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9. On the distribution law of energy in the normal spectrum 
 
by Max Planck 
 
(presented in different form at the German Physical Society Meeting on October 19 and 
December 14, 1900, proceedings 2, p. 202 and p. 237, 1900) 
 
Introduction 
 

The new measurements of spectra by O. Lummer and E. Pringsheim 1 and even more 
conspicuously those by H. Rubens and F. Kurlbaum 2, which simultaneously confirm a 
result obtained earlier by H. Beckmann 3 have shown that the energy distribution law in 
the normal spectrum, which was first derived by Wien from molecular kinetic 
considerations and later by myself from the theory of electromagnetic radiation, is not 
generally valid.  

On any account, the theory behind the energy distribution law needs an improvement 
and I will try in the following to make an attempt in this direction on the basis of my own 
theory of electromagnetic radiation. In order to do so, it will be necessary to identify the 
very link in the chain of reasoning which lead to Wien’s energy distribution law that is 
amendable to change; to remove that link from the chain and replace it with a suitable 
substitute.  

In my last paper 4, I have shown that the physical foundation of the electromagnetic 
theory of radiation including the hypothesis of the “natural radiation” withstand severe 
falsifications. As the calculations do not, as far as I can see, contain errors, the notion 
stands that the distribution law of energy in the normal spectrum will be entirely 
determined when the entropy S of an irradiated, monochromatically oscillating resonators 
is known as a function of his oscillation energy U. From the relation dS/dU = 1/ϑ one can 
obtain the dependence of the energy U on the temperature ϑ. Since, on the other hand, the 
energy U is connected to the radiation density of the corresponding oscillation number by 
a simple relation 5, one obtains by this route also the dependence of the radiation density 
on the temperature. The normal energy distribution is then the one at which the radiation 
densities of all the different oscillation numbers possess the same temperature.  

The whole problem, thus, is reduced to finding S as a function of U and this will 
constitute the maim part of this investigation. In my first paper on this topic I introduced 
S directly per definition without further justification as a simple relation of U and showed 
that this relation suffices all requirements from thermodynamics. At that time, I believed 
that this is actually the only relation of its kind and that Wien’s law, which follows from 



it, must with necessity be generally valid. On closer inspection later on 6, I realized that 
there must be other relations that are equally valid and that there must, therefore, be 
another conditions to calculate S unambiguously. Such a condition, I thought at the time 
to have found in the plausible appearing notion that the increase in the total entropy SN = 
N S resulting from an infitessimal small change of a system of N identical resonators that 
are nearly in thermodynamical equilibrium only depends on the total energy UN = N U 
and its change, but not from the energy U of the individual resonators. This notion, with 
necessity, lead again to Wien’s energy distribution law. Since Wien’s law is not bore out 
by observations, one has to arrive at the conclusion that this notion is incorrect and must 
therefore be removed from the theory 7. 

What remains to be done is finding another condition which allows for the calculation 
of S. … In the following a new relation for the entropy will be derived which results in a 
novel radiation formula, which does not disagree with any currently know observation. 

 
I. Calculation of the entropy of a resonator as a function of its energy 
 
… 
 
§ 2. SN = k log W + const.         (3) 
 
§ 3. It is now important to find the probability W that the N resonators as a whole possess 
the vibrational Energy UN. For that it is important to consider UN not as a smooth, 
arbitrarily dividable entity. On the contrary, UN must be considered as a discrete entity 
that is composed of an integer number of finite identical parts. Calling such an energy 
increment ε, we obtain 
 
UN = P ε          (4) 
 
whereby P is an integer which is generally large and the value of ε will be derived later.  

 
….. 
 

§ 3. … 
 
Hence, after equation (2) the entropy S of a resonator as a function of its energy U is: 
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II. Introduction of Wien’s Displacement Law 
 
… 
 
§ 10. Applying Wien’s law in its last formulation to the expression of the entropy S (6), 
we see that the energy element ε must be proportional to the frequency ν, i.e. 



ε = h ν 
 
and thus: 
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whereby h and k are universal constants. 
 
Substituting in (9) one obtains: 
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and from (8) the energy distribution law we searched for follows 
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and substituting the frequency (?) with the wavelength (?) 
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…. 
 
III. Numerical Values 
 
§ 11. The values of the two constants of nature h and k can be calculated rather accurately 
on the basis of the existing measurements.  
… 
 
h = 6.55 10-27 erg sec  
 
k = 1.346 10-16 erg/grad  Boltzmann’s constant 

 
(Received January 7th, 1901) 



Comment by translator 
 
today's best values are  
 
h = 6.6260755(40) 10-34 Js 
 
k = 1.380658(12) 10-23 J/K 
 
i.e. Plank’s calculations where too low by only ˜  1.15%  and  2.51%, respectively. 
 
 


