
ikx) being reflected, for a stream of particles, all particles are accounted for as maty
come in, as many get reflected, no particles disappears into the barrier



Potential Barrier and Quantum Tunneling

As mentioned in the previous section, there is a probability that
the wavefunction can penetrate into the potential step. This sit-
uation becomes very interesting if the potential step is replaced
by a potential barrier. If the potential barrier width W is narrow,
it is possible for a particle to penetrate through the potential bar-
rier and appear on the other side! This phenomenon is known as
quantum tunneling. Let us consider the potential barrier shown
in Fig. 3.8. We divide the system into three region [, Il and III as

shown.
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For regions | and III with V' = 0, the Schrodinger equation is
given by Eq. (3.34) hence we can write down the wavefunction as

Pr(x) = Pe™ 4 Qe 'k (3.44)
and
Y1 (x) = Se'™ (3.45)

We have to account for the presence of the reflected wave in
region [ while there is no reflected wave in region III.
The intensities of the incident, reflected and transmitted proba-
bility current densities, |, are given by
S

J=0|P?, J=0|QP, J=0|S/ (3.46)

Thk

where v = == represents the magnitude of the velocity of the par-

ticle. The reflection coefficient R and the transmission coefficient

T add up to unity, no particle gets stuck in the barrier in other words, it is
just that the amplitude of the transmitted wave will be smaller than the
amplitude of the incoming wave, because there is also a reflected wave.
(remember: amplitude corresponds to humber of particles)



T are respectively given by
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R=1=L 3.47
i (3.47)
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T=_20 348
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Similarly, for region II, the Schrodinger equation is given by
Eq. (3.37). The wavetunction is therefore

Prr(x) = Ue™ + Ve ™ (3.49)

To determine the coefficients in the wavefunctions, we make use
of boundary conditions again.
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T= 14w —p (3.53)
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Note that sinh(x) = ©=£— and cosh(x) = £~




[f kW > 1, then we can use the approximation sinh(xW)
1

~ 5 exp(xW), and the transmission coefficient becomes . \/szzz(vo —E%
h2

16E(Vo—E) o

T > 3.54
72 ¢ (3.54)

The probability that the particle can tunnel through the barrier
thus depends on the barrier width and the barrier potential height.

This relation is an important result for quantum tunneling and the
scanning tunneling microscope (see Chapter 8).

The pre-factor in front of the exponential is frequently set
to unity as another approximation

Note the difference (V,-E), the mass of the particle, the
widths of the barrier, and h-bar are all in the exponent

So if the mass is large, tunneling to some appreciable
amount is not going to happen even if V, is very close to
E and W is comparably small



Analogy effect for classical waves

If light passing through a glass prism reflects from an internal
surface with an angle greater than the critical angle, total internal
reflection occurs. However, the electromagnetic field is not
exactly zero just outside the prism. If we bring another prism very
close to the first one, experiments show that the electromagnetic
wave (light) appears in the second prism The situation is
analogous to the tunneling described here. This effect was
observed by Newton and can be demonstrated with two prisms
and a laser. The intensity of the second light beam decreases
exponentially as the distance between the two prisms increases.

Light is totally internally reflected due to sudden change in
refractive index from glass to air,

for the critical angle of total internal reflection, this constitutes a
barrier that cannot be penetrated, the mathematics of the
classical (Helmholtz wave equation, however, requires an
evanescent wave)

Water waves tunnel as well, a situation analogous to total
internal reflection has been set up in a water tank, a sudden
increase in the water depth corresponds to a barrier where the
water waves should speed up, reducing that barrier allows for the
energy of the water wave to tunnel through the barrier and move
away on the other side

(a)

(b)
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HYDROGEN-LIKE ATOMS: ORBITALS AND

ATOMIC STRUCTURES
ZEZ IIE dzw dEw dE lp ZL’E
V== - +— ) - — Ey 3.5

x =rsin(0)cos(¢)

ff::’:’fgg;””("’) 1/r is the only variable of the potential (Z is just
[ 1, 2 or 3), this is called a central force potential
r=\/XxX"+y- +z

p(r,0,¢) = R(r)Y(6,¢)

Figure 3.11. Relationship between spherical coordinates and cartesian

coordinates.

In spherical coordinates, Eq. (3.56) takes the form
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H

In the absence

where R is known as the Rydberg constant (= 1.0974 107 m_l}, _
’ ; of a magnetic

and ¢ corre&apunds-; to the :';peed_ of light. 1 1s the prinu:ipal quantum

: : field
number and its value ranges from 1 to co. A common form of the
equation expressed in units of electron volts is given by
13.6Z ? | h
E=——+—(eV) (3.58) ydrogen,

H=

— 2
Z =1, 2, 3, but there is only one electron going somehow around the E, = Eg/n

respective nucleus, which contains 1, 2, or 3 protons

Same energy level formulae is obtained from Bohr’s model, also Bohr radius for
the hydrogen atom, (which gives the most probable radial position of finding the
electron when the atom is in the ground state, in a so called 1s orbital)

hle # Where a = 1/137, fine structure
a, = 0O — constant, ratio of the speed of the

Tom-es m-c- electron in hydrogen in the first
Bohr orbit to the speed of light

So it is numerically OK that special relativity is neglected, but conceptually we
are missing the forth dimension of space time, i.e. a forth quantum number
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Degeneracy

* Analysis of the Schrodinger wave equation in three dimensions
introduces three quantum numbers that quantize the energy.

« A quantum state is degenerate when there is more than one
wave function for a given energy.

« Degeneracy results from particular properties of the potential
energy function that describes the system. A breaking of the
symmetry of the potential energy function removes the
degeneracy or may creates a different type of degeneracy.

13



Since it is a 3D problem, there needs to be 3 quantum numbers, n is principal
quantum number, /is orbital (or angular momentum quantum number), m, is
magnetic (or z-component angular momentum) quantum number, n = 1 to infinity, /
=0ton-1, m,=-/to/ (including zero)

Quantization arises simply from the boundary conditions
that wave functions have to approach zero at infinity!

h
magnitude of the angular momentum, L L= I+ ”E
and the component of the angular momentum along the

z-direction L; is given by h

my— So angular momentum is quantized in

27t nature in a different manner than predicted
by the Bohr's model (as it neglects
Heisenberg’s uncertainty relations

- —

By virtue of the uncertainty
principle, there can only be
certain orientations of the
angular momentum vector,
phenomenon is commonly
referred to as space
quantization

=2, m=2,-1,0,1,2

V2 2+

Figure 4.8 Five allowed orientations of

angular momentum | =2, length of vector and 1 4
z-projections in units of . Azimuthal angle is

free to take any value




lp{:r, 0, ¢} — R{:T)Y{H, (P} R(r) is known as the Radial Wavefunction
Y(6,¢) Spherical Harmonic

|Angular momentum|? operator

2
L%Y = %i(! +1)Y (3.64)

Angular momentum along z direction operator

h
L.Y =m—Y
B m;Z?I'

where the complete form for Eq. (3.64) can be written as

h? 1 9 Y 1 9%Y h?
- inf— = J(l+1)—Y
4772 Lm{ﬂ) 20 (Sm aﬂ) T 20 aqbz] Ry

(3.66)
On the other hand, the radial function satisfies the following
equation:

R(r) = ER(r)
(3.67)
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Table 3.3 Mathematical equations for the radial wavefunctions
and the radial probability distributions.

Table 3.2 Mathematical equations for the
various spherical harmonic functions.

Y7, Angular Function

3/2 | _ -
2 0 RE[} = ‘1\]:..-"; (%) {2 —p:]g—jf’."rz YU,U -]Jf 'v/-]:FT
3/2 Y1,0 = /3/4mcos(0)
I Rn = qi..-g (%) pe—P/2 B
- Y11 = —/3/8m siﬂ(ﬂf]e“f’
3 A o
0 Ry=3i(£) P6—6p+peP? Y,y =/3/8xsin(f)e ¢
3 1 Ray= ng (%)sz{al—pje—n‘”z Y20 = %vSHH{?’ cos?(8) — 1)
2 Rap = Eh}@ (%)3“’{2 02eP/2 Y51 = —/15/87sin(f) cos(@)e'?
Y, 1 =+/15/87sin()cos(0)e ¥
Yoo = 1V15/2msin?(0)e'%?

lp[:?’, 9,{;?)) = R(F)Y(H,(P]I Ys =%\,Wsiﬂ:(ﬂ)€_ﬂ¢

R(r) = R,, so the products of the corresponding
function for all three quantum numbers gives the full 15
wave function



The maximum of finding the electron at a
radial distance is the first Bohr radius for the
n=1, =0, the 1s state,

similarly for each quantum state with the
highest angular momentum for each
principle quantum number n, (e.g. 2,1; 3,2)
the probability of finding the electron
corresponds to Bohr's semi-classical orbit
predictions

_ 2

Full electron probability-density
distributions for different states, the so
called orbitals, plotted for a certain
constant probability density cut off,
therefore orbitals may look different in

different

books

to some approximation, the
orbitals of other atoms look very
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Complex forms
of p orbitals

Figure 4.7 2p wavefunctions in schematic form. Left panel,
complex forms carry angular momentum. Right panel, linear
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Real forms

Complex valued wave functions
possess angular momentum, i.e.
Woo.t » Whereas 2p,, 2p,, 2p, are all
real, so do not possess angular
momentum,

of p orbitals

in orthogonal form 2pX + |2py and 2pX - |2py become
complex valued

combinations have the same energy, now assume aspect of

bonds

Table 4.1 One-electron wavefunctions in real form [9]

Wavefunction

Wavefunction name,

Equation for real form of wavefunction®, where

designation real form p=Zrja, and C,=2>7}\/x
11110() 1s Cleﬁﬂ

Y00 2s G, (2-p) e 7?

Y51 cose 2p. C, p sinf cosp e */?
Y3150 2p, C, p sinf sing e™*/?

%10 2p. C, pcosf e ”?

Y100 3s Cs (27-18p +2p%) e?
Y31 cose 3p« Cs (6p—p?) sinf cosgp e ">
¥s15ine 3p, C3(6p—p?) sinf sing e/
Y310 3p: C;(Gp—,oz) cos@ e ”3

320 3d,’ Cy p* (3cos?@ 1) e 7/
V35 cosp 3d,. Cs pz sinf cosb cosop e 3
Y33 sing 3d,. Cs p” sinf cosf sing e />
Y35 cos200 3d,”)7 Ce p”sin’f cos2¢ e ??
Y55 sin2g 3d,, Cs pZ sin’6 sin2¢p e 3

* Cy=Cy/4V2, C3=2C, /813, Cy=C3/2, Cs=\6C,, Co=Cs/2.
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Schrodinger’s time independent equation for a central force potential, is 3D, so we get
three quantum numbers, it is an operator level statement that total energy is the sum of
classical kinetic energy and potential energy and conserved, also it is a statement that
the wave function is an eigenfunction of the Hamiltonian Operator and that the total

energy is its eigenvalue

dy  dy

Sm 7t

h* 12
1 (I ] .

dx?

dy>  dz? ) - dgre,r

Ze?

p =Ey (3.56)

Sketch of Stern-Gerlach experiment with (non-magnetic) Ag atoms, Hydrogen in the
ground state, note the beam of atoms is split into two components by an
inhomogeneous magnetic field,

The beam of the
atoms of silver

The furnace
with silver

The slit

QQ.

S

5

The special shaped
magnets

I ms = -(1/2)

he
hotographic

late
@ lms=+[1f2]

The Stern-Gerlach experiment. On the photographic plate are two clear tracks.

http://www.if.ufrgs.br/%7Ebetz/quantum/SGPeng.htm

an inhomogeneous
magnetic field separates
atoms if they are carrying a
magnetic moment,

great surprise was that Ag
and H in ground state need
to have a magnetic
moment although 1s' for
hydrogen (outermost 5s'
for Ag [Kr] 4d'°5s1) does
not magnetic quantum

19
number m, =0



set of quantum numbers (n, [, m;, ms)

Table 3.1 First 10 orbitals and the corresponding
quantum numbers of a hydrogen atom.

/

1" m S
1s 1 0 0 1/2,-1/2
2 2 0 0 1/2,-1/2
2p 2 1 1,0, -1 1/2,-1/2
3 3 0 0 1/2,-1/2
3p 3 1 1,0, -1 1/2,-1/2
3d 3 2 2,1,0, -1, -2 1/2,-1/2
4s 4 0 0 1/2,-1/2
p 4 1 1,0, —1 1/2,-1/2
4d 4 2 2,1,0, -1, -2 1/2,-1/2
4 4 3 3,2,1,0,-1,-2, -3 1/2,-1/2

Spin is something entirely quantum
mechanical, it has no classical
counterpart, it is an internal degree of
freedom that has just two values, up
or down about any possible axis,

the electron is not spinning around its
axis, if it were, it would need to spin
significantly faster than the speed of
light and also about any possible axis
one can imagine

] From Dirac’s
S—_\/s(s+1) relativistic
2m analysis
h h
S; = —g = +—
- Zﬁm 47

Four dimensional space time requires 4 quantum numbers. We neglected special
relativity because electron on first Bohr orbit was not very fast, while the numerical

error was small, the conceptual blunder is large!

one spin up and one spin down electron fit in each orbital, Pauli’s
exclusion principle

20
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Electronic structure can be explained approximately by the hydrogen orbital plus Pauli’s
exclusion principle (each orbital has only space for one spin up and one spin down
electron), plus Hund’s rule (often when orbitals can be occupied by single electrons with the
same spin, this results in strong (ferro) magnetisms (at room temperature) in a few of the elements:
Fe, Co, Ni, Gd, and Dy, (Cg4, in @ meta-stable high pressure-temperature hexagonal crystal phase
might also be ferromagnetic due to structural defects since all electron spins are paired)

H From Unsdéld's theorem, about 1/3 of Ha
Li | Ba all atoms are nearly spherical 8 lelNnlol r|Ns
Na | Mg symmetric als|lels |ala
K [Ca| Sc| Ti V |Cr|Mn|Fa | Co| N |[Cu|Zn|Ga|Ga |As | Sa | Br | Kr
Rbh | & | ¥ | &r | Nb [Mo | Tc |Ru | Rh |Pd |Ag |Cd | In | Sn | Sb | Te I X5
Ce [Ba |La | H [Ta [ W |Re |Os | Ir [Pt |Au|Hg | Tl |[Ph| Bi | Pa| At | Rn
Fr |Ra | Ac | BRI | Db | Sg | Bh | Hs | Mt

larntharides | Co | Pr | Nd |Pm | Sm | BEu | Gd | Tb | Dy | Ha | Er | Tm | ¥Yb | Lu
Actimides Th | Pa U Np | Pu |Am |Cm | Bk | Cf | Es | Fm | Md | No Ls

There are many many many more molecules than atoms, beyond Bi all elements are
unstable (radioactive), U is the heaviest element in nature

The “living domain” of nature builds form complex molecules by lock and key
mechanisms (rather than moving individual atoms into place with a STM), atomic
orbitals of hydrogen can to some extend be used to model the shape of molecules 21
there sure will be modifications, e.g. hybridization, ...



n=2,f=1,my=4%1

n=1,/=m/=0 n=2./=l,mg=0 n=2,/=l,m/=0
(a) (b)

Shapes of many
isolated atoms in
ground state are
nearly spherical

n=3,f=2,mf=i2

n=3,/=2,m=%1

n=3,f'=ml'=0 n=3,/=1,m/=0 n=3,/=2,m/=0

(c)
FIGURE 8-5 Sketches of |yj? for the hydrogen atom in three dimensions:
(a)the n=1 state, (b) the n=2 states, and (c) the n =3 states. After R. Eisberg and R. Resnick, Quantum
Physics of Atoms, Molecules, Solids, Nuclei, and Particles, Wiley (copyright © 1985).

Unsold's theorem states that
the square of the total
electron wave function for a
filled or half-filled sub-shell is
spherically symmetric. Thus,
atoms containing a half-filled
or filled s orbital (/= 0),
atoms of the second period
with 3 or 6 p (/= 1) electrons
are spherically shaped.
Likewise, are atoms of the
forth period in which there
are50r10d (/= 2)
electrons. Hence, spherical
atoms are those of the 1st,
2nd, 7th, 12th, 15th and 18th
columns of the periodic

table. (also applicable to the
lanthanides and actinides)
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both Bohr and Schrédinger model could be refined with the concept of reduced mass of

the electron (the much heavier proton is not really stationary, both particles rotate about

relr @eminel CEmED O e Since proton about 1836 times heavier

melectron . Mproton Me = 0.999456 m

electron

He = P M — Rydberg constant (for infinite nuclear mass) needs to
be multiplied with ratio reduced mass to rest mass of
13.6eV =R_-hc electron in order to predict position of spectral lines

more precisely

With these concepts, Positronium, i.e. an electron and a positron going around each other
before they annihilate each other and get converted into two gamma rays can be modeled by the
Bohr/Schroedinger model, Bohr radius: 2 a, , ground state/binging energy: 0.5 times 13.6 eV,

these concepts around Positronium are important in certain characterizing techniques of
crystalline materials, detecting certain defects by spectroscopic means

Also an (Mott-Wannier, loosely bound) Exciton, i.e. an electron loosely bound to a
region of positive charge (hole) in a semiconductor can be modeled by the
Bohr/Schroedinger model, depending on the effective mass of the electron and hole
(which depend on the second derivative of the energy versus wave vector function —
band structure) and the relative dielectric constants (since it is inside a
semiconductor): Bohr radii are typically some 10 a,, ground state/binging energies are
typically: 0.1 times 13.6 eV, if the exciton is confined into a space below it’s Bohr
radius, it acquires a set of different energy states, e.g. in self-assembled epi- or
endotaxial quantum dots (in organic nano-crystals, there are tightly bound Frenkel excitons)



rme n=4 Becomes a
- particle in a 3D
1omev - _ box, energy
Exciton " —@—— Exciton Rydberg I. e V.ells I f
bk infinitely deep
100 meV - - Exciton i
3 Positonium cubic box, so
i e -5 , ., shiftin emission
n=>5 0=
fevi pos ——nas : +ny, +n;)h° wavelength ~ L2
—n=3 e
—_—n=2 ° Sm LE
10eV - el -
———n=1
S atom
Figure 1.32. The first few energy levels in the Rydberg series of a hydrogen atom (a), posi-
tronium (b), and a typical exciton (c). | Zn atom
_— k  Cd atom
2nm » 8 nm
 Se atom

Fig. 5.8 CdSe/ZnS core-shell quantum dot. Coating a CdSe quantum dot with ZnS
prevents the surface reconstruction of the CdSe surface that leads to the creation of
additional electronic states in the bandgap. These promote the relaxation of the excited
electrons via non-radiative transitions and decrease the quantum yield of the dot.

Shell around the particles has larger
.y B ' band gap, i.e. it reduces leaking into the
Fig. 5.7 Fluorescence from CdSe quantum dots of different sizes. Change in wave- barrler, aISO SU rface I’eCOHStrUCtIOH Of the

length of fluorescence as a function of size from CdSe quantum dots excited with UV
light. Note how the wavelength is reduced (bluer emission) as the size of the quantum dot

is reduced. Reproduced with permission from Prof. Bawendi, Department of Chemistry, CO re material iS aVOided WhiCh WOUId
. produce extra electronic states in the

There are also epitaxial semiconductor bapq gap and reduce the radioactive 24
quantum dots for low threshold lasers efficiency of the quantum dots




Another important result of relativistic quantum mechanics (that revealed the
existence of the particle property spin) for more than one particle: there are
actually three types of identical particles in the universe, two of them possess the
feature of being genuinely indistinguishable from each other by virtue of the uncertainty
principle, these are the two identical “quantum particles”, fermions and bosons

fermions are the constituents of matter, have half integer spin, electrons, protons,
neutrons / bosons are the field particles (and some composites of fermions) with integer
spin, e.g. photons, alpha particles

Different statistics apply in each case, below are the probability of finding a certain type

of particle as a function of its energy, (kT being thermal energy, A a factor that serves similar
“normalization purposes” but differs from energy distribution function to energy distribution function)

Maxwell- o 1 ldentical but distinguishable
Boltzmann JE) = = kT particles, . g. Molecular speed
(classical) Ae distribution
: ] |dentical indistinguishable particl
= ) HE) = guishable particles
Bose Emﬂt?m ' pe*T _q | with integer spin (bosons), e.g.
(quantum}) Thermal radiation, specific heat
N . 1 |dentical indistinguishable particles
FEF“""DWE’_": HE} = ENT 4 with half-integer spin (fermicns),
(quantum) Ae  *1 | eg. Electrons in a metal, e
lFor thermal equilibrium ¢f system of particles conduction in semiconductor




Even without spin being integer or half integer multiple, is the

characteristic of indistinguishability that makes quantum

statistics different from classical statistics.
The possible configurations for two distinguishable (particles A and B) in either of two

energy states:

The probability of each is one-fourth (0.25). But if the two particles are
indistinguishable (X instead of A and B):

State 1 | State 2
AB
A B
B A
AB

Since two particles can
occupy the same state here,
we are talking about Bosons

(and not Fermions)

State | State
1 2
XX
X X
XX

The probability of each is one-third (~0.33).
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At large temperatures or energies, all three energy state probability
distributions converge,

but at very high T, Maxwell-Boltzmann breaks down anyway because it
IS non relativistic!
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Basic facts about Fermi-Dirac distribution function

Fermi energy is only weakly dependent on temperature, so that dependency is
often neglected

J(E) . 1 f(E)
fFD(E) — (E-Ep)
kgT
T=0K € + 1 T>0K
1.0 1.0 S
|
:
) 1L
;
0 E 0 ' E
Ep J o L
Fermi Energy: at T = 0, all levels at T > 0, only “a few” electrons will be
below Eg are filled, all levels above it able to acquire some extra energy from
are empty the thermal environment to be able to

move around freely and transport
n(E) dE = g(E) f(E) dE will be number of electricity or heat from one place to
electrons as a function of energy, another



Table 10.1 Calculated Values of Various Parameters for
Metals Based on the Free Electron Theory

Electron Fermi Fermi Fermi
Concentration Energy Speed Temperature

Metal (m~3) (eV) (m/s) (K)
Li 4.70 X 1028 4.72 1.29 X 106 5.48 X 10*
Na 2.65 X 1028 3.23 1.07 X 10° 3.75 x 10*
K 1.40 % 10%° 2.12 0.86 X 10° 2.46 X 104
Cu 8.49 x 1028 7.05 1.57 X 10° 8.12 x 10*
Ag 5.85 X 10%® 5.48 1.39 X 10° 6.36 X 10*
Au 5.90 X 1028 5.53 1.89 X 10° 6.41 X 104

2y B N % =
E. = (371'2)4 (—) average energy per electron £ = % E.

2m, V

Only those electrons close to the Fermi level are mobile,
(without an applied electric field)

e

E, A gas of classical particles would have to be heated to
T =——  Tg,mn N order to have an average kinetic energy per particle

29
that is equal to the Fermi Energy



n(k)

n(E) is number of electrons per unit volume
with energy between E and E + dE

this is the product of the density of state
function (here for a bulk material, which is
large in all three dimensions) and f(E) for the

Fermi-Dirac energy state occupation
distribution function

© 2005 Brooks/Cole - Thomson

Only those electrons in the narrow shaded rectangle of width kgT can be thermally
excited, their fraction fis approximately the ratio of that small area to the total area

under the curve
FaL 7 3RT*
total ined lis =
2T, otal energy gained per mol i 2T,
. . dU T
Electronic heat capacity Ce _ ~3R—

lectron _in _crystal ~—
e =g T,

with typical values for Fermi Temperature and 300 K,
electronic heat capacity is only about 1 % of the classically
expected heat capacity for a Maxwell-Boltzmann gas !! >



Under what physical conditions can Maxwell-Boltzmann statistics be employed?

Whenever the wave-particle duality can be ignored, e.g. when average distance
between particles, d, is large compared to quantum uncertainty in particle position, Ax

Ax << d

For such a particle moving in one direction, average kinetic energy p, . ,caqe 2/ 2M =
kgT / 2 from equipartition theorem

Ap Ax > 1/ Mk A=) 3 kaT«%V)

Let’s do two estimations, 1. hydrogen gas at standard temperature and
pressure (STP)

273 K, 1 atmosphere, | mol H, gas 6.02 123 molecules
N h3 occupies 22.4 liter, kg T =3.77 102" J

(V ) .3 mk.T ==l = 8.83 108<< 1, so all is fine for ideal gas law, steam
B

engines, Carnot cycle, ... (modification real gas laws)
Let’s do two estimations, 2. electrons in silver at 300 K?

n = (V) = 5.86 1028 free electrons m3, = 3.71 not much smaller than 1 !! so

(about 2000 times denser than hydrogen anything to do with electrons in the solid
gas at STP), electron much lighter than H,state is to be treated with quantum 3t
statistics !




Free electron gas (Drude theory) in a metal,

there are positively charged ions (the former atoms of the metal) that
have donated their outer electron (or electrons depending on the
chemical valance) to the collective “sea of electrons”, some of the
electrons are free to move in the crystal lattice, if it were not for
deviations from the perfect lattice, i.e. point defects or lattice vibrations,
they would not be scattered, however they do obey Fermi-Dirac
statistics since they are Fermions, neglecting this property and
assuming the validity of classical physics (Maxwell-Boltzmann statistics
instead) leads at best to fortuitous results

“similar” models for thermal and electrical Drude, J.J. Thomson,
conductivity for metals, on basis of free electron Lorenz assumed
gas, treated with Maxwell-Boltzmann statistics — ~ Wwrongly that the iree

electron gas would

l.e. as If it were an ideal gas behave classically

Lorenz numbers, a fortuitous result, don't be
fooled, the physics (Maxwell-Boltzmann statistics)

behind it is not applicable as we estimated earlier
32

But Fermi-Dirac statistics gets us the right physics



Table 12.5 Thermal Conductivity, K, and Electrical
Conductivity, o, of Selected Substances
at Room Temperature

Substance KinW:m™ 1K1 oin (2+-m)~!
Silver 427 62 x 10°
Copper 390 59 X 10°
Gold 314 41 X 109
Aluminum 210 35 % 109
Iron 63 10 X 105
Steel 50 1.4 X 108
Nichrome 14 0.9 x 108
Quartz 13

NaCl 7.0 i e

E 300 HmobuT s - Thomrsan

Metals have high conductivities for both electricity and heat. To explain both
the high conductivities and the trend in this table we need to have a model for
both thermal and electrical conductivity, that model should be able to explain
empirical observations, i.e. Ohm's law, thermal conductivity, Wiedemann-
Franz law,



Table 12.7 Experimental
Lorentz Numbers K/oT in
Units of 1073 W- Q/K?**

Metal 273 K 300K 373 K
Ag 231 23 9237
Au 2,35 2.99 240
(il 2.42 2.43
Cu 2.2% 22 233
Ir 2.49 2.49
Mo 2.61 2.79
Ph 2.47 2.56
Pt 2.01 2.60
Sn 2.52 2.49
W 5. 04 3.20
n 2.31 2.33
2
K 3K

-

E 2e”

= ~1.12-10°WQK

Wiedemann and Franz
Law, 1853, ratio K/eT =
Lorenz number = constant
~24108Waa K2

iIndependent of the metal
considered !! So both
phenomena should be
based on similar physical
idea !l!

Classical from Drude (early 1900s)

theory of free electron gas that behaves
classically

-

Too small by factor 2,

seems not too bad 777
34



To explain the high conductivities and the trend we need to have a model for
both thermal and electrical conductivity, that model should be able to explain

Ohm’s law, empirical for many metals and insulators, ohmic

solids Conductivity , resistivity is its reciprocal value

J =0 E current density is proportional to
applied electric field

R=Uy | forawire R=rP!/ A P:specific resistivity
J: current density A/m?

o electrical conductivity Q-1 m-', reciprocal value of electrical
resistivity

E: electric field V/m
o =p!

A constant that does depend on the material and temperature but
not the applied electric field and represents the connection between 3%
current and voltage



Gas of classical charged particles, electrons, moves through
immobile heavy ions arranged in a lattice, v . from equipartition

rms

theorem (which is of course derived from Boltzmann statistics)

| 1 -* 3
Start i y —
m v =—k,T

(9 Finish 2 2
\ o
- \/E NEN
A .
v

Between collisions, there is a
mean free path length: L = vt

fa | .
S (@) and a mean free time = (tau)

Figure 12.11 (a) Random successive displacements of an electron in a metal without

an applied electric field. 5
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Start

If there is an electric field
E., there is also a drift
speed v, (10° times
smaller than v, ) but
proportional to E, equal
for all electrons

Finish @

Ak

_eEr

(b) L -

& 2005 BvoakniCols = Thomeon &

Figure 12.11 (b) A combination of random displacements and displacements produced
by an external electric field. The net effect of the electric field is to add together multiple
displacements of length v, t opposite the field direction. For purposes of illustration, this
figure greatly exaggerates the size of v, compared with v,_.. 6
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E field / r\\\

Figure 12.12 The connection between current
density, J, and drift velocity, v,. The charge that
passes through A in time dt is the charge
contained in the small parallelepiped, neAv, dt.

n is density of electrons per volume

J =

neAv dt

=ney,
Adt
Substituting for v,
2
netT
J=——F
m

So the correct
form of Ohm’s law
Is predicted by the
Drude model !!

J =oF
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2

. neTtT With mean free time T= O =
O = LIV e
" my

e 2 e’ rms
ne L
With v, according to

O =
Maxwell-Bolt :
axwell-Boltzmann \/3kBTm€

statistics

ne-L

Proof of the pudding: L should be on the order of magnitude of the inter-atomic
distances, e.g. for Cu 0.26 nm

8.49-10"cm™(6.02-1077C)* - 0.26nm
\/‘a 1.381-10 % JK 300K -9.109-10 kg

Ocu 300k = 9-3 10° (@m)™ compare with experimental value 59 10°
am) -, something must we wrong with the classical Land v,,,. s
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Result of Drude theory one order of magnitude too small, so L
must be much larger, this is because the electrons are not
classical particles, but wavicals, don't scatter like particles, in
addition, the v, . from Boltzmann-Maxwell is one order of
magnitude smaller than the v, following from Fermi-Dirac
statistics

Table 12.6 Electrical Conductivity of
Metals at 300 K

Substance Measured o in (-m)~!
Copper 59 X 10
Aluminum 35 X 10°
Sodium 99 x 109
[ron 10 X 10°
Mercury 1.0 X 10°
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p(x107% Qe m) | '\/3kBTm€
A G S 5
ne L

=p

So p ~TY theory

for all temperatures,
but p ~T for experiment
reasonably high T .
so Drude’s theory
must be wrong !

| | | | 1 1 | b
100 200 300 400 500 600 700

TR —

& 2005 BrookaiCols - Thosrsan

Figure 12.13 The resistivity of pure copper as a function of temperature.



Phenomenological similarity conduction of electricity and
conduction of heat, so free electron gas should also be the key
to understanding thermal conductivity

AV

Ax
AQ AT

ANt Ax

K — i CVV;"'}HSL
3

 kgnv, L
2

J=-0

K

Ohm’s law with Voltage gradient,

thermal energy conducted through area
A In time interval At is proportional to
temperature gradient

Using Maxwell-Boltzmann statistics,
equipartion theorem, formulae of C, for
ideal gas =3/, kg n

Classical expression for K

1
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2
For 300 K and Cu
\F 3%, T
V

FIHS

m, Lo 3-1.381-10 2 JK'300K
9.109-10 kg
Lets . k BV, s L =10°m/s

continue K

2
1.381- 107 JK'-848-10%cm—-1.1681-10°ms™" - 0.26nm

K =
2
X - 1.381- 1072 JK'-8.48-10%m " -1.1681-10°ms ™ -0.26-10"m
- 2
s Experimental value for Cu at (300 K) = 390 WK1,

K=17.78

again one order of magnitude too small, actually

Kms roughly 20 times too small 12
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j
o - ne L This was also one order of magnitude too
m v small,

g Fms

_K/ — k }?VIHHL}?? VHHS — k m VHH'S
O

2ne L D¢’

2 - 3k;
With — [3k,T K/ _ "B
Maxwell- Vo = \/: — B 0] 2{3: T
Boltzmann m,
| orenz number classical ¥/ Wrong only by a

d factor of about 2,

K %k' Such an

~1.12-10°WQK ™ agreement is called

fortuitous 1
44
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Lorenz rather than Lorentz

Table 12.7 Experimental
Lorentz Numbers K/oT in

Units of 107° W+ Q/K=*

Metal 273 K 373 K
Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Ph 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20

/n 2.31 2.33%



replace Lf{:}r_a_particle with Lft:-r_a_wauial and Vrms with """rfermi1
] 2
ne L for_a_ particle o o ne I‘ for _a wavical
Gc‘fa.ssicaf — _1 — ‘ quantum ”?
my,. . fer i
L ﬁ? 1 fEIT?HG{}HmHHm
for _a wm-'.rimf f’?ﬁ"_
2
T {: — —_— vﬁ?rmf T

For Cu (at 300 K), Er = 7.05 eV , Fermi energies have only

small temperature dependency, frequently neglected -
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2E, 2.7.05-1.602-107°J

V . == . _
fermi 1 i copper 300K
L 2. -31
m, Jermi.coppe 9.109 10" ke

~1.57-10°ms™

one order of magnitude larger than classical v, .

for ideal gas
m,y

for _a_ wavical

O

fermi™ quantum

L

ne- just measured value
as O gantym Will be

correct concept

L =

for _a_ wavical ccPper
9.109-107'kg -1.57-10°ms™ -5.9-10°Q"'m ™
8.49-10%m™(1.602-1077C)’

two orders of magnitude larger

9MM  than classical result for particle.

47
Actually the wavical would not scatter if it were not for irregularities in the crystal lattice

L =3

for _a_ wavical cofper



We used spacing of ions: 0.26 nm

- ne’lL /

for_a _particle 0.1 of observed value

O

classical I

I?ZEJ s
So here something two orders of two magnitude too small (L)
gets divided by something one order of magnitude too small

(Vims),

l.e. the result for electrical conductivity must be one order of
magnitude too small, which is ocbserved Il

But L ¢ parice 1S quite reasonable, so replace Vo with Vi,
and the conductivity gets one order of magnitude larger, which
Is close to the experimental observation, so that one keeps the
Drude theory of electrical conductivity as a classical
approximation for room temperature
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in effect, neither the high v,. of 10° m/s of the electrons
derived from the equipartion theorem or the 10 times higher
Fermi speed do not contribute directly to conducting a current
since each electrons goes in any directions with an equal
likelihood and this speeds averages out to zero charge
transport in the absence of E

an applied voltage just lifts all electron

. . = E
energies! all electrons can thus contribute
to the electric conductivity /N T~
) I3 Stant = o ;}{H_% -@ L
_,,-""".-i X" (33 Finish ;" ~J 1"'-___I .-HH."T}

|
|
r |
— \ . - i
| E‘mh } ;,-f Finish @ i
L l-—r} !:__.- |
I i T —_— I /
._.l' 'I' ¥ L : —
F L1 P -n"l =i
.'-_.-c'r - " 4 * - - - : v

L) ()
& HEF Brpot s Coke « Tramaon

Figure 12.11 (a) Random successive displacements of an electron in a metal without an
applied electric field. (b) A combination of random displacements and displacements produced
by an external electric field. The net effect of the electric field is to add together multiple
displacements of length v, T opposite the field direction. For purposes of illustration, this ﬁgllére

greatly exaggerates the size of v, compared with v ..
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 kynv, L

rms” —classical

2

V... was too small by one order of magnitude, L ..., Was
too small by two orders of magnitude, the classical
calculations should give a result 3 orders of magnitude
smaller than the observation (which is of course well
described by a quantum statistical treatment)

classical

so there must be something fundamentally wrong with our
ideas on how to calculate K, any idea ?7?
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Wait a minute, K has something to do with the heat capacity
that we derived from the equipartion theorem

Must be too large by two orders of magnitude

Koo =G/,

classical ~— 3 V' for ideal _gnxvrm.s for particle

-

We had the result earlier that the contribution of the electron
gas is only about one hundredth of what one would expect
from an ideal gas, C, 1 igeal gas 1S actually two orders or
magnitude larger than for a real electron gas, so that are two
orders of magnitude in excess, with the product of V,,,¢ and
Ltor particie three orders of magnitude too small, we should
calculate classically thermal conductivities that are one order
of magnitude too small, which is observed Il

51



K/ — k nv? s Lm VF??F'.S' L k mev?ﬁ'} Y
2
O 2ne’l 2e

-2

£ = 3k ~1.12-10°WQK
ol 2e

fortunately L cancelled, but v, . gets squared, we are indeed
very very very fortuitous to get the right order of magnitude
for the Lorenz number from a classical treatment

-

(one order of magnitude too small squared is about two orders of
magnitude too small, but this is “compensated” by assuming that the
heat capacity of the free electron gas can be treated classically which in
turn results in a value that is by itself two order of magnitude too large-
two “missing” orders of magnitude times two “excessive orders of

magnitudes levels about out 2
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- kT

Kﬁ?ﬁnf = ( )”Ljhr*_n _wavical
3 ”?Ev fermi
2
. ne Lfm*_ a wavical
Ggrm’munn R
?}'ZE?V fermi

That gives for the Lorenz number in a quantum treatment

271.2
A TR 54500 0K
ol 3¢”
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Back to the problem of the temperature dependency of
resistivity

Drude’s theory predicted a dependency on square root
P XS 2 e m) of T, but at reasonably high temperatures, the
| dependency seems to be linear

This is due to Debye’s
phonons (lattice vibrations),
which are bosons and need to
be treated by Bose-Einstein
statistics, electrons scatter on
w =0 w0 e w0 wo w phonons, so the more

e phonons, the more scattering

Number of phonons proportional to Bose-Einstein distribution function

1 Which becomes k. T

M honons kT ] for reasonably n

phonons

large T T126)



At low temperatures, there are hardly any phonons,
scattering of electrons is due to impurity atoms and
lattice defects, if it were not for them, there would
not be any resistance to the flow of electricity at
zero temperature

Matthiessen’s rule, the resistivity of a metal can be
written as

O =0 |attice defects to |attice vibrations
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