Quantifying and enforcing plane symmetry in images of 2D periodic objects

Peter Moeck, Nano-Crystallography Group, Department of Physics

Portland State
LHIVEBSITY
OREGON NANOSCIENCE AND MICROTECHNOLOGIES INSTITUTE
financial support: Portland State University's Venture Fund, other projects: Oregon Nanoscience and Microtechnologies Institute, Office of Naval Research, Research Corporation, North-West Academic Computing Consortium, National Science Foundation, National Center for Electron Microscopy Berkeley

Lord Kelvin (William Thompson), 1883:

"I often say that when you can measure what you are speaking about, and express it in numbers, you know something about it;
but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts, advanced to the state of science."

Outline

1. Plane symmetry, a well defined mathematical concept, deviations from it are quantifiable
2. Experimental and simulated examples:

Scanning Tunneling Microscopy (STM), 2D periodic and highly symmetric calibration samples, symmetrizing a blunt STM tip,
Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), better surface and nanoscience, but problems of deciding between plane groups without prior knowledge, other limitations
3. Knowledge of 2D symmetry makes for more sophisticated art (M. C. Escher)
4. Summary and Conclusions

$p 1$

$p m g$
$(p 2 m g)$

p3
($p 3$)

$p 3 m 1$
$(p 3 m 1)$
$p 3 m 1$
$(p 3 m 1)$

p31m
(p31m)

$p g$
($p 1 \mathrm{~g} 1$)

$p 4$
$(p 4)$
$p 6$
$(p 6)$

p6m
($p 6 \mathrm{~mm}$)

	\diamond	2-fold
Centers of Rotation:	\triangle	3-fold
	\square	4-fold
	\bigcirc	6-fold

	axis of reflection
--------	axis of glide-reflection
	outline of lattice unit
................	outline of "centered cell"

Chart 2. International notation identifies the seventeen two-dimensional crystallographic groups. The short form is given first, with the full notation in parentheses.
D. Schattschneider, The American Mathematical Monthly 85 (1978) 439-450, but modified for centered cells
> T. Hahn (Ed.), Brief Teaching Edition of Volume A, Space-group symmetry, International Tables for Crystallography, 5th revised edition, International Union of Crystallography (IUCr), Chester 2005.
Robotics and machine vision community favors the direct space approach to plane symmetry detection and quantification, Y. Liu et al. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (2004) 354-374

But crystallographic community prefers

 the reciprocal space, kinematic scattering, Fourier transform approach !$f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(H, K) \exp \{-2 \pi i(x H+y K)\} d H d K=F T^{-1}[F(H, K)]$
The Fourier transform of a 2D periodic object is a discrete set of complex numbers, which contains exactly the same information!

$$
f(x, y)^{\text {periodic }}=\sum_{-H}^{H} \sum_{-K}^{K} F(H, K)^{\text {discrete }} \exp \{-2 \pi i(x H+y K)\}
$$

Instead of analyzing the symmetry relations between each pixel of a 2D image, it is sufficient to analyze the symmetry relations of a few Fourier coefficients, in X-ray crystallography known as "structure factors"!!

Digital photogram of this street pavement was not recorded perpendicular to the pavement. Note the size difference between pavement bricks marked by arrows.
plane group: p4, point group of motif: 4

Crystallographic Image processing quantifies the plane symmetry correctly. Enforcing this symmetry leads to removal of the "imperfections of the imaging process" and "enhancement of surface details" of the pavement bricks.

$F_{\text {res }}=\frac{\sum_{H K}| | F_{o b s}(H, K)\left|-\left|F_{s y m}(H, K)\right|\right|}{\sum_{H K}\left|F_{o b s}(H, K)\right|} \alpha_{\text {res }}=\frac{\sum_{H K} w(H, K) \cdot\left|\alpha_{o b s}(H, K)-\alpha_{s y m}(H, K)\right|}{\sum_{H K} w(H, K)}$

$$
\left|F_{s y m}(H, K)\right|=\sum_{j}^{n}\left|F_{o b s}^{j}(H, K)\right|
$$

$\alpha_{s y m}(H, K)=\arctan \left[\frac{\sum_{j} w^{j} s^{j} \sin \left\{\alpha_{o b s}^{j}(H, K)\right\}}{\sum_{j} w^{j} s^{j} \cos \left\{\alpha_{o b s}^{j}(H, K)\right\}}\right]+\left\{\begin{array}{cc}0^{\circ} & \left.\text { [if } \sum_{j} w^{j} s^{j} \cos \left\{\alpha_{o b s}^{j}(H, K)\right\}>0\right] \\ 180^{\circ} & \left.\text { [if } \sum_{j} w^{j} s^{j} \cos \left\{\alpha_{o b s}^{j}(H, K)\right\}<0\right]\end{array}\right\}$
where w^{j} is a weighting factor, proportional to $\left|F_{\text {obs }}{ }^{j}(H, K)\right| ; s^{j}=1$ in the absence of an approximately 180° flipped phase or $s^{j}=-1$. For centrosymmetric plane groups finally set to the nearest 0° or 180°.
$\alpha_{s y m}(H, K)=\alpha_{o b s}(H, K)$ if not symmetry related except for Friedel's law $\alpha_{o b s}(H, K)=-\alpha_{o b s}(-H,-K)$
$\left|F_{\text {sym }}(H, K)\right|=\left|F_{\text {obs }}(H, K)\right|$ if not symmetry related except for Friedel's law $\left|F_{\text {obs }}(H, K)\right|=\left|F_{\text {obs }}(-H,-K)\right|$

Note that known 2D symmetry information about a sample has not been utilized before !!

Crystallographic processing of an image from a known SPM calibration sample with 2D periodic (and highly symmetric) features in order to

1. Assess the performance of the microscope (determine prevalent point spread function) ;
2. Correct subsequently recorded images from unknowns with this point spread function! (valid for one set of experimental conditions and scanning probe tip at a time)

Scanning Tunneling Microscopy: left: state of the art; right: our proposed enhancements, provisional patent application pending

Challenge: environmentally stable SPM standards with 2D periodicities at the atomic level, preferably high plane symmetry so that all subgroups can be used for quantification of the performance of the microscope and its proper calibration, HOPG should do!

Fig. 1. Crystal structure of graphite. The unit cell is shaded in green. (A) Top view on the surface layer. The hexagonal surface lattice is defined by two unit vectors, u and v, in the $x y$ plane with a length of 246 pm and an angle of 120° forming a honeycomb web of hexagonal rings. The basis of the lattice consists of two carbon atoms α (white) and β (red) with a distance of 142 pm . (B) Perspective view, showing the layered structure. The distance between layers is 2.36 times the next-neighbor distance of atoms within one layer, and the bond between layers is weak. The α atoms (white) are directly above an α atom in the layer directly underneath at a distance of 334.8 pm ; the β atoms (red) are over a hollow sites (h). The unit vector w is parallel to the z-axis with a length of 669.6 pm .
S. Hembacher, et al., Revealing the Hidden Atom in Graphite by Low-Temperature Atomic Force Microscopy, Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 22 (Oct. 28, 2003), pp. 12539-12542

STM images of HOPG (a) raw data with 512 by 512 pixels, constant current mode, tungsten tip, 1 V bias, 0.15 nA (left) and (b) p3m1 enforced version of raw data (right). Note that there are atomic vacancies in the raw data. While the carbon atom at position $(2 / 3,1 / 3)$ is clearly revealed, its counterpart at position $(0,0)$ is rather faint, but at a higher intensity than the "empty spot" at position $(1 / 3,2 / 3)$.

Scanning Tunneling Microscopy Image of a mono-layer of fluorinated cobalt phthalocyanine ($\mathrm{F}_{16} \mathrm{CoPc}$) on graphite, UHV and 20 K , tungsten tip bias 1 V , constant 0.1 nA tunneling current !

p2 symmetry enforced STM data. A two-fold axis is imposed. The lattice remains oblique. The motif acquires point symmetry 2 and the peculiar "overall image twist" is removed.

p2mm symmetry enforced STM data.
A two-fold axis with a set of perpendicular mirrors is imposed. The lattice becomes rectangular. The motif acquires point symmetry 2 mm

p4 symmetry enforced STM data. A fourfold axis is imposed. The lattice becomes quadratic and the motif acquires the point symmetry 4.

"Size" of molecule and basic periodicities in STM images approximately $1.5-2 \mathrm{~nm}$

recovering one image of the original 2D array

both p4mm
two images of "each kind" from the same 2D array superimposed with translation

Simulated series of STM images of a sample surface with plane symmetry p6mm. The first image was simulated for a single tip. Two mini-tips (as a simple model of a blunt STM tip) were scanning from top to bottom in the other three simulations. The distance between the two mini-tips increases from left to right. Electron interference between the two tips was included in the simulations.

CIP processed STM images (of a sample surface with plane symmetry p 6 mm) as simulated in the figures above. Despite the two mini-tips and electron interference effects between these two tips in three of the simulated image, crystallographic image processing recovers in all cases the underlying plane symmetry of the sample surface reasonably well!

F_{16} CoPc on silver (110), UHV and 20 K , tungsten tip bias 1 V , constant 0.1 nA tunneling current

Working hypotheses: since the substrate has plane group c2mm, it is no coincidence that the monolayer also has this plane group (Curie's principle for strong epitaxial interaction), also directly above every $5^{\text {th }} \mathrm{Ag}$ atom, there is the central Co atom of every $\mathrm{F}_{16} \mathrm{CoPc}$ molecule

c2mm enforced

Fourier filtered and contour map
"Soft" Metallic Contact to Isolated C' Molecules
Hendrik Glowatzki, Benjamin Bro\#ker, Ralf-Peter Blum, Oliver T. Hofmann, Antje Vollmer, Ralph Rieger, Klaus Mu\#llen, Egbert Zojer, Ju\#rgen P. Rabe, and Norbert Koch Nano Lett., 2008, 8 (11), 3825-3829 • DOI: 10.1021/nl8021797 • Publication Date (Web): 28 October 2008

STM, UHV, 300 K , a genuine breakthrough
Ag (111), plane group $\mathrm{p} 6 \mathrm{~mm}+$ hexaazatriphenylene -hexanitrile HATCN

metallic when on Ag (111)

+ buckyballs in the centers of the molecules

electronic structure not modified by the soft metallic contact !

$\mathrm{p} 2, \mathrm{a}_{\mathrm{res}}: 11.9^{\circ}$

$\mathrm{p} 3, \mathrm{~F}_{\mathrm{res}}: 15.6 \%, \mathrm{a}_{\mathrm{res}}: 7.6^{\circ}$

$\mathrm{p} 6, \mathrm{~F}_{\text {res }}: 15.6 \%, \mathrm{a}_{\mathrm{res}}: 12.3^{\circ}$

$\mathrm{p} 3 \mathrm{~m} 1, \mathrm{~F}_{\mathrm{res}}: 16.7 \%, \mathrm{a}_{\mathrm{res}}: 8.5^{\circ}$

p6mm, $F_{\text {res }}: 16.7 \%, \alpha_{\text {res }}: 12.7^{\circ}$

© CRISP2.1

File Edit Tools Area Fourier CIP ELD PhIDO Statistics Calculate Options Window Help

$\mathrm{p} 2, \mathrm{a}_{\mathrm{res}}: 17.5^{\circ}$

$\mathrm{p} 31 \mathrm{~m}, \mathrm{~F}_{\text {res }}: 18.8 \%, \mathrm{a}_{\mathrm{res}}: 17.4^{\circ}$

$\mathrm{p} 3, \mathrm{~F}_{\mathrm{res}}: 17.9 \%, \mathrm{a}_{\mathrm{res}}: 15.0^{\circ}$

$\mathrm{p} 6, \mathrm{~F}_{\mathrm{res}}: 17.9 \%, \mathrm{a}_{\mathrm{res}}: 19.5^{\circ}$

p3m1, $\mathrm{F}_{\text {res }}: 18.8 \%, \mathrm{a}_{\text {res }}: 19.7^{\circ}$

p6mm, $F_{\text {res }}: 18.8 \%, \alpha_{\text {res }}: 20.0^{\circ}$

Residuals for c2mm: amplitude: 18.3\%, phase angle: 3.4°, all subgroups c 1 m 1 , c11m, p2 (translationsgleiche), p2gg, p2gm, p2mg, p2mm (klassengleiche) have similarly low residuals
 Ilculate Options Window Help

there are limits to detecting symmetries in STM images, but 2-fold axis and set of intersecting mirror lines, i.e. subgroup pmm at least identified correctly, skewed symmetry, due to affine transformation, different step sizes, non-orthogonality of fast and slow scan directions

Limits of raw data quality for CIP procedure to

 work properly

AFM images on LiF, only about 200 by 200 pixels, so "128 pixel masks" are necessary for FFT calculations

only large F anions are clearly visible, н. Heinzelmann et al., Zeits. Physik B Condensed. Matter 79 (1990) 3-4
circular mask
128^{2} pixel square mask

p 4 mm is detected and enforced for both raw images, but only for the square mask is 4 mm enforced as site symmetry of $(0,0)$ and $(1 / 2,1 / 2)$ in
 the detailed counter map

Circular mask for calculation of fast Fourier transform, 256 pixel diameter

256 pixel square mask for calculation of fast Fourier transform

Avoid inclusion of image edges, example 256 by 256 pixel image
lattices are almost the same, but phase angles of a few "medium strong" Fourier coefficients flipped by about 180° due to convolution of image \& mask

"Placebo Test": Point symmetry 1 combined with oblique lattice = plane symmetry p1, note that all amplitude and phase residuals are very high, crystallographic image processing works well

CICRISP2.1
File Edit Tools Area Fourier CIP ELD PhIDO Statistics Calculate Options Window Help

File Edit Tools Area Fourier CIP ELD PhIDO Statistics Calculate Options Window Help

development of a dedicated crystallographic image processing program for the scanning

probe microscopy community

For "sufficiently" symmetric images without much distortion and noise, e.g. simulations or works of art, the map of the phase residuals indicates not only the correct origin, but also the location of the other symmetry elements,
in case of p31m, the mirror lines, glide lines, and position of mirror equivalent three-fold rotation points at $(1 / 3,2 / 3)$ and $(2 / 3,1 / 3)$

Cross correlation of a 2D periodic image with the symmetrized tile

 (that is Fourier back transformed after symmetrization of the Fourier coefficients of the image)

Idea: relative height of the central peak of CCF quantifies "similarity", p1 value serves as a "baseline" of the FFT procedures

$$
C C F(x, y)=\sum_{x} \sum_{y}\left[i\left(x^{\prime}, y^{\prime}\right)-<i\left(x^{\prime}, y^{\prime}\right) \gg \cdot\left[t\left(x^{\prime}-x, y^{\prime}-y\right)-<t>1 /(\Gamma\right.\right.
$$

$$
\left./ \sum_{x} \sum_{y}\left[i\left(x^{\prime}, y^{\prime}\right)-<i\left(x^{\prime}, y^{\prime}\right)>\right]^{2} \cdot \sum_{x} \sum_{y}\left[t\left(x^{\prime}-x, y^{\prime}-y\right)-<t>\right]^{2}\right)^{0.5}
$$

p1, 1.14 all site symmetries broken for $p 2$

p3, 4.21
p2, 3.68

p3m1, 4.31

p31m, 4.48

p6mm, 4.29

Exercise in mirror and glide lines plus three axes

pg unfinished
Escher Foundation, Haags Gemeentemuseum, The Hague.

p31m

Two periodic drawings by M. C. Escher contrast his early effort at repeating design with his later masterful skill. The pattern of lions, dated " 1926 or 1927," was done before he developed a system which grew out of his study of mathematical articles and periodic designs on the Alhambra. The pattern of bugs is dated 1942, one year after Escher recorded his codified system in notebooks.
G. Pólya, Über die Analogie der Kristallsymmetrie in der Ebene, Zeits. Krist. 60 (1924) 278-282;
P. Niggli, Die Flächensymmetrien homogener Diskontinuen, Zeits. Krist. 60 (1924) 283-298.
D. Schattschneider, The American Mathematical Monthly 85 (1978) 439-450
almost square lattice, but no point symmetries at all, very special case of p1

p6 deliberately broken (removing two fold axes (-)) by coloring so that drawing becomes special case of p3,
18 moths in total per unit cell, half of a unit cell - a triangle - clearly visible, so let's account for 9 moths, three are blue the, other six are red and yellow, asymmetric unit - dotted blue lines - contains two moth of each color

Summary and conclusions

All periodic 2D images can be classified to belong to one of only 17 plane symmetry groups

Deviation from each of these groups can be quantified, correct plane group can often be identified on basis of quantitative measures (plus some prior knowledge), i.e. the amplitude and phase angle residuals of the Fourier coefficients of the image intensity

HOPG is a good calibration sample, one can determine the point spread function of the microscope on its basis, then the same function can be utilized to correct images from unknowns, allows for better measurements and surface science

A blunt STM tip can be symmetrized
There are problems on how to decide on the correct plane group if there is no prior knowledge, some clever geometric AIC is needed
Knowledge of 2D symmetry made Maurits Cornelis Escher (17 June 1898 27 March 1972) a more sophisticated artists, it may also result in better surface- and nano-science

Crystallographic Image Processing works even for noisy Fourier transforms

p2mm symmetry enforced STM data. A two-fold axis with a set of perpendicular mirrors is imposed. The lattice becomes rectangular. There is no 4, so the molecules 'line up" at two of the 2 mm positions.

p4 symmetry enforced STM data. A fourfold axis is imposed. The lattice becomes quadratic. Because the "azimuthal orientations" of the molecules are not restricted, there is molecular misalignment and "washed out detail"

In effect, the "imperfections" of the scanning probe imaging process by a real microscope are removed from the data by imposing the most likely symmetry ! This is possible because all molecules are quantum mechanically identical and we may know the point group of a molecule in advance from quantum mechanics!

"Size" of molecule and basic periodicities in STM images approximately $1.5-2 \mathrm{~nm}$
p4mm symmetry enforced STM data. Two additional sets of perpendicular mirror lines are imposed. The motif "rotates" counter clockwise and acquires the full point symmetry of the molecule.

Display mode		h	k	F	phi	-
C Oblique	1	2		$21.3560 \mathrm{e}+06$	-2.9560	
	2	2		$21.3550 \mathrm{e}+06$	-2.9559	
(6) Orthorombic	3	4		$09.4551 \mathrm{e}+05$	-0.0494	
	4	0		$49.2498 \mathrm{e}+05$	$1.4724 \mathrm{e}-05$	
C CenterediHexagonal	5	8		$06.5967 \mathrm{e}+05$	-2.9176	
	6	0		$86.5674 \mathrm{e}+05$	-3.1415	
Lattice parameters	7	-4		$65.0794 \mathrm{e}+05$	2.8633	
	8	4		$65.0668 \mathrm{e}+05$	0.2783	
	0	c		1 EMARQane	92858	

